1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
|
/*
* Test program for solving Darwin-like binaries
* Fixing the orbital separation and the central value of the star
* The case of the identical star binary
*/
/*
* Copyright (c) 1999-2001 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char test_darwin_C[] = "$Header: /cvsroot/Lorene/Codes/Bin_star/test_darwin.C,v 1.3 2014/10/06 15:09:43 j_novak Exp $" ;
/*
* $Id: test_darwin.C,v 1.3 2014/10/06 15:09:43 j_novak Exp $
* $Log: test_darwin.C,v $
* Revision 1.3 2014/10/06 15:09:43 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.2 2003/01/09 11:07:49 j_novak
* headcpp.h is now compliant with C++ norm.
* The include files have been ordered, as well as the local_settings_linux
*
* Revision 1.1.1.1 2001/11/20 15:19:31 e_gourgoulhon
* LORENE
*
* Revision 1.3 1999/12/24 12:15:51 keisuke
* Minor changes.
*
* Revision 1.2 1999/12/23 16:41:11 keisuke
* Change of the criterion for the convergence.
*
* Revision 1.1 1999/12/23 13:44:55 keisuke
* Initial revision
*
*
* $Header: /cvsroot/Lorene/Codes/Bin_star/test_darwin.C,v 1.3 2014/10/06 15:09:43 j_novak Exp $
*
*/
// version of 09.12.1999
// version of 16.12.1999
// version of 22.12.1999
// version of 23.12.1999
// headers C
#include <cstdlib>
#include <cmath>
// headers Lorene
#include "type_parite.h"
#include "cmp.h"
#include "utilitaires.h"
#include "graphique.h"
#include "param.h"
// Local prototypes:
Cmp eos1_local(const Cmp& ent, int nzet, double n_index) ;
Cmp eos2_local(const Cmp& ent, int nzet, double n_index) ;
double funct_zero_ent(double r, const Param& par) ;
//**********************************************************************
void main(){
// Identification of all the subroutines called by the code :
system("ident test_darwin > identif_darwin.d") ;
//-----------------------------------------------------------------------
// Input from file "part.d"
//-----------------------------------------------------------------------
int type_t, type_p, nt, np, nz, l;
char blabla[80];
double n_index, R_sep ;
//----------------------------------------------------
// Declear the polytropic index
//----------------------------------------------------
cout << "Input the polytropic index: " ;
cin >> n_index ;
cout << "Input the orbital separation: " ;
cin >> R_sep ;
ifstream fich("part.d") ;
fich >> nt; fich.getline(blabla, 80);
fich >> np; fich.getline(blabla, 80);
fich >> nz; fich.getline(blabla, 80);
cout << "nb de points en phi : np = " << np << endl;
cout << "nb de points en theta : nt = " << nt << endl;
cout << "nb de zones : nz = " << nz << endl;
// initialisation des tableaux decrivant chaque zone
int* nr = new int[nz];
int* nt_tab = new int[nz];
int* np_tab = new int[nz];
double* bornes = new double[nz+1];
int* type_r = new int[nz];
fich >> bornes[nz] ; fich.getline(blabla, 80) ;
for (l=0; l<nz; l++) {
fich >> nr[l];
fich >> bornes[l];
fich >> type_r[l]; fich.getline(blabla, 80);
np_tab[l] = np ;
nt_tab[l] = nt ;
}
if (type_r[nz-1]==UNSURR) bornes[nz] = 1./bornes[nz] ;
fich.close();
