File: tslice_dirac_max_evolve.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (769 lines) | stat: -rw-r--r-- 27,781 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/*
 *  Method of class Tslice_dirac_max for time evolution 
 *
 *    (see file time_slice.h for documentation).
 *
 */

/*
 *   Copyright (c) 2004 Eric Gourgoulhon & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char tslice_dirac_max_evolve_C[] = "$Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_dirac_max_evolve.C,v 1.22 2015/08/10 15:32:27 j_novak Exp $" ;

/*
 * $Id: tslice_dirac_max_evolve.C,v 1.22 2015/08/10 15:32:27 j_novak Exp $
 * $Log: tslice_dirac_max_evolve.C,v $
 * Revision 1.22  2015/08/10 15:32:27  j_novak
 * Better calls to Param::add_int(), to avoid weird problems (e.g. with g++ 4.8).
 *
 * Revision 1.21  2014/10/13 08:53:48  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.20  2013/01/24 12:55:18  j_novak
 * Corrected the declaration of variables for boundary conditions.
 *
 * Revision 1.19  2012/02/06 12:59:07  j_novak
 * Correction of some errors.
 *
 * Revision 1.18  2011/07/22 13:21:02  j_novak
 * Corrected an error on BC treatment.
 *
 * Revision 1.17  2010/10/20 07:58:10  j_novak
 * Better implementation of the explicit time-integration. Not fully-tested yet.
 *
 * Revision 1.16  2008/12/04 18:22:49  j_novak
 * Enhancement of the dzpuis treatment + various bug fixes.
 *
 * Revision 1.15  2008/12/02 15:02:22  j_novak
 * Implementation of the new constrained formalism, following Cordero et al. 2009
 * paper. The evolution eqs. are solved as a first-order system. Not tested yet!
 *
 * Revision 1.13  2004/06/14 20:51:37  e_gourgoulhon
 * Method solve_hij has now argument method_poisson.
 * Its value is set **provisory** to 1 (instead of method_poisson_vect !).
 *
 * Revision 1.12  2004/05/31 09:09:59  e_gourgoulhon
 * Added monitoring of khi and mu.
 * Added writing of whole configuration in file (via Time_slice::save).
 *
 * Revision 1.11  2004/05/24 20:58:05  e_gourgoulhon
 * Added graphical output of khi, mu and trh.
 *
 * Revision 1.10  2004/05/20 20:32:01  e_gourgoulhon
 * Added arguments check_mod and save_mod.
 * Argument graph_device passed to des_evol.
 *
 * Revision 1.9  2004/05/17 19:55:10  e_gourgoulhon
 * Added arguments method_poisson_vect, nopause and graph_device
 *
 * Revision 1.8  2004/05/13 21:35:30  e_gourgoulhon
 * Added monitoring of various quantities (as Evolution_full<Tbl>).
 * Added function monitor_scalar.
 *
 * Revision 1.7  2004/05/12 15:24:20  e_gourgoulhon
 * Reorganized the #include 's, taking into account that
 * time_slice.h contains now an #include "metric.h".
 *
 * Revision 1.6  2004/05/11 20:15:10  e_gourgoulhon
 * Added Evolution_full's for ADM mass and checks of the constraint,
 * as well as the corresponding plots and write to files.
 *
 * Revision 1.5  2004/05/10 09:19:27  e_gourgoulhon
 * Added a call to del_deriv() after set_khi_mu.
 *
 * Revision 1.4  2004/05/09 20:59:06  e_gourgoulhon
 * Change of the time scheme: first solve d'Alembert equations,
 * then psuh forward in time and solve the elliptic equation
 * on the new slice.
 *
 * Revision 1.3  2004/05/06 15:26:29  e_gourgoulhon
 * No longer necessary to initialize khi and mu.
 *
 * Revision 1.2  2004/05/05 14:39:32  e_gourgoulhon
 * Added graphical outputs.
 *
 * Revision 1.1  2004/05/03 14:49:10  e_gourgoulhon
 * First version
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_dirac_max_evolve.C,v 1.22 2015/08/10 15:32:27 j_novak Exp $
 *
 */

// Lorene headers
#include "time_slice.h"
#include "param.h"
#include "graphique.h"
#include "utilitaires.h"
#include "proto.h"

namespace Lorene {
const Tbl& monitor_scalar(const Scalar& uu, Tbl& resu) ;

void Tslice_dirac_max::evolve(double pdt, int nb_time_steps,
                              int niter_elliptic, double relax, 
                              int check_mod, int save_mod,
                              int method_poisson_vect, int nopause,  
                              const char* graph_device, bool verbose,
			      const Scalar* ener_euler,
			      const Vector* mom_euler, const Scalar* s_euler,
			      const Sym_tensor* strain_euler) {

