File: coal_seq.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (942 lines) | stat: -rw-r--r-- 31,354 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
/*
 * Computes the equilibrium configuration of a binary system. 
 * 
 */

/*
 *   Copyright (c) 2005 francois Limousin
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char coal_seq_C[] = "$Header: /cvsroot/Lorene/Codes/Binary_star/coal_seq.C,v 1.5 2014/10/13 08:53:55 j_novak Exp $" ;

/*
 * $Id: coal_seq.C,v 1.5 2014/10/13 08:53:55 j_novak Exp $
 * $Log: coal_seq.C,v $
 * Revision 1.5  2014/10/13 08:53:55  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.4  2014/10/06 15:09:40  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.3  2006/05/31 11:30:28  f_limousin
 * Modif. of the size of the different domains
 *
 * Revision 1.2  2006/04/11 14:45:33  f_limousin
 * Correction of the char "coal_seq_C".
 *
 * Revision 1.1  2006/04/11 14:39:16  f_limousin
 * First version
 *
 *
 * $Header: /cvsroot/Lorene/Codes/Binary_star/coal_seq.C,v 1.5 2014/10/13 08:53:55 j_novak Exp $
 *
 */

// headers C
#include <cstdlib>
#include <cmath>
#include <ctime>

// headers Lorene
#include "unites.h"
#include "cmp.h"
#include "tenseur.h"
#include "binary.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "param.h"
#include "nbr_spx.h"


namespace Lorene {
// Local prototype
Cmp raccord_c1(const Cmp& uu, int l1) ; 
}
using namespace Lorene ;

int main(){

    // Identification of all the subroutines called by the code : 
    
    system("ident coal > identif.d") ; 

    // For the display : 
    char display_bold[]="x[1m" ; display_bold[0] = 27 ;
    char display_normal[] = "x[0m" ; display_normal[0] = 27 ;

    using namespace Unites ;
    
    //------------------------------------------------------------------
    //	    Parameters of the computation 
    //------------------------------------------------------------------

    char nomini[80] ;
    int mermax, mermax_eqb, prompt, graph, fmer_stop, fmer_save, mermax_poisson ;
    int mermax_potvit, mer_masse, fmer_upd_met, ind_rel_met ;  
    double seuil, relax_poisson, relax_potvit, relax, aexp_masse ; 
    double mbar_voulue[2], fact_separ, relax_met, relax_omeg ;
    double fact_omeg_min, fact_omeg_max, thres_adapt[2], reduce_shift ; 
    
    ifstream fpar("parcoal.d") ;
    if ( !fpar.good() ) {
	cout << "Problem with opening the file parcoal.d ! " << endl ;
	abort() ;
    }
    fpar.ignore(1000, '\n') ;
    fpar.ignore(1000, '\n') ;
    fpar.getline(nomini, 80) ; 
    fpar >> fact_separ ; fpar.ignore(1000, '\n');
    fpar >> mbar_voulue[0] ; fpar.ignore(1000, '\n') ;  
    fpar >> mbar_voulue[1] ; fpar.ignore(1000, '\n') ;  
    mbar_voulue[0] *= msol ;
    mbar_voulue[1] *= msol ;
    fpar.ignore(1000, '\n') ;
    fpar >> mermax ; fpar.ignore(1000, '\n') ;   
    fpar >> relax ; fpar.ignore(1000, '\n') ;  
    fpar >> mermax_eqb ; fpar.ignore(1000, '\n') ;  
    fpar >> prompt ; fpar.ignore(1000, '\n') ;  
    fpar >> graph ; fpar.ignore(1000, '\n') ;  
    fpar >> seuil ; fpar.ignore(1000, '\n') ;  
    fpar >> fmer_stop ; fpar.ignore(1000, '\n') ;  
    fpar >> fmer_save ; fpar.ignore(1000, '\n') ;  
    fpar >> mermax_poisson ; fpar.ignore(1000, '\n') ;  
    fpar >> relax_poisson ; fpar.ignore(1000, '\n') ;  
    fpar >> mermax_potvit ; fpar.ignore(1000, '\n') ;  
    fpar >> relax_potvit ; fpar.ignore(1000, '\n') ;  
    fpar >> mer_masse ; fpar.ignore(1000, '\n') ;  
    fpar >> aexp_masse ; fpar.ignore(1000, '\n') ;  
    fpar >> fmer_upd_met ; fpar.ignore(1000, '\n');
    fpar >> ind_rel_met ; fpar.ignore(1000, '\n');
    fpar >> relax_met ; fpar.ignore(1000, '\n');
    if (ind_rel_met == 0) relax_met = 1. ; 
    fpar >> relax_omeg ; fpar.ignore(1000, '\n');
    fpar >> fact_omeg_min ; fpar.ignore(1000, '\n');
    fpar >> fact_omeg_max ; fpar.ignore(1000, '\n');
    fpar >> thres_adapt[0] ; fpar.ignore(1000, '\n');
    fpar >> thres_adapt[1] ; fpar.ignore(1000, '\n');
    fpar >> reduce_shift ; 
    if ( ! fpar.good() ) {	  // to ensure compatibility with old 
	reduce_shift = 0.6 ;  // parcoal.d files which did not had
    }						  // the reduce_shift line
    fpar.close() ; 
    
