1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
/*
* Code for reading a binary black hole or binary neutron star configuration
* and performing some analysis of the asymptotic
* behavior of the metric coefficients
*
*/
/*
* Copyright (c) 2002 Francois Limousin
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char analyse_C[] = "$Header: /cvsroot/Lorene/Codes/Bin_star/analyse.C,v 1.5 2014/10/13 08:53:53 j_novak Exp $" ;
/*
* $Id: analyse.C,v 1.5 2014/10/13 08:53:53 j_novak Exp $
* $Log: analyse.C,v $
* Revision 1.5 2014/10/13 08:53:53 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.4 2014/10/06 15:09:42 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.3 2004/03/25 12:35:36 j_novak
* now using namespace Unites
*
* Revision 1.2 2003/01/09 11:07:48 j_novak
* headcpp.h is now compliant with C++ norm.
* The include files have been ordered, as well as the local_settings_linux
*
* Revision 1.1 2002/06/18 14:07:26 f_limousin
* Analysis of asymptotic behavior of binary NS and BH
*
*
*
* $Header: /cvsroot/Lorene/Codes/Bin_star/analyse.C,v 1.5 2014/10/13 08:53:53 j_novak Exp $
*
*/
// Headers standard du C
// (par exemple definit la macro EXIT_SUCCESS)
#include <cstdlib>
#include <cstdio>
// Headers Lorene
#include "tenseur.h"
#include "bhole.h"
#include "binaire.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "nbr_spx.h"
#include "unites.h"
namespace Lorene {
// Local prototype
Cmp raccord_c1(const Cmp& uu, int l1) ;
void asymptot(const Cmp&, const char*, bool, ostream& );
}
using namespace Lorene ;
int main() {
using namespace Unites ;
// Reads the parameters of the computation
// ---------------------------------------
char nom_config[100], blabla[100] ;
int type_objet, nr_a, nt_a, np_a, graphics_i ;
double rayon_a ;
ifstream fichparam("par_ana.d") ;
fichparam >> graphics_i ; fichparam.getline(blabla,100) ;
fichparam >> type_objet ; fichparam.getline(blabla,100) ;
fichparam.getline(nom_config,100) ;
fichparam >> nr_a ; fichparam.getline(blabla,100) ;
fichparam >> nt_a ; fichparam.getline(blabla,100) ;
fichparam >> np_a ; fichparam.getline(blabla,100) ;
fichparam >> rayon_a ; fichparam.getline(blabla,100) ;
fichparam.close() ;
bool black_hole = (type_objet == 1) ;
bool graphics = (graphics_i == 1) ;
cout << "Name of the file containing the binary system :"
<< endl << nom_config << endl ;
// Pointers on global objects (independent of BH or NS)
Mg3d* grille_un ;
Mg3d* grille_deux ;
Map* map_un ;
Map* map_deux ;
Cmp* p_nn1 ;
Cmp* p_nn2 ;
Tenseur* p_shift1 ;
Tenseur* p_shift2 ;
FILE* fich = fopen(nom_config, "r") ;
if (fich == 0x0) {
cout << "Problem in opening the file " << nom_config << " !" << endl ;
abort() ;
}
//*******************************************************************
// Reading of binary black hole data
//*******************************************************************
if (black_hole) {
grille_un = new Mg3d(fich) ;
grille_deux = grille_un ;
Map_af* map_un_af = new Map_af(*grille_un, fich) ;
Map_af* map_deux_af = new Map_af(*grille_deux, fich) ;
map_un = map_un_af ;
map_deux = map_deux_af ;
Bhole hole_un (*map_un_af, fich) ;
Bhole hole_deux (*map_deux_af, fich) ;
fclose(fich) ;
assert (hole_un.get_omega() == hole_deux.get_omega()) ;