    // Intermediate quantities
    // -----------------------
    const Map& map = nn().get_mp() ; 
    const Base_vect& triad = *(beta().get_triad()) ;
    assert( triad == map.get_bvect_spher() ) ;

    // For graphical outputs:
    int ngraph0 = 20 ;  // index of the first graphic device to be used
    int ngraph0_mon = 70 ;  // for monitoring global quantities
    int nz = map.get_mg()->get_nzone() ; 
    int nz_bound = nz - 2 ;
    int nt = map.get_mg()->get_nt(0) ;
    int np = map.get_mg()->get_np(0) ;
    int np2 = np+2 ;
    Scalar tmp(map) ; tmp.std_spectral_base() ;
    Base_val base_ref = tmp.get_spectral_base() ;
    Base_val base_pseudo = base_ref ;
    base_pseudo.mult_cost() ;
    base_pseudo.mult_x() ;
#ifndef NDEBUG
    for (int lz=1; lz<nz; lz++) {
	assert( map.get_mg()->get_np(lz) == np ) ;
	assert( map.get_mg()->get_nt(lz) == nt ) ;
    }
    assert (depth > 2) ; //## for the moment, a more flexible test should be put
    for (int it=0; it<depth; it++) {
	assert ( hh_evol.is_known( jtime - it ) ) ;
	assert ( hata_evol.is_known( jtime - it ) ) ;
	assert ( A_hata_evol.is_known( jtime - it ) ) ;
	assert ( B_hata_evol.is_known( jtime - it ) ) ;
	assert ( A_hh_evol.is_known( jtime - it ) ) ;
	assert ( B_hh_evol.is_known( jtime - it ) ) ;
    }	
#endif
    
    // Initialization of the TT fields
    //--------------------------------
    Sym_tensor_tt hij_tt( map, triad, ff ) ;
    hij_tt.set_A_tildeB( A_hh_evol[jtime], B_hh_evol[jtime] ) ;
    Sym_tensor_tt hijtt_old = hij_tt ;
    for (int i=1; i<=3; i++)
	for (int j=i; j<=3; j++)
	    if ( hijtt_old(i,j).get_etat() == ETATZERO )
		hijtt_old.set( i, j ).annule_hard() ;
    hijtt_old.annule(0, nz_bound) ;

    Sym_tensor_tt hata_tt( map, triad, ff ) ;
    hata_tt.set_A_tildeB( A_hata_evol[jtime], B_hata_evol[jtime] ) ;
    hata_tt.inc_dzpuis(2) ;
    Sym_tensor_tt hatatt_old = hata_tt ;
    for (int i=1; i<=3; i++)
	for (int j=i; j<=3; j++)
	    if ( hatatt_old(i,j).get_etat() == ETATZERO )
		hatatt_old.set( i, j ).annule_hard() ;
    hatatt_old.annule(0, nz_bound) ;

    // Declaration / initialization of mu and khi for hh and hata
    //-----------------------------------------------------------
    Evolution_std<Scalar> khi_hh_evol(depth) ;
    Evolution_std<Scalar> mu_hh_evol(depth) ;
    Evolution_std<Scalar> khi_a_evol(depth) ;
    Evolution_std<Scalar> mu_a_evol(depth) ;
    Sym_tensor_trans Tij(map, map.get_bvect_spher(), ff) ;
    for (int j=jtime-depth+1; j<=jtime; j++) {
	tmp = hij_tt(1,1) ;
	tmp.mult_r() ; tmp.mult_r() ;
	khi_hh_evol.update( tmp, j, the_time[j] ) ;
	mu_hh_evol.update( hij_tt.mu(), j, the_time[j] ) ;
	tmp = hata_tt(1,1) ;
	tmp.mult_r() ; tmp.mult_r() ;
	khi_a_evol.update( tmp, j, the_time[j] ) ;
	mu_a_evol.update( hata_tt.mu(), j, the_time[j] ) ;
    }

    double Rmax = map.val_r(nz-2, 1., 0., 0.) ; // outermost radius
    double ray_des = 1.25 * Rmax ; // for plots

    // Parameters for the evolution equations
    //---------------------------------------
    double an = 23./12. ; 
    double anm1 = -4./3. ; 
    double anm2 = 5./12. ; 

    int i_zero = 0 ;
    int i_minus_one = -1 ;
    int i_two = 2 ;