    
    cout << endl 
	 << "==========================================================" << endl
	 << "                    Physical parameters                   " << endl
	 << "=========================================================="
	 << endl ; 
    cout << endl << endl ;
    cout << "File containing the initial conditions : " << nomini << endl ; 
    cout << "Factor by which the initial separation will be multiplied : " 
	 << fact_separ << endl ; 
    if ( abs(mer_masse) < mermax ) {
	cout << "Baryon mass required for star 1 [M_sol] : " 
	     << mbar_voulue[0] / msol << endl ; 
	cout << "Baryon mass required for star 2 [M_sol] : " 
	     << mbar_voulue[1] / msol << endl ; 
    }
    cout << endl 
	 << "==========================================================" << endl
	 << "              Parameters of the computation               " << endl
	 << "=========================================================="
	 << endl ; 
    cout << "Maximum number of steps in the main iteration : " 
	 << mermax << endl ; 
    cout << "Relaxation factor in the main iteration  : " 
	 << relax << endl ; 
    cout << "Maximum number of steps in Star_bin::equilibrium : " 
	 << mermax_eqb << endl ; 
    cout << "Threshold on the enthalpy relative change for ending the computation : " 
	 << seuil << endl ; 
    cout << "Step interval between safeguards of the whole configuration  : " 
	 << fmer_save << endl ; 
    cout << "Maximum number of steps in Map_et::poisson : " 
	 << mermax_poisson << endl ; 
    cout << "Relaxation factor in Map_et::poisson : " 
	 << relax_poisson << endl ; 
    cout << "Maximum number of steps in Map_radial::poisson_compact : " 
	 << mermax_potvit << endl ; 
    cout << "Relaxation factor in Map_radial::poisson_compact : " 
	 << relax_potvit << endl ; 
    cout << "Step from which the baryon mass is forced to converge : " 
	 << mer_masse << endl ; 
    cout << "Exponent for the increase factor of the central enthalpy : " 
	 << aexp_masse << endl ; 
    cout << "Step interval between metric updates : " 
	 << fmer_upd_met << endl ; 
    if (ind_rel_met == 1) {
	cout << "Relaxation factor of the metric : " 
	     << relax_met << endl ; 
    }
    else {
	cout << "No relaxation on the metric" << endl ; 
    }
    cout << "Relaxation factor on Omega (orbital angular velocity) : " 
	 << relax_omeg << endl ; 
    cout << "Relative low bound in the omega search :  " 
	 << fact_omeg_min << endl ; 
    cout << "Relative high bound in the omega search : " 
	 << fact_omeg_max << endl ; 
    cout << 
	"Threshold on |dH/dr|_eq / |dH/dr|_pole for the adaptation of the mapping for star 1"
	 << endl << thres_adapt[0] << endl ;
    cout << 
	"Threshold on |dH/dr|_eq / |dH/dr|_pole for the adaptation of the mapping for star 2"
	 << endl << thres_adapt[1] << endl ;
    cout << "Factor by which the initial analytical shift is reduced : "
	 << reduce_shift << endl ; 
    
    arrete(prompt) ; 

    //------------------------------------------------------------------
    //    Computation of the distances for the sequence
    //------------------------------------------------------------------

    for(int dist = 0; dist < 8; dist++){
      fact_separ = 0.65 - dist*0.05 ;
      double distance = 100 * fact_separ ;
      cout << "new distance = " << distance << endl ;


    //------------------------------------------------------------------
    //	    Read of the initial conditions 
    //------------------------------------------------------------------
    
