1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
/*
* Methods of class Tslice_dirac_max dealing with the members potA and tildeB
*
* (see file time_slice.h for documentation).
*
*/
/*
* Copyright (c) 2007 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char tslice_dirax_max_setAB_C[] = "$Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_dirac_max_setAB.C,v 1.11 2014/10/13 08:53:48 j_novak Exp $" ;
/*
* $Id: tslice_dirac_max_setAB.C,v 1.11 2014/10/13 08:53:48 j_novak Exp $
* $Log: tslice_dirac_max_setAB.C,v $
* Revision 1.11 2014/10/13 08:53:48 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.10 2014/10/06 15:13:22 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.9 2012/02/06 12:59:07 j_novak
* Correction of some errors.
*
* Revision 1.8 2011/07/22 13:21:02 j_novak
* Corrected an error on BC treatment.
*
* Revision 1.7 2010/10/20 07:58:10 j_novak
* Better implementation of the explicit time-integration. Not fully-tested yet.
*
* Revision 1.6 2008/12/04 18:22:49 j_novak
* Enhancement of the dzpuis treatment + various bug fixes.
*
* Revision 1.5 2008/12/02 15:02:22 j_novak
* Implementation of the new constrained formalism, following Cordero et al. 2009
* paper. The evolution eqs. are solved as a first-order system. Not tested yet!
*
* Revision 1.4 2007/06/05 07:38:37 j_novak
* Better treatment of dzpuis for A and tilde(B) potentials. Some errors in the bases manipulation have been also corrected.
*
* Revision 1.3 2007/05/24 12:10:41 j_novak
* Update of khi_evol and mu_evol.
*
* Revision 1.2 2007/04/25 15:21:01 j_novak
* Corrected an error in the initialization of tildeB in
* Tslice_dirac_max::initial_dat_cts. + New method for solve_hij_AB.
*
* Revision 1.1 2007/03/21 14:51:50 j_novak
* Introduction of potentials A and tilde(B) of h^{ij} into Tslice_dirac_max.
*
*
* $Header $
*
*/
// C headers
#include <cassert>
// Lorene headers
#include "time_slice.h"
#include "param.h"
#include "unites.h"
#include "proto.h"
#include "graphique.h"
namespace Lorene {
void Tslice_dirac_max::set_AB_hh(const Scalar& A_in, const Scalar& B_in) {
A_hh_evol.update(A_in, jtime, the_time[jtime]) ;
B_hh_evol.update(B_in, jtime, the_time[jtime]) ;
// Reset of quantities depending on h^{ij}:
hh_evol.downdate(jtime) ;
trh_evol.downdate(jtime) ;
if (p_tgamma != 0x0) {
delete p_tgamma ;
p_tgamma = 0x0 ;
}
if (p_hdirac != 0x0) {
delete p_hdirac ;
p_hdirac = 0x0 ;
}
if (p_gamma != 0x0) {
delete p_gamma ;
p_gamma = 0x0 ;
}
gam_dd_evol.downdate(jtime) ;
gam_uu_evol.downdate(jtime) ;
adm_mass_evol.downdate(jtime) ;
}
void Tslice_dirac_max::hh_det_one(int j0, Param* par_bc, Param* par_mat) const {
assert (A_hh_evol.is_known(j0)) ; // The starting point
assert (B_hh_evol.is_known(j0)) ; // of the computation
const Map& mp = A_hh_evol[j0].get_mp() ;
// The representation of h^{ij} as an object of class Sym_tensor_trans :
Sym_tensor_trans hij(mp, *(ff.get_triad()), ff) ;