cout << "Multi-grid read in file : " << endl << *grille_un << endl ;
// arrete() ;
cout << "Mapping 1 read in file : " << endl << *map_un << endl ;
cout << "Mapping 2 read in file : " << endl << *map_deux << endl ;
// arrete() ;
// Construction of the binary system
// ---------------------------------
Bhole_binaire systeme (*map_un_af, *map_deux_af) ;
systeme.set(1) = hole_un ;
systeme.set(2) = hole_deux ;
systeme.set_omega(hole_un.get_omega()) ;
// On initialise les grandeurs derivees :
systeme.set(1).fait_n_comp (systeme(2)) ;
systeme.set(1).fait_psi_comp (systeme(2)) ;
systeme.set(2).fait_n_comp (systeme(1)) ;
systeme.set(2).fait_psi_comp (systeme(1)) ;
systeme.fait_decouple() ;
systeme.fait_tkij() ;
// Initialisation of member data
// -----------------------------
// Unit of length:
double aa = systeme(1).get_rayon() ;
double aa2 = systeme(2).get_rayon() ;
double omega = systeme.get_omega() * aa ;
double dist = ( map_un->get_ori_x() - map_deux->get_ori_x() ) / aa ;
cout << endl << "Binary system read in file : " << endl ;
cout << "---------------------------- " << endl ;
cout << " Separation d/a : " << dist << endl ;
cout << " Omega : " << omega << " / a" << endl ;
cout << " Size of black hole 2 : " << aa2 / aa << " a" << endl ;
cout << " ADM mass : " << systeme.adm_systeme() / aa
<< " a" << endl ;
cout << " Komar-lile mass : " << systeme.komar_systeme() / aa
<< " a" << endl ;
cout << " Angular momentum : " << systeme.moment_systeme_inf()
/ (aa*aa) << " a^2" << endl ;
cout << " Proper distance between the two throats : "
<< systeme.distance_propre() / aa << " a" << endl ;
cout << " Area of black hole 1 apparent horizon : " <<
systeme(1).area() / (aa*aa) << " a^2" << endl ;
cout << " Area of black hole 2 apparent horizon : " <<
systeme(2).area() / (aa*aa) << " a^2" << endl ;
//------------------------------------------------------
// Lapse function
//------------------------------------------------------
// nn1 defined as a Tenseur copy of systeme(1).n_auto
// (constructed by the copy constructor of class Tenseur)
// Tenseur nn1 = systeme(1).get_n_auto() ;
// *nn1 is a copy of the Cmp systeme(1).n_auto.c[0]
p_nn1 = new Cmp( systeme(1).get_n_auto()() ) ;
// cout << "N_1 : " << endl << *nn1 << endl ;
// nn2 defined as a reference to the Cmp systeme(2).n_auto.c[0]
p_nn2 = new Cmp( systeme(2).get_n_auto()() ) ;
// Shift vector
p_shift1 = new Tenseur( systeme(1).get_shift_auto() ) ;
p_shift2 = new Tenseur( systeme(2).get_shift_auto() ) ;
} // End of the black hole case
//*******************************************************************
// Reading of binary neutron star data
//*******************************************************************
else{
int mer ;
fread_be(&mer, sizeof(int), 1, fich) ; // step
grille_un = new Mg3d(fich) ;
map_un = new Map_et(*grille_un, fich) ;
Eos* peos_un = Eos::eos_from_file(fich) ;
grille_deux = new Mg3d(fich) ;
map_deux = new Map_et(*grille_deux, fich) ;
Eos* peos_deux = Eos::eos_from_file(fich) ;
Binaire star(*map_un, *peos_un, *map_deux, *peos_deux, fich) ;
fclose(fich) ;
bool relativistic = star(1).is_relativistic() ;
cout << endl << "Grid on which star 1 is defined : " << endl ;