//-----------------------------------------------------------------------
// Construction of 2 multi-grids
//-----------------------------------------------------------------------
type_t = SYM ;
type_p = NONSYM ;
const Mg3d mg1(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;
const Mg3d mg2(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;
//-----------------------------------------------------------------------
// Construction of 2 mappings
//-----------------------------------------------------------------------
Map_af mp1(mg1, bornes) ;
double xo1 = - R_sep/2 ;
mp1.set_ori(xo1, 0, 0) ;
Map_af mp2(mg2, bornes) ;
double xo2 = R_sep/2 ;
mp2.set_ori(xo2, 0, 0) ;
mp2.set_rot_phi(M_PI) ;
cout << "Mapping mp1 : " << mp1 << endl ;
cout << "Mapping mp2 : " << mp2 << endl ;
//-----------------------------------------------------------------------
// Construction of Cmp's
//-----------------------------------------------------------------------
//-------------------------------------
// Construction of two spherical stars
//-------------------------------------
Cmp rho1(mp1) ;
const Coord& x1 = mp1.x ;
const Coord& y1 = mp1.y ;
rho1 = 1 ;
rho1.annule(nz-1) ;
rho1.set_dzpuis(4) ;
rho1.std_base_scal() ;
Cmp rho2(mp2) ;
const Coord& x2 = mp2.x ;
const Coord& y2 = mp2.y ;
rho2 = 1 ;
rho2.annule(nz-1) ;
rho2.set_dzpuis(4) ;
rho2.std_base_scal() ;
Cmp pot_star1(mp1) ;
Cmp rho_prev_star1(mp1) ;
Cmp ent_star1(mp1) ;
double ent_star1_c = 1 ;
double ent_star1_s = 0 ;
Cmp pot_star2(mp2) ;
Cmp rho_prev_star2(mp2) ;
Cmp ent_star2(mp2) ;
double ent_star2_c = 1 ;
double ent_star2_s = 0 ;
int nr_star1 = mg1.get_nr(nz-2) ;
int nr_star2 = mg2.get_nr(nz-2) ;
// Start the do loop for constructing spherical stars
//----------------------------------------------------
// For star 1
//------------
do {
// Solving the Poisson equation
//------------------------------
pot_star1 = - rho1.poisson() ;
// Obtaining "lambda" in order to rescale the mapping
//----------------------------------------------------
double pot_star1_c = pot_star1(0,0,0,0) ;
double pot_star1_s = pot_star1(nz-2,0,0,nr_star1-1) ;
double lambda2_star1 = (ent_star1_s - ent_star1_c) /
(pot_star1_s - pot_star1_c) ;
cout << "lambda2_star1 : " << lambda2_star1 << endl ;
// New potential after rescaling
//-------------------------------
pot_star1 = lambda2_star1 * pot_star1 ;
pot_star1_c *= lambda2_star1 ;
// First integral of motion
// -------------------------
ent_star1 = ent_star1_c + pot_star1 - pot_star1_c ;
// enthalpy is just the same as the Lane-Emden function Theta
// Rescale of the mapping
//------------------------
mp1.homothetie( sqrt(lambda2_star1) ) ;
// EOS : rho = rho(H)
//--------------------
rho_prev_star1 = rho1 ;
rho1 = pow(abs(ent_star1), n_index) ;
rho1.annule(nz-1) ;
rho1.set_dzpuis(4) ;
rho1.std_base_scal() ;
cout << max(abs(rho1 - rho_prev_star1)) << endl;
cout << "Maximum difference between rho1 and rho1_prev : "
<< max(diffrel(rho1, rho_prev_star1)) << endl ;
} while(max(diffrel(rho1, rho_prev_star1)) > 1.e-6) ;
// For star 2
//------------
do {
// Solving the Poisson equation