    Param par_A ;
    double *l_val_A = new double(1./Rmax) ;
    double *l_der_A = new double(1.) ;
    par_A.add_int(nz_bound, 0) ;
    par_A.add_int(i_two, 1) ; //matching of function and derivative
    par_A.add_int(i_zero, 2) ;// no shift in l 
    par_A.add_int(i_two, 3) ; // only for l>=2
    par_A.add_double_mod(*l_val_A, 0) ;
    par_A.add_double_mod(*l_der_A, 1) ;
    Tbl* tmp_Acc = new Tbl(np2, nt) ;
    Tbl& Acc = *tmp_Acc ;
    Acc.annule_hard() ;
    par_A.add_tbl_mod(Acc) ;
    Param par_mat_A_hh ;

    Param par_B ;
    double* l_val_B = new double(1./Rmax) ;
    double* l_der_B = new double(1.) ; 
    par_B.add_int(nz_bound, 0) ;
    par_B.add_int(i_two, 1) ; //matching of function and derivative
    par_B.add_int(i_minus_one, 2) ;// shift in l for tilde{B}
    par_B.add_int(i_two, 3) ; // only for l>=2
    par_B.add_double_mod(*l_val_B, 0) ;
    par_B.add_double_mod(*l_der_B, 1) ;
    Tbl* tmp_Bcc = new Tbl(np2, nt) ;
    Tbl& Bcc = *tmp_Bcc ;
    Bcc.annule_hard() ;
    par_B.add_tbl_mod(Bcc) ;
    Param par_mat_B_hh ;

    Tbl xij_b(np2, nt) ;
    xij_b.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, B_hh_evol[jtime] , B_hata_evol[jtime], xij_b) ;
    Tbl xijm1_b(np2, nt) ;
    xijm1_b.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, B_hh_evol[jtime-1] , 
			   B_hata_evol[jtime-1], xijm1_b) ;
    Tbl xij_a(np2, nt) ;
    xij_a.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, A_hh_evol[jtime] , A_hata_evol[jtime], xij_a) ;
    Tbl xijm1_a(np2, nt) ;
    xijm1_a.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, A_hh_evol[jtime-1] , 
			   A_hata_evol[jtime-1], xijm1_a) ;

    // Parameters for the Dirac systems
    //---------------------------------

    Param par_bc_hh ;
    par_bc_hh.add_int(nz_bound) ;
    Tbl* cf_b_hh = new Tbl(10) ;
    cf_b_hh->annule_hard() ;
    cf_b_hh->set(0) = 11*Rmax + 12*pdt ; // mu
    cf_b_hh->set(1) = 6*Rmax*pdt ; // d mu / dr
    cf_b_hh->set(2) = 0 ; // X
    cf_b_hh->set(3) = 0 ; // d X / dr
    cf_b_hh->set(4) = 11*Rmax*Rmax + 18*Rmax*pdt ; // h^rr
    cf_b_hh->set(5) = 6*Rmax*Rmax*pdt ;  // d h^rr / dr
    cf_b_hh->set(6) = 0 ; //eta
    cf_b_hh->set(7) = 0 ; //d eta / dr
    cf_b_hh->set(8) = 0 ; //W
    cf_b_hh->set(9) = 0 ; //d W / dr
    par_bc_hh.add_tbl_mod(*cf_b_hh, 0) ;
    Tbl* kib_hh = new Tbl(np2, nt) ;
    Tbl& khib_hh = *kib_hh ;
    khib_hh.annule_hard() ;
    par_bc_hh.add_tbl_mod(khib_hh,1) ;
    Tbl* mb_hh = new Tbl(np2, nt) ;
    Tbl& mub_hh = *mb_hh ;
    mub_hh.annule_hard() ;
    par_bc_hh.add_tbl_mod(mub_hh, 2) ;

    Param par_mat_hh ;

    Tbl xij_mu_hh(np2, nt) ;
    xij_mu_hh.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, mu_hh_evol[jtime] , mu_a_evol[jtime], xij_mu_hh) ;
    Tbl xijm1_mu_hh(np2, nt) ;
    xijm1_mu_hh.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, mu_hh_evol[jtime-1] , mu_a_evol[jtime-1], 
			   xijm1_mu_hh) ;

    Tbl xij_ki_hh(np2, nt) ;
    xij_ki_hh.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, khi_hh_evol[jtime] , khi_a_evol[jtime], xij_ki_hh) ;
    Tbl xijm1_ki_hh(np2, nt) ;
    xijm1_ki_hh.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, khi_hh_evol[jtime-1] , khi_a_evol[jtime-1], 
			   xijm1_ki_hh) ;

