1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
|
/*
* Computes the equilibrium configuration of a binary system.
*
*/
/*
* Copyright (c) 2004 francois Limousin
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char coal_C[] = "$Header: /cvsroot/Lorene/Codes/Binary_star/coal.C,v 1.10 2014/10/13 08:53:55 j_novak Exp $" ;
/*
* $Id: coal.C,v 1.10 2014/10/13 08:53:55 j_novak Exp $
* $Log: coal.C,v $
* Revision 1.10 2014/10/13 08:53:55 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.9 2014/10/06 15:09:40 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.8 2006/05/31 09:26:33 f_limousin
* Modif. of the size of the different domains
*
* Revision 1.7 2006/04/11 14:26:30 f_limousin
* New version of the code : improvement of the computation of some
* critical sources, estimation of the dirac gauge, helical symmetry...
*
* Revision 1.6 2005/11/08 20:19:32 f_limousin
* Add a call to Binary::dirac_gauge().
*
* Revision 1.5 2005/09/13 19:47:28 f_limousin
* Reintroduction of the resolution of the equations in cartesian coordinates.
*
* Revision 1.4 2004/09/16 12:14:23 f_limousin
* *** empty log message ***
*
* Revision 1.2 2004/01/22 10:15:20 f_limousin
* First version
*
* $Header: /cvsroot/Lorene/Codes/Binary_star/coal.C,v 1.10 2014/10/13 08:53:55 j_novak Exp $
*
*/
// headers C
#include <cstdlib>
#include <cmath>
#include <ctime>
// headers Lorene
#include "unites.h"
#include "cmp.h"
#include "tenseur.h"
#include "binary.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "param.h"
#include "nbr_spx.h"
namespace Lorene {
// Local prototype
Cmp raccord_c1(const Cmp& uu, int l1) ;
}
using namespace Lorene ;
int main(){
// Identification of all the subroutines called by the code :
system("ident coal > identif.d") ;
// For the display :
char display_bold[]="x[1m" ; display_bold[0] = 27 ;
char display_normal[] = "x[0m" ; display_normal[0] = 27 ;
using namespace Unites ;
//------------------------------------------------------------------
// Parameters of the computation
//------------------------------------------------------------------
char nomini[80] ;
int mermax, mermax_eqb, prompt, graph, fmer_stop, fmer_save, mermax_poisson ;
int mermax_potvit, mer_masse, fmer_upd_met, ind_rel_met ;
double seuil, relax_poisson, relax_potvit, relax, aexp_masse ;
double mbar_voulue[2], fact_separ, relax_met, relax_omeg ;
double fact_omeg_min, fact_omeg_max, thres_adapt[2], reduce_shift ;
ifstream fpar("parcoal.d") ;
if ( !fpar.good() ) {
cout << "Problem with opening the file parcoal.d ! " << endl ;
abort() ;
}
fpar.ignore(1000, '\n') ;
fpar.ignore(1000, '\n') ;
fpar.getline(nomini, 80) ;
fpar >> fact_separ ; fpar.ignore(1000, '\n');
fpar >> mbar_voulue[0] ; fpar.ignore(1000, '\n') ;
fpar >> mbar_voulue[1] ; fpar.ignore(1000, '\n') ;
mbar_voulue[0] *= msol ;
mbar_voulue[1] *= msol ;
fpar.ignore(1000, '\n') ;
fpar >> mermax ; fpar.ignore(1000, '\n') ;
fpar >> relax ; fpar.ignore(1000, '\n') ;
fpar >> mermax_eqb ; fpar.ignore(1000, '\n') ;
fpar >> prompt ; fpar.ignore(1000, '\n') ;
fpar >> graph ; fpar.ignore(1000, '\n') ;
fpar >> seuil ; fpar.ignore(1000, '\n') ;
fpar >> fmer_stop ; fpar.ignore(1000, '\n') ;
fpar >> fmer_save ; fpar.ignore(1000, '\n') ;
fpar >> mermax_poisson ; fpar.ignore(1000, '\n') ;
fpar >> relax_poisson ; fpar.ignore(1000, '\n') ;
fpar >> mermax_potvit ; fpar.ignore(1000, '\n') ;
fpar >> relax_potvit ; fpar.ignore(1000, '\n') ;
