File: tslice_dirac_max_solve.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (255 lines) | stat: -rw-r--r-- 8,772 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
 *  Methods of class Tslice_dirac_max for solving Einstein equations
 *
 *    (see file time_slice.h for documentation).
 *
 */

/*
 *   Copyright (c) 2004 Eric Gourgoulhon & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char tslice_dirac_max_solve_C[] = "$Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_dirac_max_solve.C,v 1.18 2014/10/13 08:53:48 j_novak Exp $" ;

/*
 * $Id: tslice_dirac_max_solve.C,v 1.18 2014/10/13 08:53:48 j_novak Exp $
 * $Log: tslice_dirac_max_solve.C,v $
 * Revision 1.18  2014/10/13 08:53:48  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.17  2014/10/06 15:13:22  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.16  2010/10/20 07:58:10  j_novak
 * Better implementation of the explicit time-integration. Not fully-tested yet.
 *
 * Revision 1.15  2008/12/02 15:02:22  j_novak
 * Implementation of the new constrained formalism, following Cordero et al. 2009
 * paper. The evolution eqs. are solved as a first-order system. Not tested yet!
 *
 * Revision 1.14  2004/07/08 12:29:01  j_novak
 * use of new method Tensor::annule_extern_cn
 *
 * Revision 1.13  2004/06/30 08:02:40  j_novak
 * Added filtering in l of khi_new and mu_new. ki_source is forced to go to
 * zero at least as r^2.
 *
 * Revision 1.12  2004/06/17 07:07:11  e_gourgoulhon
 * Method solve_hij:
 *   -- replaced the attenuation of khi_source with tempo by a call to
 *      the new method Tensor::annule_extern_c2
 *   -- suppressed filtre_r on khi_source and khi_new
 *   -- added graphs of W^i and LW^{ij} (transverse decomp of S^ij).
 *
 * Revision 1.11  2004/06/15 09:43:36  j_novak
 * Attenuation of the source for khi in the last shell (temporary?).
 *
 * Revision 1.10  2004/06/14 20:47:31  e_gourgoulhon
 * Added argument method_poisson to method solve_hij.
 *
 * Revision 1.9  2004/06/03 10:02:45  j_novak
 * Some filtering is done on source_khi and khi_new.
 *
 * Revision 1.8  2004/05/24 21:00:44  e_gourgoulhon
 * Method solve_hij: khi and mu.smooth_decay(2,2) --> smooth_decay(2,1) ;
 *   added exponential_decay(khi) and exponential_decay(mu) after the
 *   call to smooth_decay. Method exponential_decay is provisory defined
 *   in this file.
 *
 * Revision 1.7  2004/05/17 19:56:25  e_gourgoulhon
 * -- Method solve_beta: added argument method
 * -- Method solve_hij: added argument graph_device
 *
 * Revision 1.6  2004/05/12 15:24:20  e_gourgoulhon
 * Reorganized the #include 's, taking into account that
 * time_slice.h contains now an #include "metric.h".
 *
 * Revision 1.5  2004/05/05 14:47:05  e_gourgoulhon
 * Modified text and graphical outputs.
 *
 * Revision 1.4  2004/05/03 15:06:27  e_gourgoulhon
 * Added matter source in solve_hij.
 *
 * Revision 1.3  2004/05/03 14:50:00  e_gourgoulhon
 * Finished the implementation of method solve_hij.
 *
 * Revision 1.2  2004/04/30 14:36:15  j_novak
 * Added the method Tslice_dirac_max::solve_hij(...)
 * NOT READY YET!!!
 *
 * Revision 1.1  2004/04/30 10:52:14  e_gourgoulhon
 * First version.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Time_slice/tslice_dirac_max_solve.C,v 1.18 2014/10/13 08:53:48 j_novak Exp $
 *
 */

// C headers
#include <cassert>

// Lorene headers
#include "time_slice.h"
#include "unites.h"
#include "graphique.h"
#include "proto.h"

                    //----------------------------//
                    //    Equation for N\Psi     //
                    //----------------------------//

namespace Lorene {
Scalar Tslice_dirac_max::solve_npsi(const Scalar* p_ener_dens,
                                 const Scalar* p_trace_stress) const {

    using namespace Unites ;

    const Map& map = npsi().get_mp() ;
    Scalar ener_dens(map) ; 
    if (p_ener_dens != 0x0) ener_dens = *(p_ener_dens) ; 
    else ener_dens.set_etat_zero() ; 
    
    Scalar trace_stress(map) ; 
    if (p_trace_stress != 0x0) trace_stress = *(p_trace_stress) ; 
    else trace_stress.set_etat_zero() ; 
    