    Param par_bc_hata ;
    par_bc_hata.add_int(nz_bound) ;
    Tbl* cf_b_hata = new Tbl(10) ;
    cf_b_hata->annule_hard() ;
    cf_b_hata->set(0) = 11*Rmax + 12*pdt ; // mu
    cf_b_hata->set(1) = 6*Rmax*pdt ; // d mu / dr
    cf_b_hata->set(2) = 0 ; // X
    cf_b_hata->set(3) = 0 ; // d X / dr
    cf_b_hata->set(4) = 11*Rmax*Rmax + 18*Rmax*pdt ; // h^rr
    cf_b_hata->set(5) =  6*Rmax*Rmax*pdt ;  // d h^rr / dr
    cf_b_hata->set(6) = 0 ; //eta
    cf_b_hata->set(7) = 0 ; //d eta / dr
    cf_b_hata->set(8) = 0 ; //W
    cf_b_hata->set(9) = 0 ; //d W / dr
    par_bc_hata.add_tbl_mod(*cf_b_hata, 0) ;
    Tbl* kib_hata = new Tbl(np2, nt) ;
    Tbl& khib_hata = *kib_hata ;
    khib_hata.annule_hard() ;
    par_bc_hata.add_tbl_mod(khib_hata,1) ;
    Tbl* mb_hata = new Tbl(np2, nt) ;
    Tbl& mub_hata = *mb_hata ;
    mub_hata.annule_hard() ;
    par_bc_hata.add_tbl_mod(mub_hata, 2) ;

    Param par_mat_hata ;

    Tbl xij_mu_a(np2, nt) ;
    xij_mu_a.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, mu_a_evol[jtime] , 
			   mu_a_evol.time_derive(jtime, 2), xij_mu_a) ;
    Tbl xijm1_mu_a(np2, nt) ;
    xijm1_mu_a.set_etat_qcq() ;
    tmp = ( mu_a_evol[jtime] - mu_a_evol[jtime-2] ) / (2.*pdt) ;
    initialize_outgoing_BC(nz_bound, mu_a_evol[jtime-1] , tmp, xijm1_mu_a) ;

    Tbl xij_ki_a(np2, nt) ;
    xij_ki_a.set_etat_qcq() ;
    initialize_outgoing_BC(nz_bound, khi_a_evol[jtime] , 
			   khi_a_evol.time_derive(jtime, 2), xij_ki_a) ;
    Tbl xijm1_ki_a(np2, nt) ;
    xijm1_ki_a.set_etat_qcq() ;
    tmp = ( khi_a_evol[jtime] - khi_a_evol[jtime-2] ) / (2.*pdt) ;
    initialize_outgoing_BC(nz_bound, khi_a_evol[jtime-1] , tmp, xijm1_ki_a) ;

    // Quantities at new time-step
    //----------------------------
    Scalar n_new(map) ; 
    Scalar psi_new(map) ; 
    Scalar npsi_new(map) ; 
    Vector beta_new(map, CON, triad) ; 
    Scalar A_hh_new(map) ; 
    Scalar B_hh_new(map) ; 
    Scalar A_hata_new(map) ; 
    Scalar B_hata_new(map) ; 
    
    // Successive values of various quantities:
    // ---------------------------------------
    Evolution_full<double> m_adm(adm_mass(), jtime, the_time[jtime]) ; 
    Evolution_full<double> test_ham_constr ; 
    Evolution_full<double> test_mom_constr_r ; 
    Evolution_full<double> test_mom_constr_t ; 
    Evolution_full<double> test_mom_constr_p ; 
    Evolution_full<Tbl> nn_monitor ;
    Evolution_full<Tbl> psi_monitor ;
    Evolution_full<Tbl> A_h_monitor ;
    Evolution_full<Tbl> B_h_monitor ;
    Evolution_full<Tbl> trh_monitor ;
    Evolution_full<Tbl> beta_monitor_maxabs ;
    Evolution_full<Tbl> hh_monitor_central ;
    Evolution_full<Tbl> hh_monitor_maxabs ;
    Evolution_full<Tbl> hata_monitor_central ;
    Evolution_full<Tbl> hata_monitor_maxabs ;
    Evolution_full<Tbl> check_evol ;
    Tbl select_scalar(6) ; 
    Tbl select_tens(6) ;

    Vector zero_vec( map, CON, map.get_bvect_spher() ) ;
    zero_vec.set_etat_zero() ;
    const Vector& hat_S = ( mom_euler == 0x0 ? zero_vec : *mom_euler ) ;
    Scalar lapB(map) ;
    Scalar lapBm1 = source_B_hata_evol[jtime-1] ;
    Scalar lapBm2 = source_B_hata_evol[jtime-2] ;