const Scalar* ptrace = 0x0 ;
if (trh_evol.is_known(j0-1)) ptrace = &trh_evol[j0-1] ;
hij.set_AtBtt_det_one(A_hh_evol[j0], B_hh_evol[j0], ptrace, par_bc, par_mat) ;
// Result set to trh_evol and hh_evol
// ----------------------------------
trh_evol.update(hij.the_trace(), j0, the_time[j0]) ;
// The longitudinal part of h^{ij}, which is zero by virtue of Dirac gauge :
Vector wzero(mp, CON, *(ff.get_triad())) ;
wzero.set_etat_zero() ;
// Temporary Sym_tensor with longitudinal part set to zero :
Sym_tensor hh_new(mp, CON, *(ff.get_triad())) ;
hh_new.set_longit_trans(wzero, hij) ;
hh_evol.update(hh_new, j0, the_time[j0]) ;
if (j0 == jtime) {
// Reset of quantities depending on h^{ij}:
if (p_tgamma != 0x0) {
delete p_tgamma ;
p_tgamma = 0x0 ;
}
if (p_hdirac != 0x0) {
delete p_hdirac ;
p_hdirac = 0x0 ;
}
if (p_gamma != 0x0) {
delete p_gamma ;
p_gamma = 0x0 ;
}
}
gam_dd_evol.downdate(j0) ;
gam_uu_evol.downdate(j0) ;
adm_mass_evol.downdate(j0) ;
#ifndef NDEBUG
// Test
if (j0 == jtime) {
maxabs(tgam().determinant() - 1,
"Max. of absolute value of deviation from det tgam = 1") ;
}
else {
Metric tgam_j0( ff.con() + hh_evol[j0] ) ;
maxabs(tgam_j0.determinant() - 1,
"Max. of absolute value of deviation from det tgam = 1") ;
}
#endif
}
void Tslice_dirac_max::hh_det_one(const Sym_tensor_tt& hijtt, Param* par_mat)
const {
const Map& mp = hijtt.get_mp() ;
// The representation of h^{ij} as an object of class Sym_tensor_trans :
Sym_tensor_trans hij(mp, *(ff.get_triad()), ff) ;
const Scalar* ptrace = 0x0 ;
if ( trh_evol.is_known( jtime - 1 ) ) ptrace = &trh_evol[jtime-1] ;
hij.set_tt_part_det_one(hijtt, ptrace, par_mat) ;
// Result set to trh_evol and hh_evol
// ----------------------------------
trh_evol.update(hij.the_trace(), jtime, the_time[jtime]) ;
// The longitudinal part of h^{ij}, which is zero by virtue of Dirac gauge :
Vector wzero(mp, CON, *(ff.get_triad())) ;
wzero.set_etat_zero() ;
// Temporary Sym_tensor with longitudinal part set to zero :
Sym_tensor hh_new(mp, CON, *(ff.get_triad())) ;
hh_new.set_longit_trans(wzero, hij) ;
hh_evol.update(hh_new, jtime, the_time[jtime]) ;
// Reset of quantities depending on h^{ij}:
if (p_tgamma != 0x0) {
delete p_tgamma ;
p_tgamma = 0x0 ;
}
if (p_hdirac != 0x0) {
delete p_hdirac ;
p_hdirac = 0x0 ;
}
if (p_gamma != 0x0) {
delete p_gamma ;
p_gamma = 0x0 ;
}
gam_dd_evol.downdate(jtime) ;
gam_uu_evol.downdate(jtime) ;
adm_mass_evol.downdate(jtime) ;
#ifndef NDEBUG
// Test
maxabs(tgam().determinant() - 1,
"Max. of absolute value of deviation from det tgam = 1") ;
#endif
}
//----------------------------------------------//
// Equations for h^{ij} and \hat{A}^{ij} //
//----------------------------------------------//
void Tslice_dirac_max::compute_sources( const Sym_tensor* p_strain_tens) const {
using namespace Unites ;
const Map& map = hh().get_mp() ;
const Base_vect& otriad = *hh().get_triad() ;
int nz = map.get_mg()->get_nzone() ;
