File: tslice_dirac_max_setAB.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (437 lines) | stat: -rw-r--r-- 14,255 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
 *  Methods of class Tslice_dirac_max dealing with the members potA and tildeB
 *
 *    (see file time_slice.h for documentation).
 *
 */

/*
 *   Copyright (c) 2007  Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char tslice_dirax_max_setAB_C[] = "$Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_dirac_max_setAB.C,v 1.11 2014/10/13 08:53:48 j_novak Exp $" ;

/*
 * $Id: tslice_dirac_max_setAB.C,v 1.11 2014/10/13 08:53:48 j_novak Exp $
 * $Log: tslice_dirac_max_setAB.C,v $
 * Revision 1.11  2014/10/13 08:53:48  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.10  2014/10/06 15:13:22  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.9  2012/02/06 12:59:07  j_novak
 * Correction of some errors.
 *
 * Revision 1.8  2011/07/22 13:21:02  j_novak
 * Corrected an error on BC treatment.
 *
 * Revision 1.7  2010/10/20 07:58:10  j_novak
 * Better implementation of the explicit time-integration. Not fully-tested yet.
 *
 * Revision 1.6  2008/12/04 18:22:49  j_novak
 * Enhancement of the dzpuis treatment + various bug fixes.
 *
 * Revision 1.5  2008/12/02 15:02:22  j_novak
 * Implementation of the new constrained formalism, following Cordero et al. 2009
 * paper. The evolution eqs. are solved as a first-order system. Not tested yet!
 *
 * Revision 1.4  2007/06/05 07:38:37  j_novak
 * Better treatment of dzpuis for A and tilde(B) potentials. Some errors in the bases manipulation have been also corrected.
 *
 * Revision 1.3  2007/05/24 12:10:41  j_novak
 * Update of khi_evol and mu_evol.
 *
 * Revision 1.2  2007/04/25 15:21:01  j_novak
 * Corrected an error in the initialization of tildeB in
 * Tslice_dirac_max::initial_dat_cts. + New method for solve_hij_AB.
 *
 * Revision 1.1  2007/03/21 14:51:50  j_novak
 * Introduction of potentials A and tilde(B) of h^{ij} into Tslice_dirac_max.
 *
 *
 * $Header $
 *
 */

// C headers
#include <cassert>

// Lorene headers
#include "time_slice.h"
#include "param.h"
#include "unites.h"
#include "proto.h"
#include "graphique.h"

namespace Lorene {
void Tslice_dirac_max::set_AB_hh(const Scalar& A_in, const Scalar& B_in) {

    A_hh_evol.update(A_in, jtime, the_time[jtime]) ; 
    B_hh_evol.update(B_in, jtime, the_time[jtime]) ; 

    // Reset of quantities depending on h^{ij}:
    hh_evol.downdate(jtime) ;
    trh_evol.downdate(jtime) ;
    if (p_tgamma != 0x0) {
	delete p_tgamma ;
	p_tgamma = 0x0 ; 
    } 
    if (p_hdirac != 0x0) {
	delete p_hdirac ; 
	p_hdirac = 0x0 ; 
    }
    if (p_gamma != 0x0) {
	delete p_gamma ; 
	p_gamma = 0x0 ;
    }
    gam_dd_evol.downdate(jtime) ; 
    gam_uu_evol.downdate(jtime) ;
    adm_mass_evol.downdate(jtime) ;  
} 

void Tslice_dirac_max::hh_det_one(int j0, Param* par_bc, Param* par_mat) const {

    assert (A_hh_evol.is_known(j0)) ;   // The starting point
    assert (B_hh_evol.is_known(j0)) ;    // of the computation 

    const Map& mp = A_hh_evol[j0].get_mp() ;

    // The representation of h^{ij} as an object of class Sym_tensor_trans :
    Sym_tensor_trans hij(mp, *(ff.get_triad()), ff) ;
    const Scalar* ptrace = 0x0 ;
    if (trh_evol.is_known(j0-1)) ptrace = &trh_evol[j0-1] ;
    hij.set_AtBtt_det_one(A_hh_evol[j0], B_hh_evol[j0], ptrace, par_bc, par_mat) ;

    // Result set to trh_evol and hh_evol
    // ----------------------------------
    trh_evol.update(hij.the_trace(), j0, the_time[j0]) ;
    
    // The longitudinal part of h^{ij}, which is zero by virtue of Dirac gauge :
    Vector wzero(mp, CON,  *(ff.get_triad())) ; 
    wzero.set_etat_zero() ;                   