//------------------------------
pot_star2 = - rho2.poisson() ;
// Obtaining "lambda" in order to rescale the mapping
//----------------------------------------------------
double pot_star2_c = pot_star2(0,0,0,0) ;
double pot_star2_s = pot_star2(nz-2,0,0,nr_star2-1) ;
double lambda2_star2 = (ent_star2_s - ent_star2_c) /
(pot_star2_s - pot_star2_c) ;
cout << "lambda2_star2 : " << lambda2_star2 << endl ;
// New potential after rescaling
//-------------------------------
pot_star2 = lambda2_star2 * pot_star2 ;
pot_star2_c *= lambda2_star2 ;
// First integral of motion
// -------------------------
ent_star2 = ent_star2_c + pot_star2 - pot_star2_c ;
// enthalpy is just the same as the Lane-Emden function Theta
// Rescale of the mapping
//------------------------
mp2.homothetie( sqrt(lambda2_star2) ) ;
// EOS : rho = rho(H)
//--------------------
rho_prev_star2 = rho2 ;
rho2 = pow(abs(ent_star2), n_index) ;
rho2.annule(nz-1) ;
rho2.set_dzpuis(4) ;
rho2.std_base_scal() ;
cout << max(abs(rho2 - rho_prev_star2)) << endl;
cout << "Maximum difference between rho2 and rho2_prev : "
<< max(diffrel(rho2, rho_prev_star2)) << endl ;
} while(max(diffrel(rho2, rho_prev_star2)) > 1.e-6) ;
arrete() ;
// Masses of stars
//-----------------
double mass1 = rho1.integrale() ;
double mass2 = rho2.integrale() ;
//-----------------------------------------------
// Construction of the Darwin-like binary system
//-----------------------------------------------
int nr1_s = mg1.get_nr(nz-2) ;
int nr2_s = mg2.get_nr(nz-2) ;
Cmp pot11(mp1) ;
Cmp pot12(mp2) ;
Cmp pot22(mp2) ;
Cmp pot21(mp1) ;
pot11.std_base_scal() ;
pot22.std_base_scal() ;
pot12.std_base_scal() ;
pot21.std_base_scal() ;
Cmp rho1_prev(mp1) ;
Cmp rho2_prev(mp2) ;
Cmp rot1(mp1) ;
Cmp rot2(mp2) ;
Cmp ent1(mp1) ;
Cmp ent2(mp2) ;
double ent1_c = 1 ;
double ent1_s = 0 ;
double ent2_c = 1 ;
double ent2_s = 0 ;
Cmp dpot21(mp1) ; // x derivative of pot21
Cmp disp1(mp1) ; // Cmp description of x
Cmp rho1_dpot21(mp1) ; // multiply rho1 by dpot21
Cmp rho1_disp1(mp1) ; // multiply rho1 by disp1
Cmp dpot12(mp2) ;
Cmp disp2(mp2) ;
Cmp rho2_dpot12(mp2) ;
Cmp rho2_disp2(mp2) ;
cout << "Mass of star 1 = " << mass1 << endl ;
cout << "Mass of star 2 = " << mass2 << endl ;
double mass1_prev ;
double rel_mass1 ;
double mass2_prev ;
double rel_mass2 ;
double omega2_1 ;
double omega2_prev1 ;
double rel_omega1 ;
omega2_1 = (mass1 + mass2) / (M_PI * R_sep * R_sep * R_sep) ;
double omega2_2 ;
double omega2_prev2 ;
double rel_omega2 ;
omega2_2 = (mass1 + mass2) / (M_PI * R_sep * R_sep * R_sep) ;
cout << "omega^2 = " << omega2_1 << endl ;
double cc1 ;
double cc1_prev ;
double rel_cc1 ;
cc1 = 0 ;
double cc2 ;
double cc2_prev ;
double rel_cc2 ;
cc2 = 0 ;
double r1_x ;
double r2_x ;
arrete() ;
do {
// Solving the Poisson equation
//------------------------------
pot11 = - rho1.poisson() ;
pot22 = - rho2.poisson() ;
pot12.import(nz-1, pot11) ;
pot21.import(nz-1, pot22) ;
// Angular velocity
//------------------
// For star 1
omega2_prev1 = omega2_1 ;
dpot21 = pot21.dsdx() ;
disp1 = x1 ;
rho1_dpot21 = rho1 * dpot21 ;
