1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/*
* Smoothes the junction with an eventual atmosphere.
*
*/
/*
* Copyright (c) 2004 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char tbl_val_smooth_C[] = "$Header: /cvsroot/Lorene/C++/Source/Valencia/tbl_val_smooth.C,v 1.4 2014/10/13 08:53:49 j_novak Exp $" ;
/*
* $Id: tbl_val_smooth.C,v 1.4 2014/10/13 08:53:49 j_novak Exp $
* $Log: tbl_val_smooth.C,v $
* Revision 1.4 2014/10/13 08:53:49 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.3 2004/12/30 16:14:01 j_novak
* Changed the name of a shadowed variable.
*
* Revision 1.2 2004/12/03 13:24:01 j_novak
* Minor modif.
*
* Revision 1.1 2004/11/26 17:02:19 j_novak
* Added a function giving a smooth transition to the atmosphere.
*
*
* $Header: /cvsroot/Lorene/C++/Source/Valencia/tbl_val_smooth.C,v 1.4 2014/10/13 08:53:49 j_novak Exp $
*
*/
// Lorene headers
#include "tbl_val.h"
//Local prototypes
namespace Lorene {
void radial_smoothing(double* , const double* , int , double) ;
//****************************************************************************
void Tbl_val::smooth_atmosphere(double atmosphere_thr) {
const Gval_spher* gspher = dynamic_cast<const Gval_spher*>(gval) ;
assert(gspher != 0x0) ;
int ndim = gspher->get_ndim() ;
int fant = gspher->get_fantome() ;
int nr = get_dim(0) + 2*fant;
switch (ndim) {
case 1: {
radial_smoothing(t, gspher->zr->t, nr, atmosphere_thr) ;
break ;
}
case 2: {
int nt = get_dim(1) + 2*fant ;
for (int j=0; j<nt; j++)
radial_smoothing(t+j*nr, gspher->zr->t, nr, atmosphere_thr) ;
break ;
}
case 3: {
int nt = get_dim(1) + 2*fant ;
int np = get_dim(2) + 2*fant ;
for (int j=0; j<nt; j++)
for (int k=0; k<np; k++)
radial_smoothing(t+k*nt*nr+j*nr, gspher->zr->t, nr, atmosphere_thr) ;
break ;
}
default: {
cerr << "Tbl_val::smooth_atmosphere : strange number of dimensions!"
<< endl ;
abort() ;
break ;
}
}
return ;
}
void radial_smoothing(double* tab, const double* rr, int n, double rho) {
assert((tab!= 0x0)&&(rr!=0x0)) ;
assert (rho >= 0.) ;
if (fabs(tab[n-1]) > rho) // no atmosphere here
return ;
double* t = tab + (n-1) ;
int indice = -1 ;
bool atmos = true ;
bool jump = false ;
for (int i=0; ((i<n)&&(atmos)); i++) {
if (atmos) atmos = ( fabs(*t) < rho) ;
t-- ;
if (atmos) {
jump = ( fabs(*t) > rho ) ;
if (jump) // discontinuity found
indice = n - i - 2 ;
}
}
if (indice == -1) return ;
int np = 2*(n-indice-2)/3 ;
int nm = indice / 100 + 3 ;
assert(n > nm+np) ;
if (indice < n - np+1) { // enough points to interpolate
// The inteprolation is done using a cubic polynomial
//---------------------------------------------------
int ileft = indice - nm + 2 ;
int iright = indice + np - 1 ;
double alpha = ( rr[ileft - 2] - rr[ileft - 1]) /
( rr[ileft -1] - rr[ileft]) ;
double der_l = ( alpha*(alpha+2.)*tab[ileft]
- (1.+alpha)*(1.+alpha)*tab[ileft-1]
+ tab[ileft-2] ) /
( (1.+alpha)*(rr[ileft - 1] - rr[ileft - 2]) ) ;
double f_l = tab[ileft] ;
double f_r = tab[iright] ;
double tau = rr[ileft] - rr[iright] ;
double alp = der_l / (tau*tau) + 2.*(f_r - f_l)/(tau*tau*tau) ;
double bet = 0.5*(der_l + alp*tau*(rr[iright] - 3*rr[ileft])) / tau ;
for (int i=ileft; i<iright; i++) {
tab[i] = f_r + (alp*rr[i]+bet)*(rr[i] - rr[iright])*(rr[i] - rr[iright]);
}
}
else { // too few points to interpolate -> linear extrapolation ...
int ileft = indice ;
double alpha = ( rr[ileft - 2] - rr[ileft - 1]) /
( rr[ileft -1] - rr[ileft]) ;
double der_l = ( alpha*(alpha+2.)*tab[ileft]
- (1.+alpha)*(1.+alpha)*tab[ileft-1]
+ tab[ileft-2] ) /
( (1.+alpha)*(rr[ileft - 1] - rr[ileft - 2]) ) ;
for (int i=ileft; i<n; i++) {
tab[i] = tab[ileft] + (rr[i] - rr[ileft])*der_l ;
}
}
return ;
}
}
|