File: analyse.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (588 lines) | stat: -rw-r--r-- 18,361 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*
 * Code for reading a binary black hole or binary neutron star configuration
 *  and performing some analysis of the asymptotic
 *  behavior of the metric coefficients
 *
 */

/*
 *   Copyright (c) 2002 Francois Limousin
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */
char analyse_C[] = "$Header: /cvsroot/Lorene/Codes/Bin_star/analyse.C,v 1.5 2014/10/13 08:53:53 j_novak Exp $" ;

/*
 * $Id: analyse.C,v 1.5 2014/10/13 08:53:53 j_novak Exp $
 * $Log: analyse.C,v $
 * Revision 1.5  2014/10/13 08:53:53  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.4  2014/10/06 15:09:42  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.3  2004/03/25 12:35:36  j_novak
 * now using namespace Unites
 *
 * Revision 1.2  2003/01/09 11:07:48  j_novak
 * headcpp.h is now compliant with C++ norm.
 * The include files have been ordered, as well as the local_settings_linux
 *
 * Revision 1.1  2002/06/18 14:07:26  f_limousin
 * Analysis of asymptotic behavior of binary NS and BH
 *
 *
 *
 * $Header: /cvsroot/Lorene/Codes/Bin_star/analyse.C,v 1.5 2014/10/13 08:53:53 j_novak Exp $
 *
 */

// Headers standard du C
//  (par exemple definit la macro EXIT_SUCCESS)
#include <cstdlib>
#include <cstdio>

 
// Headers Lorene
#include "tenseur.h"
#include "bhole.h"
#include "binaire.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "nbr_spx.h"
#include "unites.h"

namespace Lorene {
// Local prototype
Cmp raccord_c1(const Cmp& uu, int l1) ; 

void asymptot(const Cmp&,  const char*, bool, ostream& );
}
using namespace Lorene ;

int main() {

  using namespace Unites ;

  // Reads the parameters of the computation
  // ---------------------------------------

  char nom_config[100], blabla[100] ; 
  int type_objet, nr_a, nt_a, np_a, graphics_i ;
  double rayon_a ; 

  ifstream fichparam("par_ana.d") ;
  fichparam >> graphics_i ; fichparam.getline(blabla,100) ;
  fichparam >> type_objet ; fichparam.getline(blabla,100) ; 
  fichparam.getline(nom_config,100) ; 
  fichparam >> nr_a ; fichparam.getline(blabla,100) ; 
  fichparam >> nt_a ; fichparam.getline(blabla,100) ; 
  fichparam >> np_a ; fichparam.getline(blabla,100) ; 
  fichparam >> rayon_a ; fichparam.getline(blabla,100) ;  
  fichparam.close() ; 

  bool black_hole = (type_objet == 1) ;
  bool graphics = (graphics_i == 1) ;

  cout << "Name of the file containing the binary system :"
       << endl << nom_config << endl ;

  // Pointers on global objects (independent of BH or NS)
  Mg3d* grille_un ;
  Mg3d* grille_deux ;
  Map* map_un ;
  Map* map_deux ; 
  Cmp* p_nn1 ;
  Cmp* p_nn2 ; 
  Tenseur* p_shift1 ;
  Tenseur* p_shift2 ;

  FILE* fich = fopen(nom_config, "r") ;
  if (fich == 0x0) {
      cout << "Problem in opening the file " << nom_config << " !" << endl ;
      abort() ; 
  }

  //*******************************************************************
  // Reading of binary black hole data
  //*******************************************************************
  if (black_hole) {

    grille_un = new Mg3d(fich) ;
    grille_deux = grille_un ; 
    Map_af* map_un_af = new Map_af(*grille_un, fich) ;
    Map_af* map_deux_af = new Map_af(*grille_deux, fich) ;
    map_un = map_un_af ; 
    map_deux = map_deux_af ; 
    Bhole hole_un (*map_un_af, fich) ;
    Bhole hole_deux (*map_deux_af, fich) ;
    fclose(fich) ;
    
    assert (hole_un.get_omega() == hole_deux.get_omega()) ;

    cout << "Multi-grid read in file : " << endl << *grille_un << endl ;
    // arrete() ; 
    cout << "Mapping 1 read in file : " << endl << *map_un << endl ;
    cout << "Mapping 2 read in file : " << endl << *map_deux << endl ;
    // arrete() ; 

    // Construction of the binary system
    // ---------------------------------
    Bhole_binaire systeme (*map_un_af, *map_deux_af) ;
    systeme.set(1) = hole_un ;
    systeme.set(2) = hole_deux ;
    systeme.set_omega(hole_un.get_omega()) ;