    // Temporary Sym_tensor with longitudinal part set to zero : 
    Sym_tensor hh_new(mp, CON, *(ff.get_triad())) ;
    hh_new.set_longit_trans(wzero, hij) ;
    hh_evol.update(hh_new, j0, the_time[j0]) ;
    
    if (j0 == jtime) {
        // Reset of quantities depending on h^{ij}:
        if (p_tgamma != 0x0) {
            delete p_tgamma ;
            p_tgamma = 0x0 ; 
        } 
        if (p_hdirac != 0x0) {
            delete p_hdirac ; 
            p_hdirac = 0x0 ; 
        }
        if (p_gamma != 0x0) {
            delete p_gamma ; 
            p_gamma = 0x0 ;
        }
    }
    gam_dd_evol.downdate(j0) ; 
    gam_uu_evol.downdate(j0) ;
    adm_mass_evol.downdate(j0) ;  

#ifndef NDEBUG         
    // Test
    if (j0 == jtime) {
        maxabs(tgam().determinant() - 1, 
        "Max. of absolute value of deviation from det tgam = 1") ; 
    }
    else {
        Metric tgam_j0( ff.con() + hh_evol[j0] ) ; 
        maxabs(tgam_j0.determinant() - 1, 
        "Max. of absolute value of deviation from det tgam = 1") ; 
    }
#endif
}

void Tslice_dirac_max::hh_det_one(const Sym_tensor_tt& hijtt, Param* par_mat) 
    const {

    const Map& mp = hijtt.get_mp() ;

    // The representation of h^{ij} as an object of class Sym_tensor_trans :
    Sym_tensor_trans hij(mp, *(ff.get_triad()), ff) ;
    const Scalar* ptrace = 0x0 ;
    if ( trh_evol.is_known( jtime - 1 ) ) ptrace = &trh_evol[jtime-1] ;
    hij.set_tt_part_det_one(hijtt, ptrace, par_mat) ;

    // Result set to trh_evol and hh_evol
    // ----------------------------------
    trh_evol.update(hij.the_trace(), jtime, the_time[jtime]) ;
    
    // The longitudinal part of h^{ij}, which is zero by virtue of Dirac gauge :
    Vector wzero(mp, CON,  *(ff.get_triad())) ; 
    wzero.set_etat_zero() ;                   

    // Temporary Sym_tensor with longitudinal part set to zero : 
    Sym_tensor hh_new(mp, CON, *(ff.get_triad())) ;
    hh_new.set_longit_trans(wzero, hij) ;
    hh_evol.update(hh_new, jtime, the_time[jtime]) ;
    
    // Reset of quantities depending on h^{ij}:
    if (p_tgamma != 0x0) {
	delete p_tgamma ;
	p_tgamma = 0x0 ; 
    } 
    if (p_hdirac != 0x0) {
	delete p_hdirac ; 
	p_hdirac = 0x0 ; 
    }
    if (p_gamma != 0x0) {
	delete p_gamma ; 
	p_gamma = 0x0 ;
    }
    gam_dd_evol.downdate(jtime) ; 
    gam_uu_evol.downdate(jtime) ;
    adm_mass_evol.downdate(jtime) ;  

#ifndef NDEBUG         
    // Test
    maxabs(tgam().determinant() - 1, 
	   "Max. of absolute value of deviation from det tgam = 1") ; 
#endif
}
                 //----------------------------------------------//
                 //   Equations for h^{ij} and \hat{A}^{ij}      //
                 //----------------------------------------------//

void Tslice_dirac_max::compute_sources( const Sym_tensor* p_strain_tens) const {

    using namespace Unites ;
    
    const Map& map = hh().get_mp() ; 
    const Base_vect& otriad = *hh().get_triad() ;
    int nz = map.get_mg()->get_nzone() ;
    
    Sym_tensor strain_tens(map, CON, otriad) ; 
    if (p_strain_tens != 0x0) 
	strain_tens = *(p_strain_tens) ; 
    else 
	strain_tens.set_etat_zero() ; 

    Sym_tensor aij = aa() ;
    aij.annule_domain(nz-1) ;
    
    const Sym_tensor& tgam_dd = tgam().cov() ;    // {\tilde \gamma}_{ij}
    const Sym_tensor& tgam_uu = tgam().con() ;    // {\tilde \gamma}^{ij}
    const Tensor_sym& dtgam = tgam_dd.derive_cov(ff) ;// D_k {\tilde \gamma}_{ij}
    const Tensor_sym& dhh = hh().derive_cov(ff) ; // D_k h^{ij}
    const Vector& dln_psi = ln_psi().derive_cov(ff) ; // D_i ln(Psi)
    const Vector& tdln_psi_u = ln_psi().derive_con(tgam()) ; // tD^i ln(Psi)
    Scalar log_N = log(nn()) ;
    log_N.std_spectral_base() ;
    const Vector& tdlnn_u = log_N.derive_con(tgam()) ;       // tD^i ln(N)
    const Scalar& div_beta = beta().divergence(ff) ;  // D_k beta^k
    Scalar qq = nn()*psi()*psi() ;
    qq.annule_domain(nz-1) ;
    const Vector& dqq = qq.derive_cov(ff) ;         // D_i Q
    Sym_tensor a_hat = hata() ;
    a_hat.annule_domain(nz-1) ;
    Scalar psi6 = psi4()*psi()*psi() ;
    Sym_tensor sym_tmp(map, CON, otriad) ; 
    Scalar tmp(map) ;