fpar >> mer_masse ; fpar.ignore(1000, '\n') ;
fpar >> aexp_masse ; fpar.ignore(1000, '\n') ;
fpar >> fmer_upd_met ; fpar.ignore(1000, '\n');
fpar >> ind_rel_met ; fpar.ignore(1000, '\n');
fpar >> relax_met ; fpar.ignore(1000, '\n');
if (ind_rel_met == 0) relax_met = 1. ;
fpar >> relax_omeg ; fpar.ignore(1000, '\n');
fpar >> fact_omeg_min ; fpar.ignore(1000, '\n');
fpar >> fact_omeg_max ; fpar.ignore(1000, '\n');
fpar >> thres_adapt[0] ; fpar.ignore(1000, '\n');
fpar >> thres_adapt[1] ; fpar.ignore(1000, '\n');
fpar >> reduce_shift ;
if ( ! fpar.good() ) { // to ensure compatibility with old
reduce_shift = 0.6 ; // parcoal.d files which did not had
} // the reduce_shift line
fpar.close() ;
cout << endl
<< "==========================================================" << endl
<< " Physical parameters " << endl
<< "=========================================================="
<< endl ;
cout << endl << endl ;
cout << "File containing the initial conditions : " << nomini << endl ;
cout << "Factor by which the initial separation will be multiplied : "
<< fact_separ << endl ;
if ( abs(mer_masse) < mermax ) {
cout << "Baryon mass required for star 1 [M_sol] : "
<< mbar_voulue[0] / msol << endl ;
cout << "Baryon mass required for star 2 [M_sol] : "
<< mbar_voulue[1] / msol << endl ;
}
cout << endl
<< "==========================================================" << endl
<< " Parameters of the computation " << endl
<< "=========================================================="
<< endl ;
cout << "Maximum number of steps in the main iteration : "
<< mermax << endl ;
cout << "Relaxation factor in the main iteration : "
<< relax << endl ;
cout << "Maximum number of steps in Star_bin::equilibrium : "
<< mermax_eqb << endl ;
cout << "Threshold on the enthalpy relative change for ending the computation : "
<< seuil << endl ;
cout << "Step interval between safeguards of the whole configuration : "
<< fmer_save << endl ;
cout << "Maximum number of steps in Map_et::poisson : "
<< mermax_poisson << endl ;
cout << "Relaxation factor in Map_et::poisson : "
<< relax_poisson << endl ;
cout << "Maximum number of steps in Map_radial::poisson_compact : "
<< mermax_potvit << endl ;
cout << "Relaxation factor in Map_radial::poisson_compact : "
<< relax_potvit << endl ;
cout << "Step from which the baryon mass is forced to converge : "
<< mer_masse << endl ;
cout << "Exponent for the increase factor of the central enthalpy : "
<< aexp_masse << endl ;
cout << "Step interval between metric updates : "
<< fmer_upd_met << endl ;
if (ind_rel_met == 1) {
cout << "Relaxation factor of the metric : "
<< relax_met << endl ;
}
else {
cout << "No relaxation on the metric" << endl ;
}
cout << "Relaxation factor on Omega (orbital angular velocity) : "
<< relax_omeg << endl ;
cout << "Relative low bound in the omega search : "
<< fact_omeg_min << endl ;
cout << "Relative high bound in the omega search : "
<< fact_omeg_max << endl ;
cout <<
"Threshold on |dH/dr|_eq / |dH/dr|_pole for the adaptation of the mapping for star 1"
<< endl << thres_adapt[0] << endl ;
cout <<
"Threshold on |dH/dr|_eq / |dH/dr|_pole for the adaptation of the mapping for star 2"
<< endl << thres_adapt[1] << endl ;
cout << "Factor by which the initial analytical shift is reduced : "
<< reduce_shift << endl ;
arrete(prompt) ;
double distance = 100. * fact_separ ;
//------------------------------------------------------------------