    // On initialise les grandeurs derivees :
    systeme.set(1).fait_n_comp (systeme(2)) ;
    systeme.set(1).fait_psi_comp (systeme(2)) ;
    systeme.set(2).fait_n_comp (systeme(1)) ;
    systeme.set(2).fait_psi_comp (systeme(1)) ;
    systeme.fait_decouple() ;
    systeme.fait_tkij() ;

    // Initialisation of member data
    // -----------------------------

    // Unit of length:
    double aa = systeme(1).get_rayon() ;
    double aa2 = systeme(2).get_rayon() ;

    double omega = systeme.get_omega() * aa ;
    double dist = ( map_un->get_ori_x() - map_deux->get_ori_x() ) / aa ;

    cout << endl << "Binary system read in file : " << endl ;
    cout <<	    "---------------------------- " << endl ;
    cout << "  Separation d/a :       " << dist << endl ;
    cout << "  Omega :                " << omega << " / a" << endl ;
    cout << "  Size of black hole 2 : " << aa2 / aa << " a" << endl ;
    cout << "  ADM mass :             " << systeme.adm_systeme() / aa
         << " a" << endl ;
    cout << "  Komar-lile mass :      " << systeme.komar_systeme() / aa
         << " a" << endl ;
    cout << "  Angular momentum :     " << systeme.moment_systeme_inf() 
	    / (aa*aa) << " a^2" << endl ; 
    cout << "  Proper distance between the two throats : "
	  << systeme.distance_propre() / aa << " a" << endl ;
    cout << "  Area of black hole 1 apparent horizon : " << 
	      systeme(1).area() / (aa*aa) << " a^2" << endl ; 
    cout << "  Area of black hole 2 apparent horizon : " <<
	      systeme(2).area() / (aa*aa) << " a^2" << endl ; 

    //------------------------------------------------------
    //  Lapse function
    //------------------------------------------------------

    // nn1 defined as a Tenseur copy of systeme(1).n_auto
    //  (constructed by the copy constructor of class Tenseur) 
    // Tenseur nn1 = systeme(1).get_n_auto() ; 

    

    // *nn1 is a copy of the Cmp systeme(1).n_auto.c[0]
    p_nn1 = new Cmp( systeme(1).get_n_auto()() ) ;

    // cout << "N_1 : " << endl << *nn1 << endl ; 
    
    // nn2 defined as a reference to the Cmp systeme(2).n_auto.c[0]
    p_nn2 = new Cmp( systeme(2).get_n_auto()() ) ;

    // Shift vector
    p_shift1 = new Tenseur( systeme(1).get_shift_auto() ) ;
    p_shift2 = new Tenseur( systeme(2).get_shift_auto() ) ;


  } // End of the black hole case
  
  //*******************************************************************
  // Reading of binary neutron star data
  //*******************************************************************
  else{

    int mer ; 
    fread_be(&mer, sizeof(int), 1, fich) ;	// step 
    
    grille_un = new Mg3d(fich) ;
    map_un = new Map_et(*grille_un, fich) ; 
    Eos* peos_un = Eos::eos_from_file(fich) ; 
    
    grille_deux = new Mg3d(fich) ;
    map_deux = new Map_et(*grille_deux, fich) ; 
    Eos* peos_deux = Eos::eos_from_file(fich) ; 
    
    Binaire star(*map_un, *peos_un, *map_deux, *peos_deux, fich) ; 

    fclose(fich) ; 
    
    bool relativistic = star(1).is_relativistic() ; 

    cout << endl << "Grid on which star 1 is defined : " << endl ; 
    cout << "=============================== " << endl ; 
    cout << *((star(1).get_mp()).get_mg()) << endl ; 

    cout << endl << "Grid on which star 2 is defined : " << endl ; 
    cout << "=============================== " << endl ; 
    cout << *((star(2).get_mp()).get_mg()) << endl ; 

    cout << endl << "Mapping on which star 1 is defined : " << endl ; 
    cout << "================================== " << endl ; 
    cout << star(1).get_mp() << endl ; 


    cout << endl << "Mapping on which star 2 is defined : " << endl ; 
    cout << "================================== " << endl ; 
    cout << star(2).get_mp() << endl ; 

    for (int i=1; i<=2; i++) {
	(star.set(i)).update_metric(star(3-i)) ; 
    }

    for (int i=1; i<=2; i++) {
	(star.set(i)).update_metric_der_comp(star(3-i)) ; 
    }