Sym_tensor strain_tens(map, CON, otriad) ;
if (p_strain_tens != 0x0)
strain_tens = *(p_strain_tens) ;
else
strain_tens.set_etat_zero() ;
Sym_tensor aij = aa() ;
aij.annule_domain(nz-1) ;
const Sym_tensor& tgam_dd = tgam().cov() ; // {\tilde \gamma}_{ij}
const Sym_tensor& tgam_uu = tgam().con() ; // {\tilde \gamma}^{ij}
const Tensor_sym& dtgam = tgam_dd.derive_cov(ff) ;// D_k {\tilde \gamma}_{ij}
const Tensor_sym& dhh = hh().derive_cov(ff) ; // D_k h^{ij}
const Vector& dln_psi = ln_psi().derive_cov(ff) ; // D_i ln(Psi)
const Vector& tdln_psi_u = ln_psi().derive_con(tgam()) ; // tD^i ln(Psi)
Scalar log_N = log(nn()) ;
log_N.std_spectral_base() ;
const Vector& tdlnn_u = log_N.derive_con(tgam()) ; // tD^i ln(N)
const Scalar& div_beta = beta().divergence(ff) ; // D_k beta^k
Scalar qq = nn()*psi()*psi() ;
qq.annule_domain(nz-1) ;
const Vector& dqq = qq.derive_cov(ff) ; // D_i Q
Sym_tensor a_hat = hata() ;
a_hat.annule_domain(nz-1) ;
Scalar psi6 = psi4()*psi()*psi() ;
Sym_tensor sym_tmp(map, CON, otriad) ;
Scalar tmp(map) ;
//==================================
// Source for hij
//==================================
Sym_tensor source_hij = hh().derive_lie(beta()) + 2*(nn()/psi6 - 1.)*a_hat
- beta().ope_killing_conf(ff) + 0.6666666666666667*div_beta*hh() ;
source_hij.annule_domain(nz-1) ;
for (int i=1; i<=3; i++)
for (int j=i; j<=3; j++)
source_hij.set( i, j ).set_dzpuis(0) ;
tmp = 2.*A_hata_evol[jtime] + source_hij.compute_A(true) ;
tmp.set_spectral_va().ylm() ;
tmp.annule_domain(nz-1) ;
tmp.set_dzpuis(0) ;
source_A_hh_evol.update( tmp, jtime, the_time[jtime] ) ;
tmp = 2.*B_hata_evol[jtime] + source_hij.compute_tilde_B_tt(true) ;
tmp.set_spectral_va().ylm() ;
tmp.annule_domain(nz-1) ;
tmp.set_dzpuis(0) ;
source_B_hh_evol.update(tmp, jtime, the_time[jtime] ) ;
//==================================
// Source for \hat{A}^{ij}
//==================================
Sym_tensor source_aij = a_hat.derive_lie(beta())
+ 1.666666666666667*a_hat*div_beta ;
// Quadratic part of the Ricci tensor of gam_tilde
// ------------------------------------------------
Sym_tensor ricci_star(map, CON, otriad) ;
ricci_star = contract(hh(), 0, 1, dhh.derive_cov(ff), 2, 3) ;
ricci_star.inc_dzpuis() ; // dzpuis : 3 --> 4
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
tmp += dhh(i,k,l) * dhh(j,l,k) ;
}
}
ricci_star.set(i,j) -= tmp ;
}
}
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
for (int m=1; m<=3; m++) {
for (int n=1; n<=3; n++) {
tmp += 0.5 * tgam_uu(i,k)* tgam_uu(j,l)
* dhh(m,n,k) * dtgam(m,n,l)
+ tgam_dd(n,l) * dhh(m,n,k)
* (tgam_uu(i,k) * dhh(j,l,m) + tgam_uu(j,k) * dhh(i,l,m) )
- tgam_dd(k,l) *tgam_uu(m,n) * dhh(i,k,m) * dhh(j,l,n) ;
}
}
}
}
sym_tmp.set(i,j) = tmp ;
}
}
ricci_star += sym_tmp ; // a factor 1/2 is still missing, shall be put later
// Curvature scalar of conformal metric :
// -------------------------------------
Scalar tricci_scal =
0.25 * contract(tgam_uu, 0, 1,