// Read of the initial conditions
//------------------------------------------------------------------
FILE* fich = fopen(nomini, "r") ;
if (fich == 0x0) {
cout << "Problem in opening the file " << nomini << " ! " << endl ;
perror(" reason") ;
abort() ;
}
int mer_ini ;
fread(&mer_ini, sizeof(int), 1, fich) ;
Mg3d mg1(fich) ;
Map_et mp1(mg1, fich) ;
Eos* peos1 = Eos::eos_from_file(fich) ;
Mg3d mg2(fich) ;
Map_et mp2(mg2, fich) ;
Eos* peos2 = Eos::eos_from_file(fich) ;
Binary star(mp1, *peos1, mp2, *peos2, fich) ;
fclose(fich) ;
//------------------------------------------------------------------
// Modification of the separation between the two stars
//------------------------------------------------------------------
for (int i=1 ; i<=2 ; i++) {
double ori_x = (star(i).get_mp()).get_ori_x() ;
ori_x *= fact_separ ;
((star.set(i)).set_mp()).set_ori(ori_x, 0., 0.) ;
}
//------------------------------------------------------------------
// Update of the initial conditions
//------------------------------------------------------------------
// Initialisation of logn, beta, psi4 etc...
// ---------------------------------
star.fait_decouple() ;
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric(star(3-i), star.get_omega()) ;
}
// Initialisation of gradients of companion potentials
// ---------------------------------------------------
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric_der_comp(star(3-i), star.get_omega()) ;
}
// Initialisation of hydro quantities
// ----------------------------------
for (int i=1; i<=2; i++) {
(star.set(i)).equation_of_state() ;
(star.set(i)).kinematics(star.get_omega(), star.get_x_axe()) ;
(star.set(i)).fait_d_psi() ;
(star.set(i)).hydro_euler() ;
}
// New initial of value Omega (taking into account the fact
// that the separation has changed)
star.analytical_omega() ;
// If the shift vector has not been set previously, it is set to
// some analytical value
// -------------------------------------------------------------
star.analytical_shift() ;
for (int i=1; i<=2; i++) {
star.set(i).set_beta_auto() = reduce_shift*star(i).get_beta_auto() ;
}
cout << reduce_shift << endl ;
// A second call to update_metric must be performed to update
// beta_comp, tkij_auto and akcar_auto.
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric(star(3-i), star.get_omega()) ;
}
// Second update of gradients of companion potentials
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric_der_comp(star(3-i), star.get_omega()) ;
}
// Second update of hydro quantities
for (int i=1; i<=2; i++) {
(star.set(i)).equation_of_state() ;
(star.set(i)).kinematics(star.get_omega(), star.get_x_axe()) ;
(star.set(i)).fait_d_psi() ;
(star.set(i)).hydro_euler() ;
}
//##
char name[40] ;
sprintf(name, "resu_%e.d", distance) ;
FILE* fresu = fopen(name, "w") ;
int mer1 = 0 ;
fwrite(&mer1, sizeof(int), 1, fresu) ; // mer
star(1).get_mp().get_mg()->sauve(fresu) ;
star(1).get_mp().sauve(fresu) ;
star(1).get_eos().sauve(fresu) ;
star(2).get_mp().get_mg()->sauve(fresu) ;
star(2).get_mp().sauve(fresu) ;
star(2).get_eos().sauve(fresu) ;
star.sauve(fresu) ;
fclose(fresu) ;
//##
cout << endl
<< "==========================================================" << endl
<< " Initial conditions " << endl
<< "=========================================================="
<< endl ;
cout << star << endl ;
arrete(prompt) ;
//----------------------------------------------------------------