    for (int i=1; i<=2; i++) {
	(star.set(i)).equation_of_state() ; 
	(star.set(i)).kinematics(star.get_omega(), star.get_x_axe()) ; 
	(star.set(i)).fait_d_psi() ; 
	(star.set(i)).hydro_euler() ; 
    }

    cout << "Binary system read in file : " << endl ;
    cout << star << endl ; 

    cout << "ADM mass [M_sol] : " << star.mass_adm() / msol  << endl ; 
    cout << "Total energy [M_sol c^2] : " 
	 << star.total_ener() / msol << endl ; 
    cout << "Total angular momentum [M_sol c km] : " 
	 << (star.angu_mom())(2) / msol / km << endl ; 
    if (!relativistic) {
	cout << "Relative error on the virial theorem : " 
	     << star.virial() << endl ; 
    }
    cout << "Relative error in the Hamiltonian constraint : " << endl ; 
    cout << star.ham_constr() << endl ; 
	 
    cout << "Relative error in the momentum constraint : " << endl ; 
    cout << " X component : " << star.mom_constr()(0) << endl ; 
    cout << " Y component : " << star.mom_constr()(1) << endl ; 
    cout << " Z component : " << star.mom_constr()(2) << endl ; 

    star.display_poly(cout) ; //  Reduced quantities for polytropic EOS

    //==============================================================
    //  Drawings
    //==============================================================

    // int nzdes1 = star(1).get_nzet() ; 
    
    double ori_x1 = star(1).get_mp().get_ori_x() ; 
    double ori_x2 = star(2).get_mp().get_ori_x() ; 

    double xdes_min = - 1.5 * star(1).ray_eq_pi() + ori_x1 ;
    xdes_min += 0.2 * xdes_min ;  
    double xdes_max = 1.5 * star(2).ray_eq_pi() + ori_x2 ; 
    xdes_max += 0.2 * fabs(xdes_min) ;  

    double ydes_min1 = - 4. * star(1).ray_eq_pis2() ; 
    double ydes_min2 = - 4. * star(2).ray_eq_pis2() ; 
    double ydes_min = (ydes_min1 < ydes_min2) ? ydes_min1 : ydes_min2 ; 

    double ydes_max1 =  4. * star(1).ray_eq_pis2() ; 
    double ydes_max2 =  4. * star(2).ray_eq_pis2() ; 
    double ydes_max = (ydes_max1 > ydes_max2) ? ydes_max1 : ydes_max2 ; 

    double zdes_min1 = - 4. * star(1).ray_pole() ; 
    double zdes_min2 = - 4. * star(2).ray_pole() ; 
    double zdes_min = (zdes_min1 < zdes_min2) ? zdes_min1 : zdes_min2 ; 

    double zdes_max1 =  4. * star(1).ray_pole() ; 
    double zdes_max2 =  4. * star(2).ray_pole() ; 
    double zdes_max = (zdes_max1 > zdes_max2) ? zdes_max1 : zdes_max2 ; 
   

    Cmp surf1 = star(1).get_ent()() ; 
    Cmp surf1_ext(*map_un) ; 
    surf1_ext = - 0.2 * surf1(0, 0, 0, 0) ; 
    surf1_ext.annule(0, star(1).get_nzet()-1) ; 
    surf1.annule(star(1).get_nzet(), grille_un->get_nzone()-1) ; 
    surf1 = surf1 + surf1_ext ;
    surf1 = raccord_c1(surf1, star(1).get_nzet()) ; 

    Cmp surf2 = star(2).get_ent()() ; 
    Cmp surf2_ext(*map_deux) ; 
    surf2_ext = - 0.2 * surf2(0, 0, 0, 0) ; 
    surf2_ext.annule(0, star(2).get_nzet()-1) ; 
    surf2.annule(star(2).get_nzet(), grille_deux->get_nzone()-1) ; 
    surf2 = surf2 + surf2_ext ;

    surf2 = raccord_c1(surf2, star(2).get_nzet()) ; 

    Tenseur logn1 = - star(1).get_logn_auto() ; 
    Tenseur logn2 = - star(2).get_logn_auto() ; 

    if (graphics) {
      des_coupe_bin_y(logn1(), logn2(), 0, 
			xdes_min, xdes_max, zdes_min, zdes_max, 
		    "ln(N) (y=0)",  &surf1, &surf2) ; 

      des_coupe_bin_z(logn1(), logn2(), 0, 
			xdes_min, xdes_max, ydes_min, ydes_max, 
		    "ln(N) (z=0)",  &surf1, &surf2) ; 


      des_coupe_z(star(1).get_ent()(), 0., 1,
		"Enthalpy (z=0)", &surf1, 1.2) ; 

      des_coupe_y(star(1).get_ent()(), 0., 1,
		"Enthalpy (y=0)", &surf1, 1.2) ; 
    }