    FILE* fich = fopen(nomini, "r") ; 
    if (fich == 0x0) {
    	cout << "Problem in opening the file " << nomini << " ! " << endl ; 
	perror(" reason") ; 
	abort() ; 
    }

    int mer_ini ; 
    fread(&mer_ini, sizeof(int), 1, fich) ;	
    
    Mg3d mg1(fich) ;
    Map_et mp1(mg1, fich) ; 
    Eos* peos1 = Eos::eos_from_file(fich) ; 
    
    Mg3d mg2(fich) ;
    Map_et mp2(mg2, fich) ; 
    Eos* peos2 = Eos::eos_from_file(fich) ; 
    
    Binary star(mp1, *peos1, mp2, *peos2, fich) ; 

    fclose(fich) ; 
    
    //------------------------------------------------------------------
    //	    Modification of the separation between the two stars
    //------------------------------------------------------------------

    for (int i=1 ; i<=2 ; i++) {

	double ori_x = (star(i).get_mp()).get_ori_x() ; 
	ori_x *= fact_separ ; 
	((star.set(i)).set_mp()).set_ori(ori_x, 0., 0.) ; 	
    }

    //------------------------------------------------------------------
    //	    Update of the initial conditions 
    //------------------------------------------------------------------

    // Initialisation of logn, beta, psi4 etc...
    // ---------------------------------

    star.fait_decouple() ;
 
    for (int i=1; i<=2; i++) {
	(star.set(i)).update_metric(star(3-i), star.get_omega()) ; 
    }

    // Initialisation of gradients of companion potentials
    // ---------------------------------------------------

    for (int i=1; i<=2; i++) {
	(star.set(i)).update_metric_der_comp(star(3-i), star.get_omega()) ; 
    }

    // Initialisation of hydro quantities
    // ----------------------------------

    for (int i=1; i<=2; i++) {
	(star.set(i)).equation_of_state() ; 
	(star.set(i)).kinematics(star.get_omega(), star.get_x_axe()) ; 
	(star.set(i)).fait_d_psi() ; 
	(star.set(i)).hydro_euler() ; 
    }
 
    // New initial of value Omega (taking into account the fact
    //  that the separation has changed)
    
    star.analytical_omega() ; 
   
    // If the shift vector has not been set previously, it is set to
    //  some analytical value
    // -------------------------------------------------------------
    
    star.analytical_shift() ;
    for (int i=1; i<=2; i++) {
	star.set(i).set_beta_auto() = reduce_shift*star(i).get_beta_auto() ; 
    }

    cout << reduce_shift << endl ;

    // A second call to update_metric must be performed to update
    //  beta_comp, tkij_auto and akcar_auto. 
    for (int i=1; i<=2; i++) {
	(star.set(i)).update_metric(star(3-i), star.get_omega()) ; 
    }
    
    // Second update of gradients of companion potentials

    for (int i=1; i<=2; i++) {
	(star.set(i)).update_metric_der_comp(star(3-i), star.get_omega()) ; 
    }

    // Second update of hydro quantities

    for (int i=1; i<=2; i++) {
	(star.set(i)).equation_of_state() ; 
	(star.set(i)).kinematics(star.get_omega(), star.get_x_axe()) ; 
	(star.set(i)).fait_d_psi() ; 
	(star.set(i)).hydro_euler() ; 
    }
	

//##
    char name[40] ;
    sprintf(name, "resu_%e.d", distance) ;
    FILE* fresu = fopen(name, "w") ; 
    
    int mer1 = 0 ;
    fwrite(&mer1, sizeof(int), 1, fresu) ;	// mer

    star(1).get_mp().get_mg()->sauve(fresu) ; 
    star(1).get_mp().sauve(fresu) ; 
    star(1).get_eos().sauve(fresu) ; 

    star(2).get_mp().get_mg()->sauve(fresu) ; 
    star(2).get_mp().sauve(fresu) ; 
    star(2).get_eos().sauve(fresu) ; 

    star.sauve(fresu) ;     
	
    fclose(fresu) ;     
//##

    cout << endl 
	 << "==========================================================" << endl
	 << "                    Initial conditions                    " << endl
	 << "=========================================================="
	 << endl ; 
    cout << star << endl ; 

    arrete(prompt) ; 
   

//----------------------------------------------------------------
//			Auxiliary quantities
//----------------------------------------------------------------

    double ent_c[2] ;	    // Central enthalpy in each star
    double dentdx[2] ;	    // Central d/dx(enthalpy) in each star