cout << "=============================== " << endl ;
cout << *((star(1).get_mp()).get_mg()) << endl ;
cout << endl << "Grid on which star 2 is defined : " << endl ;
cout << "=============================== " << endl ;
cout << *((star(2).get_mp()).get_mg()) << endl ;
cout << endl << "Mapping on which star 1 is defined : " << endl ;
cout << "================================== " << endl ;
cout << star(1).get_mp() << endl ;
cout << endl << "Mapping on which star 2 is defined : " << endl ;
cout << "================================== " << endl ;
cout << star(2).get_mp() << endl ;
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric(star(3-i)) ;
}
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric_der_comp(star(3-i)) ;
}
for (int i=1; i<=2; i++) {
(star.set(i)).equation_of_state() ;
(star.set(i)).kinematics(star.get_omega(), star.get_x_axe()) ;
(star.set(i)).fait_d_psi() ;
(star.set(i)).hydro_euler() ;
}
cout << "Binary system read in file : " << endl ;
cout << star << endl ;
cout << "ADM mass [M_sol] : " << star.mass_adm() / msol << endl ;
cout << "Total energy [M_sol c^2] : "
<< star.total_ener() / msol << endl ;
cout << "Total angular momentum [M_sol c km] : "
<< (star.angu_mom())(2) / msol / km << endl ;
if (!relativistic) {
cout << "Relative error on the virial theorem : "
<< star.virial() << endl ;
}
cout << "Relative error in the Hamiltonian constraint : " << endl ;
cout << star.ham_constr() << endl ;
cout << "Relative error in the momentum constraint : " << endl ;
cout << " X component : " << star.mom_constr()(0) << endl ;
cout << " Y component : " << star.mom_constr()(1) << endl ;
cout << " Z component : " << star.mom_constr()(2) << endl ;
star.display_poly(cout) ; // Reduced quantities for polytropic EOS
//==============================================================
// Drawings
//==============================================================
// int nzdes1 = star(1).get_nzet() ;
double ori_x1 = star(1).get_mp().get_ori_x() ;
double ori_x2 = star(2).get_mp().get_ori_x() ;
double xdes_min = - 1.5 * star(1).ray_eq_pi() + ori_x1 ;
xdes_min += 0.2 * xdes_min ;
double xdes_max = 1.5 * star(2).ray_eq_pi() + ori_x2 ;
xdes_max += 0.2 * fabs(xdes_min) ;
double ydes_min1 = - 4. * star(1).ray_eq_pis2() ;
double ydes_min2 = - 4. * star(2).ray_eq_pis2() ;
double ydes_min = (ydes_min1 < ydes_min2) ? ydes_min1 : ydes_min2 ;
double ydes_max1 = 4. * star(1).ray_eq_pis2() ;
double ydes_max2 = 4. * star(2).ray_eq_pis2() ;
double ydes_max = (ydes_max1 > ydes_max2) ? ydes_max1 : ydes_max2 ;
double zdes_min1 = - 4. * star(1).ray_pole() ;
double zdes_min2 = - 4. * star(2).ray_pole() ;
double zdes_min = (zdes_min1 < zdes_min2) ? zdes_min1 : zdes_min2 ;
double zdes_max1 = 4. * star(1).ray_pole() ;
double zdes_max2 = 4. * star(2).ray_pole() ;
double zdes_max = (zdes_max1 > zdes_max2) ? zdes_max1 : zdes_max2 ;
Cmp surf1 = star(1).get_ent()() ;
Cmp surf1_ext(*map_un) ;
surf1_ext = - 0.2 * surf1(0, 0, 0, 0) ;
surf1_ext.annule(0, star(1).get_nzet()-1) ;
surf1.annule(star(1).get_nzet(), grille_un->get_nzone()-1) ;
surf1 = surf1 + surf1_ext ;
surf1 = raccord_c1(surf1, star(1).get_nzet()) ;
Cmp surf2 = star(2).get_ent()() ;
Cmp surf2_ext(*map_deux) ;
surf2_ext = - 0.2 * surf2(0, 0, 0, 0) ;