// Auxiliary quantities
//----------------------------------------------------------------
double ent_c[2] ; // Central enthalpy in each star
double dentdx[2] ; // Central d/dx(enthalpy) in each star
// Error indicators in each star
Tbl differ[] = {Tbl(13), Tbl(13)} ;
differ[0].set_etat_qcq() ;
differ[1].set_etat_qcq() ;
for (int i=1 ; i<=2 ; i++) {
ent_c[i-1] = star(i).get_ent().val_grid_point(0, 0, 0, 0) ;
differ[i-1].set(0) = 1 ; // diff_ent = 1
differ[i-1].set(1) = 1 ; // err_psi = 1
differ[i-1].set(2) = 1 ; // err_logn = 1
differ[i-1].set(3) = 1 ; // err_lnq = 1
differ[i-1].set(4) = 1 ; // err_beta_x = 1
differ[i-1].set(5) = 1 ; // err_beta_y = 1
differ[i-1].set(6) = 1 ; // err_beta_z = 1
differ[i-1].set(7) = 1 ; // err_h11 = 1
differ[i-1].set(8) = 1 ; // err_h21 = 1
differ[i-1].set(9) = 1 ; // err_h31 = 1
differ[i-1].set(10) = 1 ; // err_h22 = 1
differ[i-1].set(11) = 1 ; // err_h32 = 1
differ[i-1].set(12) = 1 ; // err_h33 = 1
}
double relax_jm1 = 1. - relax ;
double relax_omeg_jm1 = 1. - relax_omeg ;
//----------------------------------------------------------------
// Binary system at the previous step (for the relaxation)
//----------------------------------------------------------------
Binary star_jm1 = star ;
double omega_jm1 = star_jm1.get_omega() ;
// logn_comp and pot_centri are initialized to 0 on star_jm1 :
// ---------------------------------------------------------
for (int i=1 ; i<=2 ; i++) {
star_jm1.set(i).set_logn_comp() = 0 ;
star_jm1.set(i).set_pot_centri() = 0 ;
}
//----------------------------------------------------------------
// Openning of log files
//----------------------------------------------------------------
sprintf(name, "resglob_%e.d", distance) ;
ofstream fichresu(name) ;
fichresu.precision(16) ;
sprintf(name, "resrota_%e.d", distance) ;
ofstream fichrota(name) ;
fichrota.precision(16) ;
sprintf(name, "resdiffm_%e.d", distance) ;
ofstream fichvir("resdiffm.d") ;
fichvir.precision(16) ;
ofstream fichconv[2] ;
sprintf(name, "resconv1_%e.d", distance) ;
fichconv[0].open(name) ;
fichconv[0].precision(16) ;
sprintf(name, "resconv2_%e.d", distance) ;
fichconv[1].open(name) ;
fichconv[1].precision(16) ;
ofstream fichet[2] ;
sprintf(name, "resstar1_%e.d", distance) ;
fichet[0].open(name) ;
fichet[0].precision(16) ;
sprintf(name, "resstar2_%e.d", distance) ;
fichet[1].open(name) ;
fichet[1].precision(16) ;
fichrota <<
"# Omega [rad/s] x_axe [km] x_g (et 0) [km] x_g (et 1) [km] M_grav [M_sol] J [ G M_sol^2 / c]"
<< endl ;
fichvir <<
"# diff_mass"
<< endl ;
for (int i=1; i<=2; i++) {
fichconv[i-1] <<
"# diff_ent err_psi err_logn err_lnq err_beta_x err_beta_y err_beta_z"
<< endl ;
fichet[i-1] <<
"# ori_x [km] ent_c M_bar [M_sol] R(theta=0) [km] R(pi/2, 0) [km] R(pi/2, pi/2) [km] R(pi/2, pi) [km]"
<< endl ;
}
double omega_kep, diff_mass ;
int mer ;
Scalar ff_1 (star(1).get_mp()) ;
Scalar ff_2 (star(2).get_mp()) ;
//============================================================================
// Start of iteration
//============================================================================
for (mer=0; (differ[0](0) > seuil) && (mer < mermax); mer++) {
cout <<
"=========================================================================="
<< endl ;
cout << "step = " << mer << " diff_ent (1) (2) (1)<->(2) : "
<< differ[0](0) << " " << differ[1](0) << " "
<< differ[0](0) - differ[1](0) << endl ;