// Error indicators in each star
    Tbl differ[] = {Tbl(13), Tbl(13)} ;
    differ[0].set_etat_qcq() ; 
    differ[1].set_etat_qcq() ; 

    for (int i=1 ; i<=2 ; i++) {
	ent_c[i-1] = star(i).get_ent().val_grid_point(0, 0, 0, 0) ;  
	differ[i-1].set(0) = 1 ;	    // diff_ent = 1
	differ[i-1].set(1) = 1 ;	    // err_psi = 1
	differ[i-1].set(2) = 1 ;	    // err_logn = 1
	differ[i-1].set(3) = 1 ;	    // err_lnq = 1
	differ[i-1].set(4) = 1 ;	    // err_beta_x = 1
	differ[i-1].set(5) = 1 ;	    // err_beta_y = 1
	differ[i-1].set(6) = 1 ;	    // err_beta_z = 1
	differ[i-1].set(7) = 1 ;	    // err_h11 = 1
	differ[i-1].set(8) = 1 ;	    // err_h21 = 1
	differ[i-1].set(9) = 1 ;	    // err_h31 = 1
	differ[i-1].set(10) = 1 ;	    // err_h22 = 1
	differ[i-1].set(11) = 1 ;	    // err_h32 = 1
	differ[i-1].set(12) = 1 ;	    // err_h33 = 1
    }
    
    double relax_jm1 = 1. - relax ; 
    double relax_omeg_jm1 = 1. - relax_omeg ; 
    
//----------------------------------------------------------------
//	 Binary system at the previous step (for the relaxation)
//----------------------------------------------------------------

    Binary star_jm1 = star ;
     
    double omega_jm1 = star_jm1.get_omega() ; 

    
// logn_comp and pot_centri are initialized to 0 on star_jm1 : 
// ---------------------------------------------------------
    for (int i=1 ; i<=2 ; i++) {
	star_jm1.set(i).set_logn_comp() = 0 ; 
	star_jm1.set(i).set_pot_centri() = 0 ; 
    }
    
//----------------------------------------------------------------
//	 Openning of log files
//----------------------------------------------------------------

    sprintf(name, "resglob_%e.d", distance) ;
    ofstream fichresu(name) ;
    fichresu.precision(16) ; 

    sprintf(name, "resrota_%e.d", distance) ;
    ofstream fichrota(name) ; 
    fichrota.precision(16) ; 

    sprintf(name, "resdiffm_%e.d", distance) ;
    ofstream fichvir("resdiffm.d") ;
    fichvir.precision(16) ; 

    ofstream fichconv[2] ;
    sprintf(name, "resconv1_%e.d", distance) ;
    fichconv[0].open(name) ; 
    fichconv[0].precision(16) ; 
    sprintf(name, "resconv2_%e.d", distance) ;
    fichconv[1].open(name) ; 
    fichconv[1].precision(16) ; 

    ofstream fichet[2] ;
    sprintf(name, "resstar1_%e.d", distance) ;
    fichet[0].open(name) ; 
    fichet[0].precision(16) ; 
    sprintf(name, "resstar2_%e.d", distance) ;
    fichet[1].open(name) ;
    fichet[1].precision(16) ; 
 
    fichrota << 
	"#	Omega [rad/s]	    x_axe [km]		x_g (et 0) [km]		x_g (et 1) [km]	   M_grav [M_sol]    J [ G M_sol^2 / c]"
	     << endl ;

    fichvir << 
	"#    diff_mass"
	    << endl ; 

    for (int i=1; i<=2; i++) {
	fichconv[i-1] << 
	    "#     diff_ent           err_psi         err_logn          err_lnq        err_beta_x         err_beta_y         err_beta_z"
		      << endl ; 

	fichet[i-1] << 
	    "#     ori_x [km]      ent_c      M_bar [M_sol]	  R(theta=0) [km]   R(pi/2, 0) [km]   R(pi/2, pi/2) [km]   R(pi/2, pi) [km]"
		    << endl ; 
    }      

    double omega_kep, diff_mass ; 
    int mer ;

    Scalar ff_1 (star(1).get_mp()) ;
    Scalar ff_2 (star(2).get_mp()) ;


//============================================================================
//		Start of iteration 
//============================================================================

    for (mer=0; (differ[0](0) > seuil) && (mer < mermax); mer++) {

	cout << 
	    "=========================================================================="
	     << endl ;
	cout << "step = " << mer << "        diff_ent (1) (2) (1)<->(2) : "
	     << differ[0](0) << "  " << differ[1](0) << "  "
	     << differ[0](0) - differ[1](0) << endl ; 
	cout << 
	    "=========================================================================="
	     << endl ;

	fichresu << mer; 
	fichresu << "    step" << endl ; 

	fichrota << mer ; 
	fichvir << mer ; 
	fichconv[0] << mer ; 
	fichconv[1] << mer ; 
	fichet[0] << mer ; 
	fichet[1] << mer ; 