contract(dhh, 0, 1, dtgam, 0, 1), 0, 1 )
- 0.5 * contract(tgam_uu, 0, 1,
contract(dhh, 0, 1, dtgam, 0, 2), 0, 1 ) ;
Scalar lap_A = A_hh_evol[jtime].laplacian(2) ;
Scalar tilde_lap_B(map) ;
tilde_laplacian( B_hh_evol[jtime], tilde_lap_B) ;
Sym_tensor_tt laplace_h(map, otriad, ff) ;
laplace_h.set_A_tildeB(lap_A, tilde_lap_B) ;
laplace_h.annule_domain(nz-1) ;
// sym_tmp.inc_dzpuis() ; // dzpuis : 3 --> 4
source_aij += (0.5*(qq - 1.))*laplace_h + qq*(0.5*ricci_star + 8.*tdln_psi_u * tdln_psi_u
+ 4.*( tdln_psi_u * tdlnn_u + tdlnn_u * tdln_psi_u )
- 0.3333333333333333 * (tricci_scal + 8.*(contract(dln_psi, 0, tdln_psi_u, 0)
+ contract(dln_psi, 0, tdlnn_u, 0) )
)*tgam_uu
) ;
sym_tmp = contract(tgam_uu, 1, contract(tgam_uu, 1, dqq.derive_cov(ff), 0), 1) ;
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
tmp += ( tgam_uu(i,k)*dhh(l,j,k) + tgam_uu(k,j)*dhh(i,l,k)
- tgam_uu(k,l)*dhh(i,j,k) ) * dqq(l) ;
}
}
sym_tmp.set(i,j) += 0.5 * tmp ;
}
}
source_aij -= sym_tmp
- ( 0.3333333333333333*qq.derive_con(tgam()).divergence(tgam()) ) *tgam_uu ;
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++) {
tmp = 0 ;
for (int k=1; k<=3; k++) {
for (int l=1; l<=3; l++) {
tmp += tgam_dd(k,l) * a_hat(i,k) * aij(j,l) ;
}
}
sym_tmp.set(i,j) = tmp ;
}
}
tmp = psi4() * strain_tens.trace(tgam()) ; // S = S_i^i
source_aij += (2.*nn())
* (
sym_tmp - qpig*psi6*( psi4()* strain_tens - (0.3333333333333333 * tmp) * tgam_uu )
) ;
source_aij.annule_domain(nz-1) ;
for (int i=1; i<=3; i++)
for (int j=i; j<=3; j++)
source_aij.set(i,j).set_dzpuis(0) ;
#ifndef NDEBUG
maxabs(source_aij, "source_aij tot") ;
#endif
tmp = 0.5*lap_A + source_aij.compute_A(true) ;
tmp.annule_domain(nz-1) ;
tmp.set_dzpuis(0) ;
source_A_hata_evol.update( tmp, jtime, the_time[jtime] ) ;
tmp = 0.5*tilde_lap_B + source_aij.compute_tilde_B_tt(true) ;
tmp.annule_domain(nz-1) ;
tmp.set_dzpuis(0) ;
// Scalar dess = tmp - tilde_lap_B ;
// dess.set_spectral_va().ylm_i() ;
// des_profile(dess, 0, 8., 1, 1) ;
source_B_hata_evol.update( 0.5*tilde_lap_B, jtime, the_time[jtime] ) ;
}
void Tslice_dirac_max::initialize_sources_copy() const {
assert( source_A_hh_evol.is_known(jtime) ) ;
assert( source_B_hh_evol.is_known(jtime) ) ;
assert( source_A_hata_evol.is_known(jtime) ) ;
assert( source_B_hata_evol.is_known(jtime) ) ;
Scalar tmp_Ah = source_A_hh_evol[jtime] ;
Scalar tmp_Bh = source_B_hh_evol[jtime] ;
Scalar tmp_Aa = source_A_hata_evol[jtime] ;
Scalar tmp_Ba = source_B_hata_evol[jtime] ;
source_A_hh_evol.downdate(jtime) ;
source_B_hh_evol.downdate(jtime) ;
source_A_hata_evol.downdate(jtime) ;
source_B_hata_evol.downdate(jtime) ;
int jtime1 = jtime - depth + 1;
for (int j=jtime1; j <= jtime; j++) {
source_A_hh_evol.update( tmp_Ah, j, the_time[j] ) ;
source_B_hh_evol.update( tmp_Bh, j, the_time[j] ) ;
source_A_hata_evol.update( tmp_Aa, j, the_time[j] ) ;
source_B_hata_evol.update( tmp_Ba, j, the_time[j] ) ;
}
}
}
|