    // Evolution loop
    // --------------

    for (int jt = 0; jt < nb_time_steps; jt++) {
    
        double ttime = the_time[jtime] ; 
	k_dd() ;
            
        if (jt%check_mod == 0) {
	  cout << 
	    "==============================================================\n"
	       << "  step: " << jtime << "   time = " << the_time[jtime] << endl  
	       << " ADM mass : " << adm_mass() 
	       << ", Log of central lapse: " << log(nn().val_grid_point(0,0,0,0)) << endl 
	       << "==============================================================\n" ;
	  
	  // Monitoring
	  // ---------- 
	  m_adm.update(adm_mass(), jtime, the_time[jtime]) ;
	  if (jt > 0) des_evol(m_adm, "ADM mass", "Variation of ADM mass", 
			       ngraph0_mon, graph_device) ;          
	  
	  
	  nn_monitor.update(monitor_scalar(nn(), select_scalar), 
                            jtime, the_time[jtime]) ; 
	  
	  psi_monitor.update(monitor_scalar(psi(), select_scalar), 
			     jtime, the_time[jtime]) ; 
	  
	  A_h_monitor.update(monitor_scalar(A_hh(), select_scalar), 
			     jtime, the_time[jtime]) ; 
	  
	  B_h_monitor.update(monitor_scalar(B_hh(), select_scalar), 
			     jtime, the_time[jtime]) ; 
        
	  trh_monitor.update(monitor_scalar(trh(), select_scalar), 
			     jtime, the_time[jtime]) ; 
	  
	  beta_monitor_maxabs.update(maxabs_all_domains(beta(), -1, 0x0, cout, verbose), 
				     jtime, the_time[jtime]) ; 
        
	  hh_monitor_central.update(central_value(hh()), 
                                    jtime, the_time[jtime]) ; 
        
	  hh_monitor_maxabs.update(maxabs_all_domains(hh(), -1, 0x0, cout, verbose), 
				   jtime, the_time[jtime]) ; 
        
	  hata_monitor_central.update(central_value(hata()), 
				      jtime, the_time[jtime]) ; 
        
	  hata_monitor_maxabs.update(maxabs_all_domains(hata(), -1, 0x0, cout, verbose), 
				     jtime, the_time[jtime]) ; 
        

	  int jt_graph = jt / check_mod ; 
            
	  Tbl tham = check_hamiltonian_constraint(0x0, cout, verbose) ; 
	  double max_error = tham(0,0) ; 
	  for (int l=1; l<nz-1; l++) {    // all domains but the last one
	    double xx = fabs(tham(0,l)) ;  
	    if (xx > max_error) max_error = xx ; 
	  }
	  test_ham_constr.update(max_error, jt_graph, the_time[jtime]) ; 
	  if (jt > 0) des_evol(test_ham_constr, "Absolute error", 
			       "Check of Hamiltonian constraint", 
			       ngraph0_mon+1, graph_device) ; 
	  
	  Tbl tmom = check_momentum_constraint(0x0, cout, verbose) ; 
            max_error = tmom(0,0) ;
            for (int l=1; l<nz-1; l++) {    // all domains but the last one
                double xx = fabs(tmom(0,l)) ;  
                if (xx > max_error) max_error = xx ; 
            }
            test_mom_constr_r.update(max_error, jt_graph, the_time[jtime]) ; 
            if (jt > 0) des_evol(test_mom_constr_r, "Absolute error", 
                "Check of momentum constraint (r comp.)", ngraph0_mon+2, 
                graph_device) ; 

            max_error = tmom(1,0) ;
            for (int l=1; l<nz-1; l++) {    // all domains but the last one
                double xx = fabs(tmom(1,l)) ;  
                if (xx > max_error) max_error = xx ; 
            }
            test_mom_constr_t.update(max_error, jt_graph, the_time[jtime]) ; 
            if (jt > 0) des_evol(test_mom_constr_t, "Absolute error", 
                "Check of momentum constraint (\\gh comp.)", ngraph0_mon+3,
                 graph_device) ; 

            max_error = tmom(2,0) ;
            for (int l=1; l<nz-1; l++) {    // all domains but the last one
                double xx = fabs(tmom(2,l)) ;  
                if (xx > max_error) max_error = xx ; 
            }
            test_mom_constr_p.update(max_error, jt_graph, the_time[jtime]) ; 
            if (jt > 0) des_evol(test_mom_constr_p, "Absolute error", 
                "Check of momentum constraint (\\gf comp.)", ngraph0_mon+4, 
                graph_device) ; 
               