	//------------------------------------------------------------------
	//	    Computation of the metric coefficients
	//------------------------------------------------------------------

	if ( (mer % fmer_upd_met) == 0 || mer == 1) {
    
	    for (int i=1; i<=2; i++) {
	      (star.set(i)).update_metric(star(3-i), star_jm1(i), relax_met,
					    star.get_omega()) ; 
	    }

	    for (int i=1; i<=2; i++) {
		(star.set(i)).update_metric_der_comp(star(3-i), 
						     star.get_omega()) ; 
	    }

	}

	// -------------------------
	// Impose Dirac gauge
	// -------------------------

//	if ( (mer % fmer_upd_met) == 0 ) 
//	  star.dirac_gauge() ;


	//------------------------------------------------------------------
	//	    Computation of the orbital angular velocity Omega
	//------------------------------------------------------------------

	double xgg[2] ; 

	star.orbit(fact_omeg_min, fact_omeg_max, xgg[0], xgg[1]) ; 

	// Translation of the stars in order to set the origin
	//  of the absolute frame on the rotation axis
	//-----------------------------------------------------

	double x_rot = star.get_x_axe() ;

	for (int i=1 ; i<=2 ; i++) {
	    double ori_x_old = (star(i).get_mp()).get_ori_x() ;
	    double ori_x_new = ori_x_old - x_rot ;
	    ((star.set(i)).set_mp()).set_ori(ori_x_new, 0., 0.) ;
	}

	star.set_x_axe() = 0. ;

	// Relaxation on the orbital velocity
	// ----------------------------------

	double omega_j = star.get_omega() ; 
	omega_j = relax_omeg * omega_j + relax_omeg_jm1 * omega_jm1 ; 
	omega_jm1 = omega_j ; 

	star.set_omega() = omega_j ; 

	cout << display_bold << "New orbital velocity Omega : " 
	     << star.get_omega() * f_unit << " rad/s" << display_normal << endl ; 

	// Keplerian velocity (for comparison only)
	// ----------------------------------------
	omega_kep = sqrt( g_si/g_unit * (star(1).mass_g() + star(2).mass_g()) 
			  / pow( star.separation(), 3.) ) ; 

	cout << "``Keplerian'' velocity (for comparison only) : " 
	     << omega_kep * f_unit << " rad/s" << endl ; 
	cout << "New X coordinate of the rotation axis : " 
	     << star.get_x_axe() / km << " km" << endl ; 


	fichresu << star.get_x_axe() / km ; 
	fichresu << "    abscidia of the rotation axis [km] " << endl ; 

	fichresu << star.get_omega() * f_unit ; 
	fichresu << "    Orbital frequency Omega [rad/s] " << endl ; 

	fichresu << xgg[0] / km ; 
	fichresu << "    Abscidia ``center of mass'' star 1 [km] " << endl ; 

	fichresu << xgg[1] / km ; 
	fichresu << "    Abscidia ``center of mass'' star 2 [km] " << endl ; 

	fichrota << "  " << star.get_omega() * f_unit ;
	fichrota << "  " << star.get_x_axe() / km ;
	fichrota << "  " << xgg[0] / km ;
	fichrota << "  " << xgg[1] / km ;

	//------------------------------------------------------------------
	//	    Computation of B^i/N (bsn) and pot_centri in each star
	//------------------------------------------------------------------

	for (int i=1; i<=2; i++) {
	
	    (star.set(i)).kinematics( star.get_omega(), star.get_x_axe() ) ; 
	
	}

	//------------------------------------------------------------------
	//	    Computation of gam_euler, u_euler, ener_euler, s_euler, 
	//	    wit_w and loggam  in each star
	//------------------------------------------------------------------

	for (int i=1; i<=2; i++) {
	
	    (star.set(i)).fait_d_psi() ; 
	    (star.set(i)).hydro_euler() ; 
	
	    // Check of the Binaire::orbit computation 
	    //----------------------------------------
    