cout <<
"=========================================================================="
<< endl ;
fichresu << mer;
fichresu << " step" << endl ;
fichrota << mer ;
fichvir << mer ;
fichconv[0] << mer ;
fichconv[1] << mer ;
fichet[0] << mer ;
fichet[1] << mer ;
//------------------------------------------------------------------
// Computation of the metric coefficients
//------------------------------------------------------------------
if ( (mer % fmer_upd_met) == 0 || mer == 1) {
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric(star(3-i), star_jm1(i), relax_met,
star.get_omega()) ;
}
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric_der_comp(star(3-i),
star.get_omega()) ;
}
}
// -------------------------
// Impose Dirac gauge
// -------------------------
// if ( (mer % fmer_upd_met) == 0 )
// star.dirac_gauge() ;
//------------------------------------------------------------------
// Computation of the orbital angular velocity Omega
//------------------------------------------------------------------
double xgg[2] ;
star.orbit(fact_omeg_min, fact_omeg_max, xgg[0], xgg[1]) ;
// Translation of the stars in order to set the origin
// of the absolute frame on the rotation axis
//-----------------------------------------------------
double x_rot = star.get_x_axe() ;
for (int i=1 ; i<=2 ; i++) {
double ori_x_old = (star(i).get_mp()).get_ori_x() ;
double ori_x_new = ori_x_old - x_rot ;
((star.set(i)).set_mp()).set_ori(ori_x_new, 0., 0.) ;
}
star.set_x_axe() = 0. ;
// Relaxation on the orbital velocity
// ----------------------------------
double omega_j = star.get_omega() ;
omega_j = relax_omeg * omega_j + relax_omeg_jm1 * omega_jm1 ;
omega_jm1 = omega_j ;
star.set_omega() = omega_j ;
cout << display_bold << "New orbital velocity Omega : "
<< star.get_omega() * f_unit << " rad/s" << display_normal << endl ;
// Keplerian velocity (for comparison only)
// ----------------------------------------
omega_kep = sqrt( g_si/g_unit * (star(1).mass_g() + star(2).mass_g())
/ pow( star.separation(), 3.) ) ;
cout << "``Keplerian'' velocity (for comparison only) : "
<< omega_kep * f_unit << " rad/s" << endl ;
cout << "New X coordinate of the rotation axis : "
<< star.get_x_axe() / km << " km" << endl ;
fichresu << star.get_x_axe() / km ;
fichresu << " abscidia of the rotation axis [km] " << endl ;
fichresu << star.get_omega() * f_unit ;
fichresu << " Orbital frequency Omega [rad/s] " << endl ;
fichresu << xgg[0] / km ;
fichresu << " Abscidia ``center of mass'' star 1 [km] " << endl ;
fichresu << xgg[1] / km ;
fichresu << " Abscidia ``center of mass'' star 2 [km] " << endl ;
fichrota << " " << star.get_omega() * f_unit ;
fichrota << " " << star.get_x_axe() / km ;
fichrota << " " << xgg[0] / km ;
fichrota << " " << xgg[1] / km ;
//------------------------------------------------------------------
// Computation of B^i/N (bsn) and pot_centri in each star
//------------------------------------------------------------------
for (int i=1; i<=2; i++) {
(star.set(i)).kinematics( star.get_omega(), star.get_x_axe() ) ;
}
//------------------------------------------------------------------
// Computation of gam_euler, u_euler, ener_euler, s_euler,
// wit_w and loggam in each star
//------------------------------------------------------------------
for (int i=1; i<=2; i++) {
(star.set(i)).fait_d_psi() ;
(star.set(i)).hydro_euler() ;
// Check of the Binaire::orbit computation