	    if (jt>2) {
	      Tbl tevol = check_dynamical_equations(0x0, 0x0, cout, verbose) ;
	    Tbl evol_check(6) ; evol_check.set_etat_qcq() ;
	    for (int i=1; i<=3; i++) 
		for(int j=1; j<=i; j++) {
		    max_error = tevol(i, j, 0) ;
		    for (int l=1; l<nz-1; l++) {
			double xx = fabs(tevol(i,j,l)) ;
			if (xx > max_error) max_error = xx ;
		    }
		    evol_check.set(i) = max_error ;
		}
	    check_evol.update(evol_check,  jtime, the_time[jtime]) ;
	    }
        }

        if (jt%save_mod == 0) { 
            m_adm.save("adm_mass.d") ; 
            nn_monitor.save("nn_monitor.d") ;
            psi_monitor.save("psi_monitor.d") ;
            A_h_monitor.save("potA_monitor.d") ;
            B_h_monitor.save("potB_monitor.d") ;
            trh_monitor.save("trh_monitor.d") ;
            beta_monitor_maxabs.save("beta_monitor_maxabs.d") ; 
            hh_monitor_central.save("hh_monitor_central.d") ; 
            hh_monitor_maxabs.save("hh_monitor_maxabs.d") ; 
            hata_monitor_central.save("hata_monitor_central.d") ; 
            hata_monitor_maxabs.save("hata_monitor_maxabs.d") ; 
            test_ham_constr.save("test_ham_constr.d") ; 
            test_mom_constr_r.save("test_mom_constr_r.d") ; 
            test_mom_constr_t.save("test_mom_constr_t.d") ; 
            test_mom_constr_p.save("test_mom_constr_p.d") ; 
	    check_evol.save("evol_equations.d") ;
            
            save("sigma") ;
            
        }


        // Resolution of hyperbolic equations
        // ----------------------------------
	compute_sources(strain_euler) ;

	A_hata_new = A_hata_evol[jtime] 
	  + pdt*( an*source_A_hata_evol[jtime] + anm1*source_A_hata_evol[jtime-1]
		  + anm2*source_A_hata_evol[jtime-2] ) ;
	B_hata_new = B_hata_evol[jtime] 
	  + pdt*( an*source_B_hata_evol[jtime] + anm1*source_B_hata_evol[jtime-1]
		  + anm2*source_B_hata_evol[jtime-2] ) ;

	A_hh_new = A_hh_evol[jtime] 
	  + pdt*( an*source_A_hh_evol[jtime] + anm1*source_A_hh_evol[jtime-1]
		  + anm2*source_A_hh_evol[jtime-2] ) ;

	B_hh_new = B_hh_evol[jtime] 
	  + pdt*( an*source_B_hh_evol[jtime] + anm1*source_B_hh_evol[jtime-1]
		  + anm2*source_B_hh_evol[jtime-2] ) ;
	
	Scalar bc_A = -2.*A_hata_new ;
	bc_A.set_spectral_va().ylm() ;
	evolve_outgoing_BC(pdt, nz_bound, A_hh_evol[jtime], bc_A, xij_a, xijm1_a, 
	 		   Acc, 0) ;
	A_hh_new.match_tau(par_A, &par_mat_A_hh) ;
        
	Scalar bc_B = -2.*B_hata_new ;
	bc_B.set_spectral_va().ylm() ;
	evolve_outgoing_BC(pdt, nz_bound, B_hh_evol[jtime], bc_B, xij_b, xijm1_b, 
	  		   Bcc, -1) ;
	B_hh_new.match_tau(par_B, &par_mat_B_hh) ;
	
        // Boundary conditions for hh and hata
	//------------------------------------
  	Scalar sbcmu = (18*mu_hh_evol[jtime] - 9*mu_hh_evol[jtime-1] 
			+ 2*mu_hh_evol[jtime-2]) / (6*pdt) ;
	if (sbcmu.get_etat() == ETATZERO) {
	    sbcmu.annule_hard() ;
	    sbcmu.set_spectral_base(base_pseudo) ;
	}
   	sbcmu.set_spectral_va().ylm() ;
	tmp = mu_hh_evol[jtime] ;
	if (tmp.get_etat() == ETATZERO) {
	    tmp.annule_hard() ;
	    tmp.set_spectral_base(base_pseudo) ;
	}
   	tmp.set_spectral_va().ylm() ;
  	evolve_outgoing_BC(pdt, nz_bound, tmp, sbcmu, xij_mu_hh, xijm1_mu_hh, 
			   mub_hh, 0) ;
 	mub_hh *= 6*pdt ;