surf2_ext.annule(0, star(2).get_nzet()-1) ;
surf2.annule(star(2).get_nzet(), grille_deux->get_nzone()-1) ;
surf2 = surf2 + surf2_ext ;
surf2 = raccord_c1(surf2, star(2).get_nzet()) ;
Tenseur logn1 = - star(1).get_logn_auto() ;
Tenseur logn2 = - star(2).get_logn_auto() ;
if (graphics) {
des_coupe_bin_y(logn1(), logn2(), 0,
xdes_min, xdes_max, zdes_min, zdes_max,
"ln(N) (y=0)", &surf1, &surf2) ;
des_coupe_bin_z(logn1(), logn2(), 0,
xdes_min, xdes_max, ydes_min, ydes_max,
"ln(N) (z=0)", &surf1, &surf2) ;
des_coupe_z(star(1).get_ent()(), 0., 1,
"Enthalpy (z=0)", &surf1, 1.2) ;
des_coupe_y(star(1).get_ent()(), 0., 1,
"Enthalpy (y=0)", &surf1, 1.2) ;
}
// *nn1 is a copy of the Cmp systeme(1).n_auto.c[0]
p_nn1 = new Cmp( exp( star(1). get_logn_auto()() ) ) ;
p_nn1->std_base_scal() ;
// cout << "N_1 : " << endl << *nn1 << endl ;
// nn2 defined as a reference to the Cmp systeme(2).n_auto.c[0]
p_nn2 = new Cmp( exp( star(2). get_logn_auto()() ) ) ;
p_nn2->std_base_scal() ;
// Shift vector
p_shift1 = new Tenseur( star(1).get_shift_auto() ) ;
p_shift2 = new Tenseur( star(2).get_shift_auto() ) ;
delete peos_un ;
delete peos_deux ;
} // End of neutron star case
//***************************************************************************
// Begin of the asymptotic study
//***************************************************************************
/*
double z0 = 0 ; // cut by the plane z=z0
double x_min = - 100 ;
double x_max = + 100 ;
double y_min = - 50 ;
double y_max = + 50 ;
des_coupe_bin_z(nn1, nn2, z0, x_min, x_max, y_min, y_max,
"Lapse function N") ;
// Asymptotic behavior of N_1 :
Valeur** nn1_asymp = nn2.asymptot(3,1) ;
// Value (on the angular grid) containing the coef of 1/r^0
Valeur& nn1_0 = *(nn1_asymp[0]) ;
// Value (on the angular grid) containing the coef of 1/r
Valeur& nn1_1 = *(nn1_asymp[1]) ;
// Value (on the angular grid) containing the coef of 1/r^2
Valeur& nn1_2 = *(nn1_asymp[2]) ;
// Value (on the angular grid) containing the coef of 1/r^3
Valeur& nn1_3 = *(nn1_asymp[3]) ;
// Computation of spectral expansions
nn1_0.coef() ;
cout << "Spectral coefficients of nn1_0 : " << endl ;
nn1_0.affiche_seuil(cout,0,4,1e-3) ;
nn1_1.coef() ;
cout << "Spectral coefficients of nn1_1 : " << endl ;
nn1_1.affiche_seuil(cout,0,4,1e-3) ;
nn1_2.coef() ;
cout << "Spectral coefficients of nn1_2 : " << endl ;
nn1_2.affiche_seuil(cout,0,4,1e-3) ;
nn1_3.coef() ;
cout << "Spectral coefficients of nn1_3 : " << endl ;
nn1_3.affiche_seuil(cout,0,4,1e-5) ;
*/
//----------------------------------------------
// Grid centered on the system "center of mass"
//----------------------------------------------
int nz_a = 2 ; // number of domains
Mg3d mg(nz_a, nr_a, nt_a, np_a, grille_un->get_type_t(),
grille_un->get_type_p(), true) ;
double bornes_a[3] ;
bornes_a[0] = 0 ;
bornes_a[1] = rayon_a ;
// bornes_a[2] = 2*rayon_a ;
// bornes_a[3] = 4*rayon_a ;
// bornes_a[4] = 8*rayon_a ;
bornes_a[2] = __infinity ;
Map_af mp(mg, bornes_a) ;
cout << "Mapping on the \"centered\" grid : " << endl
<< mp << endl ;
// Evaluation of the lapse on the mapping mp
Cmp nn1(mp) ;
Cmp nn2(mp) ;
nn1.import( *(p_nn1) ) ;
nn2.import( *(p_nn2) ) ;
nn1.std_base_scal() ;
nn2.std_base_scal() ;