rho1_dpot21.annule(nz-1) ;
rho1_dpot21.set_dzpuis(4) ;
rho1_dpot21.std_base_scal() ;
rho1_disp1 = rho1 * disp1 ;
rho1_disp1.annule(nz-1) ;
rho1_disp1.set_dzpuis(4) ;
rho1_disp1.std_base_scal() ;
double integ_r1_dp21 = rho1_dpot21.integrale() ;
double integ_r1_dis1 = rho1_disp1.integrale() ;
omega2_1 = 8. * integ_r1_dp21 / (mass1 * R_sep - 2. * integ_r1_dis1) ;
cout << "Omega^2/(pi G rho_c) for star 1 : " << omega2_1 << endl ;
rel_omega1 = fabs(1. - omega2_prev1 / omega2_1) ;
cout << "Relative error in Omega^2 for star 1 : " << rel_omega1
<< endl ;
// For star 2
omega2_prev2 = omega2_2 ;
dpot12 = pot12.dsdx() ;
disp2 = x2 ;
rho2_dpot12 = rho2 * dpot12 ;
rho2_dpot12.annule(nz-1) ;
rho2_dpot12.set_dzpuis(4) ;
rho2_dpot12.std_base_scal() ;
rho2_disp2 = rho2 * disp2 ;
rho2_disp2.annule(nz-1) ;
rho2_disp2.set_dzpuis(4) ;
rho2_disp2.std_base_scal() ;
double integ_r2_dp12 = rho2_dpot12.integrale() ;
double integ_r2_dis2 = rho2_disp2.integrale() ;
omega2_2 = 8. * integ_r2_dp12 / (mass2 * R_sep - 2. * integ_r2_dis2) ;
cout << "Omega^2/(pi G rho_c) for star 2 : " << omega2_2 << endl ;
rel_omega2 = fabs(1. - omega2_prev2 / omega2_2) ;
cout << "Relative error in Omega^2 for star 2 : " << rel_omega2
<< endl ;
// arrete() ;
// Obtaining "lambda" for each star in order to rescale mappings
//---------------------------------------------------------------
double pot11_c = pot11(0,0,0,0) ;
double pot22_c = pot22(0,0,0,0) ;
double pot21_c = pot21(0,0,0,0) ;
double pot12_c = pot12(0,0,0,0) ;
r1_x = mp1.val_r(nz-2,1.,M_PI/2,0) ;
r2_x = mp2.val_r(nz-2,1.,M_PI/2,0) ;
cout << "Radius x of star 1 : " << r1_x << endl
<< "Radius x of star 2 : " << r2_x << endl ;
double pot11_sx = pot11.val_point(r1_x,M_PI/2,0) ;
double pot21_sx = pot21.val_point(r1_x,M_PI/2,0) ;
double pot22_sx = pot22.val_point(r2_x,M_PI/2,0) ;
double pot12_sx = pot12.val_point(r2_x,M_PI/2,0) ;
// lambda2
//---------
double lambda2_1 = (ent1_c - ent1_s - pot21_c + pot21_sx +
0.125 * omega2_1 * r1_x * (r1_x - R_sep)) /
(pot11_c - pot11_sx) ;
double lambda2_2 = (ent2_c - ent2_s - pot12_c + pot12_sx +
0.125 * omega2_2 * r2_x * (r2_x - R_sep)) /
(pot22_c - pot22_sx) ;
cout << "lambda2 for star 1 : " << lambda2_1 << endl
<< "lambda2 for star 2 : " << lambda2_2 << endl ;
// New potentials after rescaling
//--------------------------------
pot11 = lambda2_1 * pot11 ;
pot11_c = lambda2_1 * pot11_c ;
pot11_sx = lambda2_1 * pot11_sx ;
pot22 = lambda2_2 * pot22 ;
pot22_c = lambda2_2 * pot22_c ;
pot22_sx = lambda2_2 * pot22_sx ;
// Integration constant
//----------------------
cc1_prev = cc1 ;
cc1 = ent1_c - pot11_c - pot21_c - omega2_1 * R_sep * R_sep /32. ;
cc2_prev = cc2 ;
cc2 = ent2_c - pot22_c - pot12_c - omega2_2 * R_sep * R_sep /32. ;
cout << "Integration constant for star 1 : " << cc1 << endl
<< "Integration constant for star 2 : " << cc2 << endl ;
rel_cc1 = fabs(1. - cc1_prev / cc1) ;
rel_cc2 = fabs(1. - cc2_prev / cc2) ;
cout << "Relative error in cc1 : " << rel_cc1 << endl
<< "Relative error in cc2 : " << rel_cc2 << endl ;
// arrete() ;
// First integration of motion
//-----------------------------