	    Scalar tmp = star(i).get_logn_auto() + star(i).get_logn_comp() 
		+ star(i).get_loggam() ;
	    double grad1 = tmp.dsdx().val_grid_point(0, 0, 0, 0) ;

	    double grad2 = star(i).get_pot_centri().dsdx()
		.val_grid_point(0, 0, 0, 0) ; 

	    dentdx[i-1] = star(i).get_ent().dsdx()
		.val_grid_point(0, 0, 0, 0) ; 

	    double grad3 = star(i).get_loggam().dsdx()
		.val_grid_point(0, 0, 0, 0) ; 

	    cout << "Star " << i << " : " << endl ; 
	    cout << "  central dH/dx  : " <<  dentdx[i-1] << endl ; 
	    cout << "  central d(log(Gam))/dx  : " <<  grad3 << endl ; 
	    cout << "  central d/dx(nu + log(Gam)) : " << grad1 << endl ; 
	    cout << "  central d/dx(pot_centri) : " << grad2 << endl ; 
	    cout << "  central d/dx(nu + log(Gam) + pot_centri) : " 
		 << grad1 + grad2 << endl ; 

	
	}

	//------------------------------------------------------------------
	//	  Computation of the stellar equilibrium configurations
	//------------------------------------------------------------------

	for (int i=1; i<=2; i++) {

	    // Relaxation on logn_comp (only if it has not been done by
	    //			    update_metric)
	    // --------------------------------------------------------
	    if ( (ind_rel_met == 0) || ( (mer % fmer_upd_met) != 0 ) ) {
		star.set(i).set_logn_comp() = relax * star(i).get_logn_comp()
		    + relax_jm1 * star_jm1(i).get_logn_comp() ; 
	    }

	    // Relaxation on pot_centri
	    // ------------------------
	    star.set(i).set_pot_centri() = relax * star(i).get_pot_centri()
		+ relax_jm1 * star_jm1(i).get_pot_centri() ; 

	

	(star.set(i)).equilibrium(ent_c[i-1], mermax_eqb, mermax_potvit, 
				      mermax_poisson, relax_poisson,
				      relax_potvit, thres_adapt[i-1],
				      differ[i-1], star.get_omega()) ;
	}
	
	//------------------------------------------------------------------
	//	  Relaxations
	//------------------------------------------------------------------

	for (int i=1; i<=2; i++) {

	    star.set(i).relaxation( star_jm1(i), relax, relax_met, mer, 
				    fmer_upd_met ) ; 

	    star.set(i).hydro_euler() ; 
	}    
    
	//------------------------------------------------------------------
	//	  Change in the central enthalpy to get a fixed baryon mass
	//------------------------------------------------------------------

	if (mer >= mer_masse) {

	    for (int i=1; i<=2; i++) {

		double xx = star(i).mass_b() / mbar_voulue[i-1] - 1. ;

		cout << "Discrepancy M_b / wanted M_b : " << xx << endl ; 
	
		double xprog = ( mer > 2*mer_masse) ? 1. : 
		    double(mer-mer_masse)/double(mer_masse) ; 
		xx *= xprog ; 
		double ax = .5 * ( 2. + xx ) / (1. + xx ) ; 

		double fact_ent = pow(ax, aexp_masse) ; 

		cout << "  xprog, xx, ax, fact : " << xprog << "  " <<
		    xx << "  " << ax << "  " << fact_ent << endl ; 
	
		ent_c[i-1] *= fact_ent ; 

	    }
	}

	// Updates for the next step
	// -------------------------
    
	star_jm1 = star ; 
    

	cout << star << endl ; 


	//---------------------------------------------------------------------
	//		The whole configuration is saved in a file
	//---------------------------------------------------------------------
 
	if ( (mer % fmer_save) == 0 ) {

	  sprintf(name, "resu_%e.d", distance) ;
	    FILE* fresu2 = fopen(name, "w") ; 
    
	    fwrite(&mer, sizeof(int), 1, fresu2) ;	// mer

	    star(1).get_mp().get_mg()->sauve(fresu2) ; 
	    star(1).get_mp().sauve(fresu2) ; 
	    star(1).get_eos().sauve(fresu2) ; 

	    star(2).get_mp().get_mg()->sauve(fresu2) ; 
	    star(2).get_mp().sauve(fresu2) ; 
	    star(2).get_eos().sauve(fresu2) ; 

	    star.sauve(fresu2) ;     
	