  	Scalar sbckhi = (18*khi_hh_evol[jtime] - 9*khi_hh_evol[jtime-1] 
			 + 2*khi_hh_evol[jtime-2]) / (6*pdt) ;
	if (sbckhi.get_etat() == ETATZERO) {
	    sbckhi.annule_hard() ;
	    sbckhi.set_spectral_base(base_ref) ;
	}
   	sbckhi.set_spectral_va().ylm() ;
	tmp = khi_hh_evol[jtime] ;
	if (tmp.get_etat() == ETATZERO) {
	    tmp.annule_hard() ;
	    tmp.set_spectral_base(base_ref) ;
	}
   	tmp.set_spectral_va().ylm() ;
  	evolve_outgoing_BC(pdt, nz_bound, tmp, sbckhi, xij_ki_hh, xijm1_ki_hh, 
			   khib_hh, 0) ;
 	khib_hh *= 6*pdt ;

  	sbcmu = (18*mu_a_evol[jtime] - 9*mu_a_evol[jtime-1] 
			+ 2*mu_a_evol[jtime-2]) / (6*pdt) ;
	if (sbcmu.get_etat() == ETATZERO) {
	    sbcmu.annule_hard() ;
	    sbcmu.set_spectral_base(base_pseudo) ;
	}
    	sbcmu.set_spectral_va().ylm() ;
	tmp = mu_a_evol[jtime] ;
	if (tmp.get_etat() == ETATZERO) {
	    tmp.annule_hard() ;
	    tmp.set_spectral_base(base_pseudo) ;
	}
   	tmp.set_spectral_va().ylm() ;
  	evolve_outgoing_BC(pdt, nz_bound, tmp, sbcmu, xij_mu_a, xijm1_mu_a, 
 			   mub_hata, 0) ;
 	mub_hata *= 6*pdt ;

  	sbckhi = (18*khi_a_evol[jtime] - 9*khi_a_evol[jtime-1] 
			 + 2*khi_a_evol[jtime-2]) / (6*pdt) ;
	if (sbckhi.get_etat() == ETATZERO) {
	    sbckhi.annule_hard() ;
	    sbckhi.set_spectral_base(base_ref) ;
	}
   	sbckhi.set_spectral_va().ylm() ;
	tmp = khi_a_evol[jtime] ;
	if (tmp.get_etat() == ETATZERO) {
	    tmp.annule_hard() ;
	    tmp.set_spectral_base(base_ref) ;
	}
   	tmp.set_spectral_va().ylm() ;
  	evolve_outgoing_BC(pdt, nz_bound, tmp, sbckhi, xij_ki_a, xijm1_ki_a, 
			   khib_hata, 0) ;
 	khib_hata *= 6*pdt ;

        // Advance in time
        // ---------------
        
        jtime++ ; 
        ttime += pdt ; 
        the_time.update(ttime, jtime, ttime) ; 

	// Setting As and Bs for h^{ij} and \hat{A}^{ij}
        set_AB_hata(A_hata_new, B_hata_new) ;
        set_AB_hh(A_hh_new, B_hh_new) ;

	hij_tt.set_A_tildeB( A_hh_new, B_hh_new, &par_bc_hh, &par_mat_hh ) ;
	for (int i=1; i<=3; i++)
	    for (int j=i; j<=3; j++) 
		for (int l=nz_bound+1; l<nz; l++)
		    hij_tt.set(i,j).set_domain(l) = hijtt_old(i,j).domain(l) ;
	hata_tt.set_A_tildeB( A_hata_new, B_hata_new, &par_bc_hata, &par_mat_hata ) ;
	for (int i=1; i<=3; i++)
	    for (int j=i; j<=3; j++) {
		for (int l=nz_bound+1; l<nz; l++)
		    hata_tt.set(i,j).set_domain(l) = hatatt_old(i,j).domain(l) ;
		hata_tt.set(i,j).set_dzpuis(2) ;
	    }

	// Computation of h^{ij} at new time-step
	hh_det_one(hij_tt, &par_mat_hh) ;

        // Reset of derived quantities
        del_deriv() ;        

	// Update of khi's and mu's
	//-------------------------
	tmp = hij_tt( 1, 1 ) ;
	tmp.mult_r() ; tmp.mult_r() ;
	khi_hh_evol.update( tmp, jtime, the_time[jtime] ) ;
	mu_hh_evol.update( hij_tt.mu(), jtime, the_time[jtime] ) ;
	tmp = hata_tt( 1, 1 ) ;
	tmp.mult_r() ; tmp.mult_r() ;
	khi_a_evol.update( tmp, jtime, the_time[jtime] ) ;
	mu_a_evol.update( hata_tt.mu(), jtime, the_time[jtime] ) ;
	