    // *nn1 is a copy of the Cmp systeme(1).n_auto.c[0]
    p_nn1 = new Cmp( exp( star(1). get_logn_auto()() ) ) ;
    p_nn1->std_base_scal() ;

    

    // cout << "N_1 : " << endl << *nn1 << endl ; 
    
    // nn2 defined as a reference to the Cmp systeme(2).n_auto.c[0]
    p_nn2 = new Cmp( exp( star(2). get_logn_auto()() ) ) ;
    p_nn2->std_base_scal() ;

    // Shift vector
    p_shift1 = new Tenseur( star(1).get_shift_auto() ) ;
    p_shift2 = new Tenseur( star(2).get_shift_auto() ) ;

    delete peos_un ; 
    delete peos_deux ;

  }  // End of neutron star case

//***************************************************************************
// Begin of the asymptotic study
//***************************************************************************


  /*

    double z0 = 0 ; // cut by the plane z=z0
    double x_min = - 100 ; 
    double x_max = + 100 ; 
    double y_min = - 50 ; 
    double y_max = + 50 ; 

    des_coupe_bin_z(nn1, nn2, z0, x_min, x_max, y_min, y_max,
		    "Lapse function N") ; 

    // Asymptotic behavior of N_1 :
        Valeur** nn1_asymp = nn2.asymptot(3,1) ; 

	// Value (on the angular grid) containing the coef of 1/r^0
	Valeur& nn1_0 = *(nn1_asymp[0]) ;

	// Value (on the angular grid) containing the coef of 1/r
	Valeur& nn1_1 = *(nn1_asymp[1]) ;

	// Value (on the angular grid) containing the coef of 1/r^2
	Valeur& nn1_2 = *(nn1_asymp[2]) ;

	// Value (on the angular grid) containing the coef of 1/r^3
	Valeur& nn1_3 = *(nn1_asymp[3]) ;


	// Computation of spectral expansions
	nn1_0.coef() ; 
	cout << "Spectral coefficients of nn1_0 : " << endl ;
	nn1_0.affiche_seuil(cout,0,4,1e-3) ;
	
	nn1_1.coef() ; 
	cout << "Spectral coefficients of nn1_1 : " << endl ;
	nn1_1.affiche_seuil(cout,0,4,1e-3) ;
	
	nn1_2.coef() ; 
	cout << "Spectral coefficients of nn1_2 : " << endl ;
	nn1_2.affiche_seuil(cout,0,4,1e-3) ;

	nn1_3.coef() ; 
	cout << "Spectral coefficients of nn1_3 : " << endl ;
	nn1_3.affiche_seuil(cout,0,4,1e-5) ;
	
    
	*/
  
	//----------------------------------------------
	// Grid centered on the system "center of mass"
	//----------------------------------------------

	int nz_a = 2 ; // number of domains
	Mg3d mg(nz_a, nr_a, nt_a, np_a, grille_un->get_type_t(), 
		  grille_un->get_type_p(), true) ;

	double bornes_a[3] ;
	bornes_a[0] = 0 ; 
	bornes_a[1] = rayon_a ;
	//        bornes_a[2] = 2*rayon_a ;
	//        bornes_a[3] = 4*rayon_a ;
	//        bornes_a[4] = 8*rayon_a ;
	bornes_a[2] = __infinity ;
	Map_af mp(mg, bornes_a) ;
	cout << "Mapping on the \"centered\" grid : " << endl
	     << mp << endl ;

	// Evaluation of the lapse on the mapping mp
	Cmp nn1(mp) ;
	Cmp nn2(mp) ;

	nn1.import( *(p_nn1) ) ;
	nn2.import( *(p_nn2) ) ;

	nn1.std_base_scal() ;
	nn2.std_base_scal() ;

	Cmp nn(mp) ; 
	if (black_hole) {  // N = N_1 + N_2  for black holes
	    nn = nn1 + nn2  ;
	}
	else{             // ln(N) = ln(N_1) + ln(N_2) for neutron stars
	    nn = nn1*nn2 ;
	}
	
	// The lapse is set to 1 in the inner domain
	nn.annule(0) ;
	Cmp tmp(mp) ;
	tmp = 1 ; 
	tmp.annule(1) ;	
	nn = nn + tmp ; 