rot1 = 0.125 * omega2_1 * (0.25 * R_sep * R_sep - R_sep * x1 +
x1 * x1 + y1 * y1) ;
rot1.annule(nz-1) ;
rot2 = 0.125 * omega2_2 * (0.25 * R_sep * R_sep - R_sep * x2 +
x2 * x2 + y2 * y2) ;
rot2.annule(nz-1) ;
ent1 = pot11 + pot21 + rot1 + cc1 ;
ent1.annule(nz-1) ;
ent2 = pot22 + pot12 + rot2 + cc2 ;
ent2.annule(nz-1) ;
// Rescaling of mappings
//-----------------------
mp1.homothetie( sqrt(lambda2_1) ) ;
mp2.homothetie( sqrt(lambda2_2) ) ;
rho1_prev = rho1 ;
rho2_prev = rho2 ;
// EOS : rho = rho(H)
//--------------------
rho1 = eos1_local(ent1, nz-1, n_index) ;
rho2 = eos2_local(ent2, nz-1, n_index) ;
rho1.set_dzpuis(4) ;
rho2.set_dzpuis(4) ;
rho1.std_base_scal() ;
rho2.std_base_scal() ;
cout << max(abs(rho1 - rho1_prev)) << endl
<< max(abs(rho2 - rho2_prev)) << endl ;
// Masses of stars
//-----------------
// For star 1
mass1_prev = mass1 ;
mass1 = rho1.integrale() ;
cout << "Mass/rho_c for star 1 : " << mass1 << endl ;
rel_mass1 = fabs(1. - mass1_prev / mass1) ;
cout << "Relative error in Mass for star 1 : " << rel_mass1 << endl ;
// For star 2
mass2_prev = mass2 ;
mass2 = rho2.integrale() ;
cout << "Mass/rho_c for star 2 : " << mass2 << endl ;
rel_mass2 = fabs(1. - mass2_prev / mass2) ;
cout << "Relative error in Mass for star 2 : " << rel_mass2 << endl ;
cout << "Maximum difference between rho1 and rho1_prev : "
<< max(diffrel(rho1, rho1_prev)) << endl
<< "Maximum difference between rho2 and rho2_prev : "
<< max(diffrel(rho2, rho2_prev)) << endl ;
// arrete() ;
} while(max(diffrel(rho1, rho1_prev)) > 1.e-4) ;
cout << "Coef of rho1 : " << endl ;
rho1.affiche_seuil(cout) ;
cout << "Coef of pot11 : " << endl ;
pot11.affiche_seuil(cout) ;
cout << "Value of pot11 at the origin : " << pot11(0,0,0,0) << endl ;
cout << "Value of pot11 at the surface (r=ray) : "
<< pot11(nz-1,0,0,0) << endl ;
cout << "Value of pot11 at the surface (r=ray) : "
<< pot11(nz-2,0,0,nr1_s-1) << endl ;
arrete() ;
cout << "Coef of rho2 : " << endl ;
rho2.affiche_seuil(cout) ;
cout << "Coef of pot22 : " << endl ;
pot22.affiche_seuil(cout) ;
cout << "Value of pot22 at the origin : " << pot22(0,0,0,0) << endl ;
cout << "Value of pot22 at the surface (r=ray) : "
<< pot22(nz-1,0,0,0) << endl ;
cout << "Value of pot22 at the surface (r=ray) : "
<< pot22(nz-2,0,0,nr2_s-1) << endl ;
arrete() ;
// Checking whether or not the potentials satisfy their Poisson equations
//------------------------------------------------------------------------
Cmp lap1 = - pot11.laplacien() ;
cout << "max( |lap(pot11) - rho1| ) " << max(abs(lap1 - rho1)) << endl ;
cout << "relative error for star 1 : " << diffrel(lap1, rho1) << endl ;
Cmp lap2 = - pot22.laplacien() ;
cout << "max( |lap(pot22) - rho2| ) " << max(abs(lap2 - rho2)) << endl ;
cout << "relative error for star 2: " << diffrel(lap2, rho2) << endl ;
// Searching the radius to the x-axis direction for star 1
//---------------------------------------------------------
Param par_funct_zero_x ;
par_funct_zero_x.add_cmp(ent1) ;
double phi_search_x = 0 ;
double theta_search_x = M_PI/2 ;
par_funct_zero_x.add_double(theta_search_x, 0) ;