//----------------------------------------
Scalar tmp = star(i).get_logn_auto() + star(i).get_logn_comp()
+ star(i).get_loggam() ;
double grad1 = tmp.dsdx().val_grid_point(0, 0, 0, 0) ;
double grad2 = star(i).get_pot_centri().dsdx()
.val_grid_point(0, 0, 0, 0) ;
dentdx[i-1] = star(i).get_ent().dsdx()
.val_grid_point(0, 0, 0, 0) ;
double grad3 = star(i).get_loggam().dsdx()
.val_grid_point(0, 0, 0, 0) ;
cout << "Star " << i << " : " << endl ;
cout << " central dH/dx : " << dentdx[i-1] << endl ;
cout << " central d(log(Gam))/dx : " << grad3 << endl ;
cout << " central d/dx(nu + log(Gam)) : " << grad1 << endl ;
cout << " central d/dx(pot_centri) : " << grad2 << endl ;
cout << " central d/dx(nu + log(Gam) + pot_centri) : "
<< grad1 + grad2 << endl ;
}
//------------------------------------------------------------------
// Computation of the stellar equilibrium configurations
//------------------------------------------------------------------
for (int i=1; i<=2; i++) {
// Relaxation on logn_comp (only if it has not been done by
// update_metric)
// --------------------------------------------------------
if ( (ind_rel_met == 0) || ( (mer % fmer_upd_met) != 0 ) ) {
star.set(i).set_logn_comp() = relax * star(i).get_logn_comp()
+ relax_jm1 * star_jm1(i).get_logn_comp() ;
}
// Relaxation on pot_centri
// ------------------------
star.set(i).set_pot_centri() = relax * star(i).get_pot_centri()
+ relax_jm1 * star_jm1(i).get_pot_centri() ;
(star.set(i)).equilibrium(ent_c[i-1], mermax_eqb, mermax_potvit,
mermax_poisson, relax_poisson,
relax_potvit, thres_adapt[i-1],
differ[i-1], star.get_omega()) ;
}
//------------------------------------------------------------------
// Relaxations
//------------------------------------------------------------------
for (int i=1; i<=2; i++) {
star.set(i).relaxation( star_jm1(i), relax, relax_met, mer,
fmer_upd_met ) ;
star.set(i).hydro_euler() ;
}
//------------------------------------------------------------------
// Change in the central enthalpy to get a fixed baryon mass
//------------------------------------------------------------------
if (mer >= mer_masse) {
for (int i=1; i<=2; i++) {
double xx = star(i).mass_b() / mbar_voulue[i-1] - 1. ;
cout << "Discrepancy M_b / wanted M_b : " << xx << endl ;
double xprog = ( mer > 2*mer_masse) ? 1. :
double(mer-mer_masse)/double(mer_masse) ;
xx *= xprog ;
double ax = .5 * ( 2. + xx ) / (1. + xx ) ;
double fact_ent = pow(ax, aexp_masse) ;
cout << " xprog, xx, ax, fact : " << xprog << " " <<
xx << " " << ax << " " << fact_ent << endl ;
ent_c[i-1] *= fact_ent ;
}
}
// Updates for the next step
// -------------------------
star_jm1 = star ;
cout << star << endl ;
//---------------------------------------------------------------------
// The whole configuration is saved in a file
//---------------------------------------------------------------------
if ( (mer % fmer_save) == 0 ) {
sprintf(name, "resu_%e.d", distance) ;
FILE* fresu2 = fopen(name, "w") ;
fwrite(&mer, sizeof(int), 1, fresu2) ; // mer
star(1).get_mp().get_mg()->sauve(fresu2) ;
star(1).get_mp().sauve(fresu2) ;
star(1).get_eos().sauve(fresu2) ;
star(2).get_mp().get_mg()->sauve(fresu2) ;
star(2).get_mp().sauve(fresu2) ;
star(2).get_eos().sauve(fresu2) ;
star.sauve(fresu2) ;
fclose(fresu2) ;
}
//--------------------------------------------
// Writing of global quantities in log files
//--------------------------------------------