        // Resolution of elliptic equations
        // --------------------------------
        psi_evol.update(psi_evol[jtime-1], jtime, ttime) ; 
        
	// \hat{A}^{ij} is computed at the new time-step
	compute_X_from_momentum_constraint(hat_S, hata_tt, niter_elliptic) ;
	
	// Iteration on the conformal factor
        for (int k = 0; k < niter_elliptic; k++) {
    
            psi_new = solve_psi(ener_euler) ; 
            psi_new = relax * psi_new + (1.-relax) * psi() ; 
	    set_psi_del_npsi(psi_new) ;   
        }

        set_npsi_del_n(npsi_evol[jtime-1]) ; 

	// Iteration on N*Psi  ## play with the number of iterations...
        npsi_evol.update(psi_evol[jtime-1], jtime, ttime) ; 
	for (int k = 0; k < niter_elliptic; k++) {

            npsi_new = solve_npsi( ener_euler, s_euler ) ; 
            npsi_new = relax * npsi_new + (1.-relax) * npsi() ; 
	    set_npsi_del_n(npsi_new) ; 
	}

	// Iteration on beta ## play with the number of iterations...
        beta_evol.update(beta_evol[jtime-1], jtime, ttime) ;             
	for (int k = 0; k < niter_elliptic; k++) {

            beta_new = solve_beta(method_poisson_vect) ; 
            beta_new = relax * beta_new + (1.-relax) * beta() ;
	    beta_evol.update(beta_new, jtime, ttime) ;             
	}    
                
        des_meridian(vec_X()(1), 0., ray_des, "\\gb\\ur\\d", ngraph0+6,
                     graph_device) ; 
        des_meridian(vec_X()(2), 0., ray_des, "\\gb\\u\\gh\\d", ngraph0+7,
                     graph_device) ; 
        des_meridian(vec_X()(3), 0., ray_des, "\\gb\\u\\gf\\d", ngraph0+8,
                     graph_device) ; 
	tmp = A_hh() ;
	tmp.set_spectral_va().ylm_i() ;
        des_meridian(tmp, 0., ray_des, "A\\dh", ngraph0+9,
                     graph_device) ; 
	tmp = B_hh_new;
	tmp.set_spectral_va().ylm_i() ;
        des_meridian(tmp, 0., ray_des, "B\\dh", ngraph0+10,
                     graph_device) ;
        des_meridian(trh(), 0., ray_des, "tr h", ngraph0+11,
                     graph_device) ; 
        des_meridian(hh()(1,1), 0., ray_des, "h\\urr\\d", ngraph0+12,
                     graph_device) ; 
        des_meridian(hh()(2,3), 0., ray_des, "h\\u\\gh\\gf\\d", ngraph0+13,
                     graph_device) ; 
        des_meridian(hh()(3,3), 0., ray_des, "h\\u\\gf\\gf\\d", ngraph0+14,
                     graph_device) ; 
                
        arrete(nopause) ; 
    }

    par_A.clean_all() ;
    par_B.clean_all() ;
    par_mat_A_hh.clean_all() ;
    par_mat_B_hh.clean_all() ;

    par_bc_hh.clean_all() ;
    par_mat_hh.clean_all() ;

    par_bc_hata.clean_all() ;
    par_mat_hata.clean_all() ;
} 


//***************************************************************************

const Tbl& monitor_scalar(const Scalar& uu, Tbl& resu) {

    assert( resu.get_ndim() == 1) ; 
    assert( resu.get_taille() >= 6) ;
    
    resu.set_etat_qcq() ; 
    
    resu.set(0) = uu.val_grid_point(0,0,0,0) ; 
    resu.set(1) = max(max(uu)) ; 
    resu.set(2) = min(min(uu)) ; 
    
    const Mg3d& mg = *(uu.get_mp().get_mg()) ; 
    
    int nz = mg.get_nzone() ;
    int nzm1 = nz - 1 ;  
    int nr = mg.get_nr(nzm1) ; 
    int nt = mg.get_nt(nzm1) ; 
    int np = mg.get_np(nzm1) ; 
    
    resu.set(3) = uu.val_grid_point(nzm1, 0, 0, nr-1) ; 
    resu.set(4) = uu.val_grid_point(nzm1, 0, nt-1, nr-1) ; 
    resu.set(5) = uu.val_grid_point(nzm1, np/2, nt-1, nr-1) ; 
    
    return resu ;      
}
}