par_funct_zero_x.add_double(phi_search_x, 1) ;
double r_min_search_x = 0 ;
double r_max_search_x = r1_x ;
double precis_x = 1e-10 ;
int nitermax_x = 100 ;
int niter_x ;
double radius_x = zerosec(funct_zero_ent, par_funct_zero_x,
r_min_search_x, r_max_search_x, precis_x,
nitermax_x, niter_x) ;
cout << "Radius of star 1 in the x-axis direction : " << radius_x
<< endl ;
// Searching the radius opposite to the x-axis direction for star 1
//------------------------------------------------------------------
Param par_funct_zero_xopp ;
par_funct_zero_xopp.add_cmp(ent1) ;
double phi_search_xopp = - M_PI ;
double theta_search_xopp = M_PI/2 ;
par_funct_zero_xopp.add_double(theta_search_xopp, 0) ;
par_funct_zero_xopp.add_double(phi_search_xopp, 1) ;
double r_min_search_xopp = 0 ;
double r_max_search_xopp = r1_x ;
double precis_xopp = 1e-10 ;
int nitermax_xopp = 100 ;
int niter_xopp ;
double radius_xopp = zerosec(funct_zero_ent, par_funct_zero_xopp,
r_min_search_xopp, r_max_search_xopp, precis_xopp,
nitermax_xopp, niter_xopp) ;
cout << "Radius of star 1 opposite to the x-axis direction : "
<< radius_xopp << endl ;
// Searching the radius to the y-axis direction for star 1
//---------------------------------------------------------
Param par_funct_zero_y ;
par_funct_zero_y.add_cmp(ent1) ;
double phi_search_y = M_PI/2 ;
double theta_search_y = M_PI/2 ;
par_funct_zero_y.add_double(theta_search_y, 0) ;
par_funct_zero_y.add_double(phi_search_y, 1) ;
double r_min_search_y = 0 ;
double r_max_search_y = r1_x ;
double precis_y = 1e-10 ;
int nitermax_y = 100 ;
int niter_y ;
double radius_y = zerosec(funct_zero_ent, par_funct_zero_y,
r_min_search_y, r_max_search_y, precis_y,
nitermax_y, niter_y) ;
cout << "Radius of star 1 in the y-axis direction : " << radius_y
<< endl ;
// Searching the radius to the north pole for star 1
//---------------------------------------------------
Param par_funct_zero_z ;
par_funct_zero_z.add_cmp(ent1) ;
double phi_search_z = 0 ;
double theta_search_z = 0 ;
par_funct_zero_z.add_double(theta_search_z, 0) ;
par_funct_zero_z.add_double(phi_search_z, 1) ;
double r_min_search_z = 0 ;
double r_max_search_z = r1_x ;
double precis_z = 1e-10 ;
int nitermax_z = 100 ;
int niter_z ;
double radius_z = zerosec(funct_zero_ent, par_funct_zero_z,
r_min_search_z, r_max_search_z, precis_z,
nitermax_z, niter_z) ;
cout << "Radius of star 1 in the z-axis direction : " << radius_z
<< endl ;
// Radius of star 1
//------------------
double ray1 = mp1.val_r(nz-2,1.,M_PI/2,0) ;
cout << "Radius of star 1 in the x-axis direction : " << ray1 << endl ;
cout << "The ratios of the axes : " << endl
<< "a_2/a_1 : " << radius_y/radius_x << endl
<< "a_3/a_1 : " << radius_z/radius_x << endl ;
// Radius of star 1
//------------------
double ray2 = mp2.val_r(nz-2,1.,M_PI/2,0) ;
cout << "Radius of star 2 in the x-axis direction : " << ray2 << endl ;
// Angular velocity
//------------------
double omega1 = sqrt(omega2_1) ;
double omega2 = sqrt(omega2_2) ;
cout << "Angular velocity of the star Omega/(pi G rho_c)^{1/2} : "
<< omega1 << endl ;