for (int i=1 ; i<=2 ; i++) {
fichresu << star(i).mass_b() / msol ;
fichresu << " Baryon mass of star " << i << " [M_sol] " << endl ;
fichresu << differ[i-1](0) ;
fichresu << " relative variation enth. star " << i << endl ;
fichresu << star(i).ray_pole() / km ;
fichresu << " R(theta=0) [km] " << endl ;
fichresu << star(i).ray_eq() / km ;
fichresu << " R(theta=pi/2, phi=0) [km] " << endl ;
fichresu << star(i).ray_eq_pis2() / km ;
fichresu << " R(theta=pi/2, phi=pi/2) [km] " << endl ;
fichresu << star(i).ray_eq_pi() / km ;
fichresu << " R(theta=pi/2, phi=pi) [km] " << endl ;
fichconv[i-1] << " " << log10( fabs(differ[i-1](0)) + 1.e-16 ) ;
fichconv[i-1] << " " << log10( fabs(differ[i-1](1)) + 1.e-16 ) ;
fichconv[i-1] << " " << log10( fabs(differ[i-1](2)) + 1.e-16 ) ;
fichconv[i-1] << " " << log10( fabs(differ[i-1](3)) + 1.e-16 ) ;
fichconv[i-1] << " " << log10( fabs(differ[i-1](4)) + 1.e-16 ) ;
fichconv[i-1] << " " << log10( fabs(differ[i-1](5)) + 1.e-16 ) ;
fichconv[i-1] << " " << log10( fabs(differ[i-1](6)) + 1.e-16 ) ;
fichet[i-1] << " " << star(i).get_mp().get_ori_x() / km ;
fichet[i-1] << " " << ent_c[i-1] ;
fichet[i-1] << " " << star(i).mass_b() / msol ;
fichet[i-1] << " " << star(i).ray_pole() / km ;
fichet[i-1] << " " << star(i).ray_eq() / km ;
fichet[i-1] << " " << star(i).ray_eq_pis2() / km ;
fichet[i-1] << " " << star(i).ray_eq_pi() / km ;
} // End of loop on the stars
diff_mass = ( star(2).mass_b() - star(1).mass_b() )
/ star(1).mass_b() ;
cout << "Relative difference between the baryon masses: "
<< diff_mass << endl ;
fichresu << diff_mass ;
fichresu << " Relative difference between the baryon masses" << endl ;
fichvir << " " << log10( fabs(diff_mass) + 1.e-16 ) ;
fichresu << " " << endl ;
fichresu.flush() ;
fichrota << " " << endl ;
fichrota.flush() ;
fichvir << " " << endl ;
fichvir.flush() ;
fichconv[0] << " " << endl ;
fichconv[0].flush() ;
fichconv[1] << " " << endl ;
fichconv[1].flush() ;
fichet[0] << " " << endl ;
fichet[0].flush() ;
fichet[1] << " " << endl ;
fichet[1].flush() ;
} // End of the main loop (mer)
//============================================================================
// End of iteration
//============================================================================
fichresu.close() ;
fichrota.close() ;
fichvir.close() ;
fichconv[0].close() ;
fichconv[1].close() ;
fichet[0].close() ;
fichet[1].close() ;
//-----------------------------------------------
// General features of the final configuration
// saved in a file
//-----------------------------------------------
ofstream fichfinal("calcul.d") ;
fichfinal.precision(6) ;
time_t rawtime = time(0x0) ;
fichfinal << "Date: " << asctime( localtime( &rawtime ) ) << endl ;
char* hostname = getenv("HOST") ;
if (hostname != 0x0) {
fichfinal << "Computer: " << hostname << endl ;
}
fichfinal <<
"==================================================================="
<< endl << endl ;
if ( star(1).is_irrotational() ) {
fichfinal << " Irrotational" << endl ;
}
else {
fichfinal << " Co-rotating" << endl ;
}
fichfinal << star(1).get_eos() << endl ;
fichfinal << "Omega = " << star.get_omega() * f_unit << " rad/s"
<< " Orbital frequency f = "
<< star.get_omega() / (2*M_PI) * f_unit << " Hz" << endl ;
fichfinal << "Omega_kepler = " << omega_kep * f_unit << " rad/s" << endl ;
fichfinal << "Coordinate separation : " << star.separation() / km
<< " km" << endl ;