    // Source for N\Psi 
    // ----------------
        
    const Vector& dnpsi = npsi().derive_cov(ff) ; // D_i N\Psi
    const Tensor_sym& dhh = hh().derive_cov(ff) ;       // D_k h^{ij}
    const Tensor_sym& dtgam = tgam().cov().derive_cov(ff) ;    
                                                    // D_k {\tilde \gamma}_{ij}
    Sym_tensor taa = aa().up_down(tgam()) ; 
        
    Scalar aa_quad = contract(taa, 0, 1, aa(), 0, 1) ; 
    Scalar tildeR = 0.25 * contract( dhh, 0, 1, dtgam, 0, 1 ).trace(tgam()) 
          - 0.5 * contract( dhh, 0, 1, dtgam, 0, 2 ).trace(tgam()) ; 
        
    Scalar source_npsi = -  contract( hh(), 0, 1, dnpsi.derive_cov(ff), 0, 1 ) ;
    source_npsi.inc_dzpuis() ;
    source_npsi += npsi()*( 0.5*qpig*(ener_dens + 2.*trace_stress )/( psi()*psi() ) 
			    + 0.875*aa_quad/( psi4()*psi4() ) + 0.125*tildeR ) ;
        
    // Resolution of the Poisson equation for N\Psi
    // --------------------------------------------
        
    Scalar npsi_new = source_npsi.poisson() + 1. ; 

    if (npsi_new.get_etat() == ETATUN) npsi_new.std_spectral_base() ; 

#ifndef NDEBUG
    // Test:
    maxabs(npsi_new.laplacian() - source_npsi,
                "Absolute error in the resolution of the equation for N") ;  
#endif
    return npsi_new ; 

}

                
                    //--------------------------//
                    //     Equation for \Psi    //
                    //--------------------------//


Scalar Tslice_dirac_max::solve_psi(const Scalar* p_ener_dens) const {

    using namespace Unites ;

    const Map& map = psi().get_mp() ;
    Scalar ener_dens(map) ; 
    if (p_ener_dens != 0x0) ener_dens = *(p_ener_dens) ; 
    else ener_dens.set_etat_zero() ; 
    
    // Source for \Psi
    // ---------------
        
    const Vector& dpsi = psi().derive_cov(ff) ;           // D_i Psi
    const Tensor_sym& dhh = hh().derive_cov(ff) ;       // D_k h^{ij}
    const Tensor_sym& dtgam = tgam().cov().derive_cov(ff) ;    
                                                    // D_k {\tilde \gamma}_{ij}

    Sym_tensor taa = hata().up_down(tgam()) ; 
        
    Scalar aa_quad = contract(taa, 0, 1, hata(), 0, 1) ; 
        
    Scalar tildeR = 0.25 * contract( dhh, 0, 1, dtgam, 0, 1 ).trace(tgam()) 
          - 0.5 * contract( dhh, 0, 1, dtgam, 0, 2 ).trace(tgam()) ; 

    Scalar source_psi = -contract( hh(), 0, 1, dpsi.derive_cov(ff), 0, 1 ) ;
    source_psi.inc_dzpuis() ;
    source_psi -= 0.5*qpig*ener_dens/psi()  
	+ 0.125*( aa_quad*pow(psi(), -7) - tildeR*psi() ) ; 
               
    // Resolution of the Poisson equation for Psi
    // ------------------------------------------
        
    Scalar psi_new = source_psi.poisson() + 1. ; 

    if (psi_new.get_etat() == ETATUN) psi_new.std_spectral_base() ; 

#ifndef NDEBUG
    // Test:
    maxabs(psi_new.laplacian() - source_psi,
                "Absolute error in the resolution of the equation for Psi") ;  
#endif

    return psi_new ; 
}
                


                    //--------------------------//
                    //      Equation for beta   //
                    //--------------------------//


Vector Tslice_dirac_max::solve_beta(int method) 
    const {

    // Source for beta
    // ---------------
    Vector source_beta = 
	- contract(hh(), 0, 1, beta().derive_cov(ff).derive_cov(ff), 1, 2)
	- 0.3333333333333333*contract(hh(), 1, beta().divergence(ff).derive_cov(ff), 0) ; 

    Sym_tensor sym_tmp = 2*nn()*aa() ;
    source_beta += sym_tmp.divergence(ff) ;
    source_beta.inc_dzpuis() ; // dzpuis: 3 -> 4

    // Resolution of the vector Poisson equation 
    //------------------------------------------
    
    Vector beta_new = source_beta.poisson(0.3333333333333333, ff, method) ; 
        
#ifndef NDEBUG
    // Test:
    Vector test_beta = (beta_new.derive_con(ff)).divergence(ff)
            +  0.3333333333333333 * (beta_new.divergence(ff)).derive_con(ff) ;
    test_beta.inc_dzpuis() ;  
    maxabs(test_beta - source_beta,
                "Absolute error in the resolution of the equation for beta") ; 
#endif
    return beta_new ; 

}
                

}