    //==================================
    // Source for hij
    //==================================
    
    Sym_tensor source_hij = hh().derive_lie(beta()) + 2*(nn()/psi6 - 1.)*a_hat 
      - beta().ope_killing_conf(ff) + 0.6666666666666667*div_beta*hh() ;
    source_hij.annule_domain(nz-1) ;
    for (int i=1; i<=3; i++)
 	for (int j=i; j<=3; j++)
 	    source_hij.set( i, j ).set_dzpuis(0) ;

    tmp = 2.*A_hata_evol[jtime] + source_hij.compute_A(true) ;
    tmp.set_spectral_va().ylm() ;
    tmp.annule_domain(nz-1) ;
    tmp.set_dzpuis(0) ;
    source_A_hh_evol.update( tmp, jtime, the_time[jtime] ) ;

    tmp = 2.*B_hata_evol[jtime] + source_hij.compute_tilde_B_tt(true) ;
    tmp.set_spectral_va().ylm() ;
    tmp.annule_domain(nz-1) ;
    tmp.set_dzpuis(0) ;
    source_B_hh_evol.update(tmp, jtime, the_time[jtime] ) ;
    
    //==================================
    // Source for \hat{A}^{ij}
    //==================================
    
    Sym_tensor source_aij = a_hat.derive_lie(beta())  
    	+ 1.666666666666667*a_hat*div_beta ;
    
    // Quadratic part of the Ricci tensor of gam_tilde 
    // ------------------------------------------------
    
    Sym_tensor ricci_star(map, CON, otriad) ; 
    
    ricci_star = contract(hh(), 0, 1, dhh.derive_cov(ff), 2, 3) ; 

    ricci_star.inc_dzpuis() ;   // dzpuis : 3 --> 4

    for (int i=1; i<=3; i++) {
    	for (int j=1; j<=i; j++) {
    	    tmp = 0 ; 
    	    for (int k=1; k<=3; k++) {
    		for (int l=1; l<=3; l++) {
    		    tmp += dhh(i,k,l) * dhh(j,l,k) ; 
    		}
    	    }
    	    ricci_star.set(i,j) -= tmp ; 
    	}
    }

    for (int i=1; i<=3; i++) {
    	for (int j=1; j<=i; j++) {
    	    tmp = 0 ; 
    	    for (int k=1; k<=3; k++) {
    		for (int l=1; l<=3; l++) {
    		    for (int m=1; m<=3; m++) {
    			for (int n=1; n<=3; n++) {
                            
     tmp += 0.5 * tgam_uu(i,k)* tgam_uu(j,l) 
       * dhh(m,n,k) * dtgam(m,n,l)
       + tgam_dd(n,l) * dhh(m,n,k) 
       * (tgam_uu(i,k) * dhh(j,l,m) + tgam_uu(j,k) *  dhh(i,l,m) )
       - tgam_dd(k,l) *tgam_uu(m,n) * dhh(i,k,m) * dhh(j,l,n) ;
    			}
    		    } 
    		}
    	    }
    	    sym_tmp.set(i,j) = tmp ; 
    	}
    }
    ricci_star += sym_tmp ; // a factor 1/2 is still missing, shall be put later
    
    // Curvature scalar of conformal metric :
    // -------------------------------------
        
    Scalar tricci_scal = 
    	0.25 * contract(tgam_uu, 0, 1,
    			contract(dhh, 0, 1, dtgam, 0, 1), 0, 1 ) 
    	- 0.5  * contract(tgam_uu, 0, 1,
    			  contract(dhh, 0, 1, dtgam, 0, 2), 0, 1 ) ;  

    Scalar lap_A = A_hh_evol[jtime].laplacian(2) ;
    Scalar tilde_lap_B(map) ;
    tilde_laplacian( B_hh_evol[jtime], tilde_lap_B) ;
    Sym_tensor_tt laplace_h(map, otriad, ff) ;
    laplace_h.set_A_tildeB(lap_A, tilde_lap_B) ;
    laplace_h.annule_domain(nz-1) ;