	    fclose(fresu2) ;     
	}


	//--------------------------------------------
	//  Writing of global quantities in log files
	//--------------------------------------------
	for (int i=1 ; i<=2 ; i++) {
	    fichresu << star(i).mass_b() / msol ;
	    fichresu << "   Baryon mass of star " << i << "  [M_sol] " << endl ;
	    fichresu << differ[i-1](0) ;
	    fichresu << "   relative variation enth. star " << i << endl ;

	    fichresu << star(i).ray_pole() / km ;
	    fichresu << "   R(theta=0) [km] " << endl ;
	    fichresu << star(i).ray_eq() / km ;
	    fichresu << "   R(theta=pi/2, phi=0) [km] " << endl ;
	    fichresu << star(i).ray_eq_pis2() / km ;
	    fichresu << "   R(theta=pi/2, phi=pi/2) [km] " << endl ;
	    fichresu << star(i).ray_eq_pi() / km ; 
	    fichresu << "   R(theta=pi/2, phi=pi) [km] " << endl ;

	    fichconv[i-1] << "  " << log10( fabs(differ[i-1](0)) + 1.e-16 ) ;
	    fichconv[i-1] << "  " << log10( fabs(differ[i-1](1)) + 1.e-16 ) ;
	    fichconv[i-1] << "  " << log10( fabs(differ[i-1](2)) + 1.e-16 ) ;
	    fichconv[i-1] << "  " << log10( fabs(differ[i-1](3)) + 1.e-16 ) ;
	    fichconv[i-1] << "  " << log10( fabs(differ[i-1](4)) + 1.e-16 ) ;
	    fichconv[i-1] << "  " << log10( fabs(differ[i-1](5)) + 1.e-16 ) ;
	    fichconv[i-1] << "  " << log10( fabs(differ[i-1](6)) + 1.e-16 ) ;
    
	    fichet[i-1] << "  " << star(i).get_mp().get_ori_x() / km ;
	    fichet[i-1] << "  " << ent_c[i-1] ;
	    fichet[i-1] << "  " << star(i).mass_b() / msol ;
	    fichet[i-1] << "  " << star(i).ray_pole() / km ;
	    fichet[i-1] << "  " << star(i).ray_eq() / km ;
	    fichet[i-1] << "  " << star(i).ray_eq_pis2() / km ;
	    fichet[i-1] << "  " << star(i).ray_eq_pi() / km ;

	} // End of loop on the stars

	diff_mass = ( star(2).mass_b() - star(1).mass_b() ) 
	    / star(1).mass_b() ;
	cout << "Relative difference between the baryon masses: " 
	     << diff_mass << endl ;
	fichresu << diff_mass ; 
	fichresu << "   Relative difference between the baryon masses" << endl ;

	fichvir << "  " << log10( fabs(diff_mass) + 1.e-16 )  ; 


	fichresu << "  " << endl ; 
	fichresu.flush() ; 
	fichrota << "  " << endl ; 
	fichrota.flush() ; 
	fichvir << "  " << endl ; 
	fichvir.flush() ; 
	fichconv[0] << "  " << endl ; 
	fichconv[0].flush() ; 
	fichconv[1] << "  " << endl ; 
	fichconv[1].flush() ; 
	fichet[0] << "  " << endl ; 
	fichet[0].flush() ; 
	fichet[1] << "  " << endl ; 
	fichet[1].flush() ; 


    }	// End of the main loop (mer)

//============================================================================
//		End of iteration 
//============================================================================

    fichresu.close() ; 
    fichrota.close() ; 
    fichvir.close() ; 
    fichconv[0].close() ; 
    fichconv[1].close() ; 
    fichet[0].close() ; 
    fichet[1].close() ; 
        
    
//-----------------------------------------------
//  General features of the final configuration
//  saved in a file
//-----------------------------------------------

    ofstream fichfinal("calcul.d") ;
    fichfinal.precision(6) ; 
    
    time_t rawtime = time(0x0) ; 
    fichfinal << "Date: " << asctime( localtime( &rawtime ) ) << endl ; 
    char* hostname = getenv("HOST") ; 
    if (hostname != 0x0) {
	fichfinal << "Computer: " << hostname << endl ; 
    }
    fichfinal << 
	"===================================================================" 
	      << endl << endl ; 
	
    
    if ( star(1).is_irrotational() ) {
	fichfinal << "                           Irrotational" << endl ; 
    }
    else {
	fichfinal << "                           Co-rotating" << endl ; 
    }   

    fichfinal << star(1).get_eos() << endl ;
    