	// Logarithm of the lapse
	Cmp logn = log( nn ) ;
	logn.std_base_scal() ;
		

	// Evaluation of the shift vector on the mapping mp
	
	// Ensures that the components of shift1 and shift2 are
	//  defined with respect to the same triad (this was
	//  true for binary NS but not for BH)
	p_shift1->change_triad( mp.get_bvect_cart() ) ;
	p_shift2->change_triad( mp.get_bvect_cart() ) ;

	Tenseur shift1(mp, 1, CON, mp.get_bvect_cart()) ;
	Tenseur shift2(mp, 1, CON, mp.get_bvect_cart()) ;

	shift1.set_etat_qcq() ; 
	shift2.set_etat_qcq() ; 
	for (int i=0; i<3; i++) {
	    (shift1.set(i)).import( (*p_shift1)(i) ) ; 
	    (shift2.set(i)).import( (*p_shift2)(i) ) ; 
	}

	// Spectral bases for the x-component and y-component
	for (int i=0; i<2; i++) {
	    shift1.set(i).va.set_base_r(0,R_CHEBPIM_P) ;
	    shift1.set(i).va.set_base_r(1,R_CHEBU) ;
	    shift1.set(i).va.set_base_t(T_COSSIN_CP) ;
	    shift1.set(i).va.set_base_p(P_COSSIN) ;

	    shift2.set(i).va.set_base_r(0,R_CHEBPIM_P) ;
	    shift2.set(i).va.set_base_r(1,R_CHEBU) ;
	    shift2.set(i).va.set_base_t(T_COSSIN_CP) ;
	    shift2.set(i).va.set_base_p(P_COSSIN) ;
	}
	// Spectral bases for the z-component
	shift1.set(2).va.set_base_r(0,R_CHEBPIM_I) ;
	shift1.set(2).va.set_base_r(1,R_CHEBU) ;
	shift1.set(2).va.set_base_t(T_COSSIN_CI) ;
	shift1.set(2).va.set_base_p(P_COSSIN) ;
	
	shift2.set(2).va.set_base_r(0,R_CHEBPIM_I) ;
	shift2.set(2).va.set_base_r(1,R_CHEBU) ;
	shift2.set(2).va.set_base_t(T_COSSIN_CI) ;
	shift2.set(2).va.set_base_p(P_COSSIN) ;
	

	Tenseur shift = shift1 + shift2 ; 

	//--------------------------------------------
	// Graphical outputs
	//-------------------------------------------

	if (graphics) {
	  des_coupe_z(nn1, 0., 1, "nn1") ;
	 
	  des_coupe_vect_z(shift, 0., -3., 1., 1,"shift vector") ;

	}

	Cmp shift_x  = shift.set(0) ;
	Cmp shift_y  = shift.set(1) ;
	Cmp shift_z  = shift.set(2) ;
	
	if (graphics) {
	  des_coupe_z(shift_y, 0., 1, "shift_y") ;
	  des_coupe_z(shift_x, 0., 1, "shift_x") ;
	  des_coupe_z(shift_z, 0., 1, "shift_z") ;
	}

	cout << "msol" << 4.62/msol << endl ;

	ofstream fichresu("resu_asymptot.d") ; 
	fichresu << "nom de fichier :" << nom_config << endl
		<< "nr_a : number of points in r for the centered grid = "
		<< nr_a << endl
                <<"nt_a : number of points in theta for the center grid = " 
                << nt_a  << endl
		<< "np_a : number of points in phi for the centered grid = "
		<< np_a << endl
		<<"rayon_a (10 km) : inner radius of the last domain = " 
		 << rayon_a << endl <<endl << endl ; 


	asymptot(nn, "N", graphics, fichresu) ;
	asymptot(logn, "logn", graphics, fichresu) ;
	asymptot(shift_x, "shift_x", graphics, fichresu) ;
        asymptot(shift_y, "shift_y", graphics, fichresu) ; 	   
	asymptot(shift_z, "shift_z", graphics, fichresu) ;
 	
	fichresu.close() ; 

	

    // Freeing memory

	  //   delete [] nn1_asymp ;
	//  delete [] nn_asymp ;

      delete p_shift1 ;
      delete p_shift2 ;
      delete p_nn1 ;
      delete p_nn2 ;
      delete map_un ;
      delete map_deux ;
      delete grille_un ;
      if (!black_hole) delete grille_deux ;


//home/francois/EUNetwork/Meudon/Data/BinNS/GR/irrotation/G18vs18_g2_ir_M.d
  return EXIT_SUCCESS ; 

}