    //   sym_tmp.inc_dzpuis() ; // dzpuis : 3 --> 4

    source_aij += (0.5*(qq - 1.))*laplace_h + qq*(0.5*ricci_star + 8.*tdln_psi_u * tdln_psi_u 
  	+ 4.*( tdln_psi_u * tdlnn_u + tdlnn_u * tdln_psi_u )
  	-  0.3333333333333333 * (tricci_scal + 8.*(contract(dln_psi, 0, tdln_psi_u, 0) 
  						   + contract(dln_psi, 0, tdlnn_u, 0) ) 
  	    )*tgam_uu
  	) ;
			   
    sym_tmp = contract(tgam_uu, 1, contract(tgam_uu, 1, dqq.derive_cov(ff), 0), 1) ;
    
    for (int i=1; i<=3; i++) {
  	for (int j=1; j<=i; j++) {
  	    tmp = 0 ; 
  	    for (int k=1; k<=3; k++) {
  		for (int l=1; l<=3; l++) {
  		    tmp += ( tgam_uu(i,k)*dhh(l,j,k) + tgam_uu(k,j)*dhh(i,l,k)
  			     - tgam_uu(k,l)*dhh(i,j,k) ) * dqq(l) ; 
  		}
  	    }
  	    sym_tmp.set(i,j) += 0.5 * tmp ; 
  	}
    }
        
  source_aij -= sym_tmp 
    - ( 0.3333333333333333*qq.derive_con(tgam()).divergence(tgam()) ) *tgam_uu ; 
                    
  for (int i=1; i<=3; i++) {
    for (int j=1; j<=i; j++) {
      tmp = 0 ; 
      for (int k=1; k<=3; k++) {
  	for (int l=1; l<=3; l++) {
  	  tmp += tgam_dd(k,l) * a_hat(i,k) * aij(j,l) ; 
  	}
      }
      sym_tmp.set(i,j) = tmp ; 
    }
  }
        
  tmp = psi4() * strain_tens.trace(tgam()) ; // S = S_i^i 

  source_aij += (2.*nn()) 
    * ( 
       sym_tmp - qpig*psi6*( psi4()* strain_tens - (0.3333333333333333 * tmp) * tgam_uu ) 
	)   ; 

  source_aij.annule_domain(nz-1) ;
  for (int i=1; i<=3; i++)
      for (int j=i; j<=3; j++)
	  source_aij.set(i,j).set_dzpuis(0) ;
#ifndef NDEBUG
  maxabs(source_aij, "source_aij tot") ; 
#endif

  tmp = 0.5*lap_A + source_aij.compute_A(true) ;
  tmp.annule_domain(nz-1) ;
  tmp.set_dzpuis(0) ;
  source_A_hata_evol.update( tmp, jtime, the_time[jtime] ) ;
  tmp = 0.5*tilde_lap_B + source_aij.compute_tilde_B_tt(true) ;
  tmp.annule_domain(nz-1) ;
  tmp.set_dzpuis(0) ;
  // Scalar dess = tmp - tilde_lap_B ;
  // dess.set_spectral_va().ylm_i() ;
  // des_profile(dess, 0, 8., 1, 1) ;
  source_B_hata_evol.update( 0.5*tilde_lap_B, jtime, the_time[jtime] ) ;
}

void Tslice_dirac_max::initialize_sources_copy() const {

    assert( source_A_hh_evol.is_known(jtime) ) ;
    assert( source_B_hh_evol.is_known(jtime) ) ;
    assert( source_A_hata_evol.is_known(jtime) ) ;
    assert( source_B_hata_evol.is_known(jtime) ) ;

    Scalar tmp_Ah = source_A_hh_evol[jtime] ;
    Scalar tmp_Bh = source_B_hh_evol[jtime] ;
    Scalar tmp_Aa = source_A_hata_evol[jtime] ;
    Scalar tmp_Ba = source_B_hata_evol[jtime] ;

    source_A_hh_evol.downdate(jtime) ;
    source_B_hh_evol.downdate(jtime) ;
    source_A_hata_evol.downdate(jtime) ;
    source_B_hata_evol.downdate(jtime) ;

    int jtime1 = jtime - depth + 1; 
    for (int j=jtime1; j <= jtime; j++) {
        source_A_hh_evol.update( tmp_Ah, j, the_time[j] ) ;  
        source_B_hh_evol.update( tmp_Bh, j, the_time[j] ) ;  
        source_A_hata_evol.update( tmp_Aa, j, the_time[j] ) ;
        source_B_hata_evol.update( tmp_Ba, j, the_time[j] ) ;
    } 
}

}