Cmp nn(mp) ;
if (black_hole) { // N = N_1 + N_2 for black holes
nn = nn1 + nn2 ;
}
else{ // ln(N) = ln(N_1) + ln(N_2) for neutron stars
nn = nn1*nn2 ;
}
// The lapse is set to 1 in the inner domain
nn.annule(0) ;
Cmp tmp(mp) ;
tmp = 1 ;
tmp.annule(1) ;
nn = nn + tmp ;
// Logarithm of the lapse
Cmp logn = log( nn ) ;
logn.std_base_scal() ;
// Evaluation of the shift vector on the mapping mp
// Ensures that the components of shift1 and shift2 are
// defined with respect to the same triad (this was
// true for binary NS but not for BH)
p_shift1->change_triad( mp.get_bvect_cart() ) ;
p_shift2->change_triad( mp.get_bvect_cart() ) ;
Tenseur shift1(mp, 1, CON, mp.get_bvect_cart()) ;
Tenseur shift2(mp, 1, CON, mp.get_bvect_cart()) ;
shift1.set_etat_qcq() ;
shift2.set_etat_qcq() ;
for (int i=0; i<3; i++) {
(shift1.set(i)).import( (*p_shift1)(i) ) ;
(shift2.set(i)).import( (*p_shift2)(i) ) ;
}
// Spectral bases for the x-component and y-component
for (int i=0; i<2; i++) {
shift1.set(i).va.set_base_r(0,R_CHEBPIM_P) ;
shift1.set(i).va.set_base_r(1,R_CHEBU) ;
shift1.set(i).va.set_base_t(T_COSSIN_CP) ;
shift1.set(i).va.set_base_p(P_COSSIN) ;
shift2.set(i).va.set_base_r(0,R_CHEBPIM_P) ;
shift2.set(i).va.set_base_r(1,R_CHEBU) ;
shift2.set(i).va.set_base_t(T_COSSIN_CP) ;
shift2.set(i).va.set_base_p(P_COSSIN) ;
}
// Spectral bases for the z-component
shift1.set(2).va.set_base_r(0,R_CHEBPIM_I) ;
shift1.set(2).va.set_base_r(1,R_CHEBU) ;
shift1.set(2).va.set_base_t(T_COSSIN_CI) ;
shift1.set(2).va.set_base_p(P_COSSIN) ;
shift2.set(2).va.set_base_r(0,R_CHEBPIM_I) ;
shift2.set(2).va.set_base_r(1,R_CHEBU) ;
shift2.set(2).va.set_base_t(T_COSSIN_CI) ;
shift2.set(2).va.set_base_p(P_COSSIN) ;
Tenseur shift = shift1 + shift2 ;
//--------------------------------------------
// Graphical outputs
//-------------------------------------------
if (graphics) {
des_coupe_z(nn1, 0., 1, "nn1") ;
des_coupe_vect_z(shift, 0., -3., 1., 1,"shift vector") ;
}
Cmp shift_x = shift.set(0) ;
Cmp shift_y = shift.set(1) ;
Cmp shift_z = shift.set(2) ;
if (graphics) {
des_coupe_z(shift_y, 0., 1, "shift_y") ;
des_coupe_z(shift_x, 0., 1, "shift_x") ;
des_coupe_z(shift_z, 0., 1, "shift_z") ;
}
cout << "msol" << 4.62/msol << endl ;
ofstream fichresu("resu_asymptot.d") ;
fichresu << "nom de fichier :" << nom_config << endl
<< "nr_a : number of points in r for the centered grid = "
<< nr_a << endl
<<"nt_a : number of points in theta for the center grid = "
<< nt_a << endl
<< "np_a : number of points in phi for the centered grid = "
<< np_a << endl
<<"rayon_a (10 km) : inner radius of the last domain = "
<< rayon_a << endl <<endl << endl ;
asymptot(nn, "N", graphics, fichresu) ;
asymptot(logn, "logn", graphics, fichresu) ;
asymptot(shift_x, "shift_x", graphics, fichresu) ;
asymptot(shift_y, "shift_y", graphics, fichresu) ;
asymptot(shift_z, "shift_z", graphics, fichresu) ;
fichresu.close() ;
// Freeing memory
// delete [] nn1_asymp ;
// delete [] nn_asymp ;
delete p_shift1 ;
delete p_shift2 ;
delete p_nn1 ;
delete p_nn2 ;
delete map_un ;
delete map_deux ;
delete grille_un ;
if (!black_hole) delete grille_deux ;
//home/francois/EUNetwork/Meudon/Data/BinNS/GR/irrotation/G18vs18_g2_ir_M.d
return EXIT_SUCCESS ;
}
|