cout << "Angular velocity Omega^2/(pi G rho_c) : " << omega2_1 << endl ;
arrete() ;
// Total energy of the binary system
//-----------------------------------
// Internal energy
//-----------------
// For star 1
Cmp rho1_n(mp1) ;
rho1_n = pow(abs(rho1), 1 + 1/n_index) ;
rho1_n.annule(nz-1) ;
rho1_n.set_dzpuis(4) ;
rho1_n.std_base_scal() ;
double energy1_internal = 4. * M_PI *
(1 / (1 + n_index)) * rho1_n.integrale() * ray1 / (mass1 * mass1) ;
cout << "Internal energy of star 1 : "
<< n_index * energy1_internal << endl ;
// For star 2
Cmp rho2_n(mp2) ;
rho2_n = pow(abs(rho2), 1 + 1/n_index) ;
rho2_n.annule(nz-1) ;
rho2_n.set_dzpuis(4) ;
rho2_n.std_base_scal() ;
double energy2_internal = 4. * M_PI *
(1 / (1 + n_index)) * rho2_n.integrale() * ray2 / (mass2 * mass2) ;
cout << "Internal energy of star 2 : "
<< n_index * energy2_internal << endl ;
cout << "Internal energy of the Darwin binary system : E_int/(GM^2/ray) : "
<< n_index * energy1_internal + n_index * energy2_internal << endl ;
// Self-gravity energy
//---------------------
// For star 1
Cmp rho1_pot11(mp1) ;
rho1_pot11 = rho1 * pot11 ;
rho1_pot11.annule(nz-1) ;
rho1_pot11.set_dzpuis(4) ;
rho1_pot11.std_base_scal() ;
double energy1_selfgrav = -2. * M_PI * rho1_pot11.integrale() * ray1 /
(mass1 * mass1) ;
cout << "Self-gravity energy of star 1 : " << energy1_selfgrav << endl ;
// For star 2
Cmp rho2_pot22(mp2) ;
rho2_pot22 = rho2 * pot22 ;
rho2_pot22.annule(nz-1) ;
rho2_pot22.set_dzpuis(4) ;
rho2_pot22.std_base_scal() ;
double energy2_selfgrav = -2. * M_PI * rho2_pot22.integrale() * ray2 /
(mass2 * mass2) ;
cout << "Self-gravity energy of star 2 : " << energy2_selfgrav << endl ;
cout <<
"Self-gravity energy of the Darwin binary system : E_self/(GM^2/ray) : "
<< energy1_selfgrav + energy2_selfgrav << endl ;
// Interaction energy
//--------------------
// For star 1
Cmp rho1_pot21(mp1) ;
rho1_pot21 = rho1 * pot21 ;
rho1_pot21.annule(nz-1) ;
rho1_pot21.set_dzpuis(4) ;
rho1_pot21.std_base_scal() ;
double energy1_interact = -2. * M_PI * rho1_pot21.integrale() * ray1 /
(mass1 * mass1) ;
cout << "Interaction energy for star 1 : " << energy1_interact << endl ;
// For star 2
Cmp rho2_pot12(mp2) ;
rho2_pot12 = rho2 * pot12 ;
rho2_pot12.annule(nz-1) ;
rho2_pot12.set_dzpuis(4) ;
rho2_pot12.std_base_scal() ;
double energy2_interact = -2. * M_PI * rho2_pot12.integrale() * ray2 /
(mass2 * mass2) ;
cout << "Interaction energy for star 2 : " << energy2_interact << endl ;
cout <<
"Interaction energy of the Darwin binary system : E_ext/(GM^2/ray) : "
<< energy1_interact + energy2_interact << endl ;
// Kinetic energy
//----------------
// For star 1
Cmp rr1(mp1) ;
Cmp rho1_quad1(mp1) ;
rr1 = x1 * x1 + y1 * y1 - R_sep * x1 ;
rho1_quad1 = rho1 * rr1 ;
rho1_quad1.annule(nz-1) ;
rho1_quad1.set_dzpuis(4) ;
rho1_quad1.std_base_scal() ;
double energy1_kinetic = 0.5 * M_PI * omega2_1 *
(0.25 * R_sep * R_sep + rho1_quad1.integrale() / mass1 ) *
ray1 / mass1 ;
cout << "Kinetic energy for star 1 : " << energy1_kinetic << endl ;
// For star 2
Cmp rr2(mp2) ;
Cmp rho2_quad2(mp2) ;
rr2 = x2 * x2 + y2 * y2 - R_sep * x2 ;