    fichfinal << "Omega = " << star.get_omega() * f_unit << " rad/s" 
	      << "                Orbital frequency f = " 
	      << star.get_omega() / (2*M_PI) * f_unit << " Hz" << endl ; 
    fichfinal << "Omega_kepler = " << omega_kep * f_unit << " rad/s" << endl ; 
    fichfinal << "Coordinate separation : " << star.separation()  / km 
	      << " km" << endl ; 
    fichfinal << "1/2 ADM mass :        " << 0.5 * star.mass_adm() / msol 
	      << " Mo" << endl ;
    fichfinal << "1/2 ADM mass (vol) :  " << 0.5 * star.mass_adm_vol() / msol 
	      << " Mo" << endl ;
    fichfinal << "Total angular momentum : "  
	      << star.angu_mom()(2)/ ( qpig / (4* M_PI) * msol*msol)
	      << " G M_sol^2 / c" << endl ;
 
    
    
    star(1).test_K_Hi() ;

    cout << "1/2 ADM mass :        " << 0.5 * star.mass_adm() / msol 
	      << " Mo" << endl ;
    cout << "1/2 ADM mass (vol) :  " << 0.5 * star.mass_adm_vol() / msol 
	      << " Mo" << endl ;
    cout << "Total angular momentum : "  
	 << star.angu_mom()(2)/ ( qpig / (4* M_PI) * msol*msol)
	 << " G M_sol^2 / c" << endl ;

    fichfinal << endl << "Number of steps : " << mer << endl ;

    for (int i=1 ; i<=2; i++) {
	fichfinal << endl <<
	    "===================================================================" 
		  << endl ; 
	fichfinal << "       Star no. " << i << endl ; 
	fichfinal <<
	    "===================================================================" 
		  << endl ; 
	fichfinal << "Grid : " << endl ; 
	fichfinal << "------ " << endl ; 
	fichfinal << *(star(i).get_mp().get_mg()) << endl ; 
	fichfinal << endl << "Physical characteristics : " << endl ; 
	fichfinal	  << "-------------------------" << endl ; 
	fichfinal << star(i) << endl ; 
    }
    fichfinal << endl ;
    
    star.display_poly(fichfinal) ; // Reduced quantities for polytropic EOS

    fichfinal << endl <<
	"===================================================================" 
	      << endl ; 
    fichfinal << "Diff_ent :  star 1 : " << differ[0](0) << "   star 2 : "
	      << differ[1](0) << endl ; 
    fichfinal << 
	"Relative difference between the baryon masses of the two stars : " 
	      << diff_mass << endl ; 
    fichfinal << "dH/dx at r = 0 :  star 1 : " << dentdx[0] 
	      << "   star 2 : " << dentdx[1] << endl ; 

    fichfinal << "Relative error on the virial theorem : " << endl ; 
    fichfinal << "   VE(M)= " << star.virial() ;
      
    fichfinal << endl <<
	"================================================================" << endl ; 
    fichfinal << "	    PARAMETERS USED FOR THE COMPUTATION : " << endl ; 
    fichfinal << 
	"================================================================" << endl ; 
    fichfinal.close() ; 
    system("cat parcoal.d >> calcul.d") ; 

// Identification du code et de ses sous-routines (no. de version RCS) :     	
    fichfinal.open("calcul.d", ios::app ) ; 
    fichfinal << endl <<
	"================================================================" << endl ; 
    fichfinal << "	    IDENTIFICATION OF THE CODE : " << endl ; 
    fichfinal << 
	"================================================================" << endl ; 
    fichfinal.close() ; 
    system("ident coal >> calcul.d") ; 
        
// Preparation for CPU infos printing :     	
    fichfinal.open("calcul.d", ios::app ) ; 
    fichfinal << endl <<
	"================================================================" << endl ; 
    fichfinal << "	    CPU TIME and MEMORY infos : " << endl ; 
    fichfinal << 
	"================================================================" << endl ; 
    fichfinal << endl ; 
    fichfinal.close() ; 
        

//-----------------------------------------------
//  General features of the final configuration
//  saved in a file with scientific notation and
//  14 digits for further reading by a code
//-----------------------------------------------

    sprintf(name, "resformat_%e.d", distance) ;
    ofstream seqfich(name) ; 
    if ( !seqfich.good() ) {
	cout << "coal : problem with opening the file resformat.d !" << endl ;
	abort() ;
    }
    star.write_global(seqfich) ; 
    seqfich.close() ; 
	
    
// Cleaning
// --------

    delete peos1 ;    
    delete peos2 ;    
    }

    return EXIT_SUCCESS ; 

}