fichfinal << "1/2 ADM mass : " << 0.5 * star.mass_adm() / msol
<< " Mo" << endl ;
fichfinal << "1/2 ADM mass (vol) : " << 0.5 * star.mass_adm_vol() / msol
<< " Mo" << endl ;
fichfinal << "Total angular momentum : "
<< star.angu_mom()(2)/ ( qpig / (4* M_PI) * msol*msol)
<< " G M_sol^2 / c" << endl ;
star(1).test_K_Hi() ;
cout << "1/2 ADM mass : " << 0.5 * star.mass_adm() / msol
<< " Mo" << endl ;
cout << "1/2 ADM mass (vol) : " << 0.5 * star.mass_adm_vol() / msol
<< " Mo" << endl ;
cout << "Total angular momentum : "
<< star.angu_mom()(2)/ ( qpig / (4* M_PI) * msol*msol)
<< " G M_sol^2 / c" << endl ;
fichfinal << endl << "Number of steps : " << mer << endl ;
for (int i=1 ; i<=2; i++) {
fichfinal << endl <<
"==================================================================="
<< endl ;
fichfinal << " Star no. " << i << endl ;
fichfinal <<
"==================================================================="
<< endl ;
fichfinal << "Grid : " << endl ;
fichfinal << "------ " << endl ;
fichfinal << *(star(i).get_mp().get_mg()) << endl ;
fichfinal << endl << "Physical characteristics : " << endl ;
fichfinal << "-------------------------" << endl ;
fichfinal << star(i) << endl ;
}
fichfinal << endl ;
star.display_poly(fichfinal) ; // Reduced quantities for polytropic EOS
fichfinal << endl <<
"==================================================================="
<< endl ;
fichfinal << "Diff_ent : star 1 : " << differ[0](0) << " star 2 : "
<< differ[1](0) << endl ;
fichfinal <<
"Relative difference between the baryon masses of the two stars : "
<< diff_mass << endl ;
fichfinal << "dH/dx at r = 0 : star 1 : " << dentdx[0]
<< " star 2 : " << dentdx[1] << endl ;
fichfinal << "Relative error on the virial theorem : " << endl ;
fichfinal << " VE(M)= " << star.virial() ;
fichfinal << endl <<
"================================================================" << endl ;
fichfinal << " PARAMETERS USED FOR THE COMPUTATION : " << endl ;
fichfinal <<
"================================================================" << endl ;
fichfinal.close() ;
system("cat parcoal.d >> calcul.d") ;
// Identification du code et de ses sous-routines (no. de version RCS) :
fichfinal.open("calcul.d", ios::app ) ;
fichfinal << endl <<
"================================================================" << endl ;
fichfinal << " IDENTIFICATION OF THE CODE : " << endl ;
fichfinal <<
"================================================================" << endl ;
fichfinal.close() ;
system("ident coal >> calcul.d") ;
// Preparation for CPU infos printing :
fichfinal.open("calcul.d", ios::app ) ;
fichfinal << endl <<
"================================================================" << endl ;
fichfinal << " CPU TIME and MEMORY infos : " << endl ;
fichfinal <<
"================================================================" << endl ;
fichfinal << endl ;
fichfinal.close() ;
//-----------------------------------------------
// General features of the final configuration
// saved in a file with scientific notation and
// 14 digits for further reading by a code
//-----------------------------------------------
sprintf(name, "resformat_%e.d", distance) ;
ofstream seqfich(name) ;
if ( !seqfich.good() ) {
cout << "coal : problem with opening the file resformat.d !" << endl ;
abort() ;
}
star.write_global(seqfich) ;
seqfich.close() ;
// Cleaning
// --------
delete peos1 ;
delete peos2 ;
return EXIT_SUCCESS ;
}
|