rho2_quad2 = rho2 * rr2 ;
rho2_quad2.annule(nz-1) ;
rho2_quad2.set_dzpuis(4) ;
rho2_quad2.std_base_scal() ;
double energy2_kinetic = 0.5 * M_PI * omega2_2 *
(0.25 * R_sep * R_sep + rho2_quad2.integrale() / mass2 ) *
ray2 / mass2 ;
cout << "Kinetic energy for star 2 : " << energy2_kinetic << endl ;
cout << "Kinetic energy of the Darwin binary system : "
<< "E_kinet/(GM^2/ray) : "
<< energy1_kinetic + energy2_kinetic << endl ;
// Total energy
//--------------
// For star 1
double energy1_total = n_index * energy1_internal + energy1_selfgrav
+ energy1_kinetic + energy1_interact ;
cout << "Total energy for star 1 : E_1/(GM_1^2/ray1) : "
<< energy1_total << endl ;
// For star 2
double energy2_total = n_index * energy2_internal + energy2_selfgrav
+ energy2_kinetic + energy2_interact ;
cout << "Total energy for star 2 : E_2/(GM_2^2/ray) : "
<< energy2_total << endl ;
// For binary system
cout << "Total energy of the Darwin binary system : E/(GM^2/ray) : "
<< energy1_total + energy2_total << endl ;
// Angular momentum
//------------------
// For star 1
double angmom1 = sqrt(M_PI) * omega1 *
( 0.25 * mass1 * R_sep * R_sep + rho1_quad1.integrale() ) /
sqrt( mass1 * mass1 * mass1 * ray1 ) ;
cout << "Angular momentum for star 1 : " << angmom1 << endl ;
// For star 2
double angmom2 = sqrt(M_PI) * omega2 *
( 0.25 * mass2 * R_sep * R_sep + rho2_quad2.integrale() ) /
sqrt( mass2 * mass2 * mass2 * ray2 ) ;
cout << "Angular momentum for star 2 : " << angmom2 << endl ;
cout <<
"Angular momentum of the Darwin binary system : J/(GM^3 ray)^{1/2} : "
<< angmom1 + angmom2 << endl ;
// Virial relation
//-----------------
// For star 1
double virial1 = 3. * energy1_internal + energy1_selfgrav
+ 2. * energy1_kinetic + energy1_interact ;
cout << "Virial relation for star 1 : " << virial1 << endl ;
// For star 2
double virial2 = 3. * energy2_internal + energy2_selfgrav
+ 2. * energy2_kinetic + energy2_interact ;
cout << "Virial relation for star 2 : " << virial2 << endl ;
cout << "Virial relation of the Darwin binary system : "
<< virial1 + virial2 << endl ;
arrete() ;
//------------------------------------------
// Plot the figures
//------------------------------------------
double rmax = R_sep/2 ;
// cout << "r_max ?" << endl ;
// cin >> rmax ;
des_profile(rho1,0.,rmax,M_PI/2,0.,"rho1/rho_c","rho1 (x direction)") ;
des_profile(rho1,0.,rmax,M_PI/2,M_PI/2,"rho1/rho_c","rho1 (y direction)") ;
des_profile(rho1,0.,rmax,0.,0.,"rho1/rho_c","rho1 (z direction)") ;
// des_coupe_x(rho1, 0., -rmax, rmax, -rmax, rmax, "rho1 (y-z plane)") ;
des_coupe_x(rho1, 0., -rmax, rmax, -rmax, rmax, "rho1 (y-z plane)",&ent1) ;
des_coupe_y(rho1, 0., -rmax, rmax, -rmax, rmax, "rho1 (z-x plane)",&ent1) ;
des_coupe_z(rho1, 0., -rmax, rmax, -rmax, rmax, "rho1 (x-y plane)",&ent1) ;
des_coef_xi(rho1.va, 0, 0, 0, 1.e-14, "log|c_i|", "domain no. 0") ;
des_coef_theta(rho1.va, 0, 0, 0) ;
des_coef_phi(rho1.va, 0, 0, 0) ;
des_coef_xi(rho1.va, 1, 0, 0, 1.e-14, "log|c_i|", "domain no. 1") ;
des_coef_theta(rho1.va, 0, 0, 0) ;
des_coef_phi(rho1.va, 0, 0, 0) ;
exit(-1) ;
}
|