1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/*
* Construction of initial conditions for a binary star computation.
*
*/
/*
* Copyright (c) 2004 Francois Limousin
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char init_bin_C[] = "$Header: /cvsroot/Lorene/Codes/Binary_star/init_bin.C,v 1.7 2014/10/13 08:53:55 j_novak Exp $" ;
/*
* $Id: init_bin.C,v 1.7 2014/10/13 08:53:55 j_novak Exp $
* $Log: init_bin.C,v $
* Revision 1.7 2014/10/13 08:53:55 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.6 2014/10/06 15:09:40 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.5 2005/09/13 19:47:28 f_limousin
* Reintroduction of the resolution of the equations in cartesian coordinates.
*
* Revision 1.4 2004/09/16 12:14:30 f_limousin
* *** empty log message ***
*
* Revision 1.2 2004/01/22 10:12:50 f_limousin
* First version
*
* $Header: /cvsroot/Lorene/Codes/Binary_star/init_bin.C,v 1.7 2014/10/13 08:53:55 j_novak Exp $
*
*/
// headers C
#include <cstdlib>
#include <cmath>
// headers Lorene
#include "unites.h"
#include "binary.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "nbr_spx.h"
using namespace Lorene ;
//******************************************************************************
int main(){
// Identification of all the subroutines called by the code :
// system("ident init_bin") ;
//-----------------------------------------------------------------------
// Input data for the multi-grid no. 1
//-----------------------------------------------------------------------
int nt, np, nz ;
char blabla[80] ;
ifstream fich("par_grid1.d") ;
fich.getline(blabla, 80);
fich.getline(blabla, 80);
fich >> nz; fich.getline(blabla, 80) ;
int nzet1 ;
fich >> nzet1; fich.getline(blabla, 80) ;
fich >> nt; fich.getline(blabla, 80) ;
fich >> np; fich.getline(blabla, 80) ;
cout << "total number of domains : nz = " << nz << endl ;
cout << "number of points in phi : np = " << np << endl ;
cout << "number of points in theta : nt = " << nt << endl ;
int* nr = new int[nz];
int* nt_tab = new int[nz];
int* np_tab = new int[nz];
double* bornes = new double[nz+1];
fich.getline(blabla, 80);
for (int l=0; l<nz; l++) {
fich >> nr[l];
fich >> bornes[l]; fich.getline(blabla, 80) ;
np_tab[l] = np ;
nt_tab[l] = nt ;
}
bornes[nz] = __infinity ;
fich.close();
// Type of r sampling :
int* type_r = new int[nz];
type_r[0] = RARE ;
for (int l=1; l<nz-1; l++) {
type_r[l] = FIN ;
}
type_r[nz-1] = UNSURR ;
// Type of sampling in theta and phi :
int type_t = SYM ;
int type_p = NONSYM ;
//-----------------------------------------------------------------------
// Construction of multi-grid 1 and mapping 1
//-----------------------------------------------------------------------
Mg3d mg1(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;
Map_et mp1(mg1, bornes) ;
delete [] nr ;
delete [] nt_tab ;
delete [] np_tab ;
delete [] type_r ;
delete [] bornes ;
//-----------------------------------------------------------------------
// Input data for the multi-grid no. 2
//-----------------------------------------------------------------------
fich.open("par_grid2.d") ;
fich.getline(blabla, 80);
fich.getline(blabla, 80);
fich >> nz; fich.getline(blabla, 80) ;
int nzet2 ;
fich >> nzet2; fich.getline(blabla, 80) ;
fich >> nt; fich.getline(blabla, 80) ;
fich >> np; fich.getline(blabla, 80) ;
cout << "total number of domains : nz = " << nz << endl ;
cout << "number of points in phi : np = " << np << endl ;
cout << "number of points in theta : nt = " << nt << endl ;
nr = new int[nz];
nt_tab = new int[nz];
np_tab = new int[nz];
bornes = new double[nz+1];
fich.getline(blabla, 80);
for (int l=0; l<nz; l++) {
fich >> nr[l];
fich >> bornes[l]; fich.getline(blabla, 80) ;
np_tab[l] = np ;
nt_tab[l] = nt ;
}
bornes[nz] = __infinity ;
fich.close();
// Type of r sampling :
type_r = new int[nz];
type_r[0] = RARE ;
for (int l=1; l<nz-1; l++) {
type_r[l] = FIN ;
}
type_r[nz-1] = UNSURR ;
//-----------------------------------------------------------------------
// Construction of multi-grid 2 and mapping 2
//-----------------------------------------------------------------------
Mg3d mg2(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;
Map_et mp2(mg2, bornes) ;
delete [] nr ;
delete [] nt_tab ;
delete [] np_tab ;
delete [] type_r ;
delete [] bornes ;
cout << endl << "Multi-grid 1 : "
<< endl << "============ " << endl << mg1 << endl ;
cout << "Mapping 1 : "
<< endl << "========= " << endl << mp1 << endl ;
cout << endl << "Multi-grid 2 : "
<< endl << "============ " << endl << mg2 << endl ;
cout << "Mapping 2 : "
<< endl << "========= " << endl << mp2 << endl ;
//-----------------------------------------------------------------------
// Equation of state for star 1
//-----------------------------------------------------------------------
fich.open("par_eos1.d") ;
Eos* peos1 = Eos::eos_from_file(fich) ;
Eos& eos1 = *peos1 ;
fich.close() ;
//-----------------------------------------------------------------------
// Equation of state for star 2
//-----------------------------------------------------------------------
fich.open("par_eos2.d") ;
Eos* peos2 = Eos::eos_from_file(fich) ;
Eos& eos2 = *peos2 ;
fich.close() ;
cout << endl << "Equation of state of star 1 : "
<< endl << "=========================== " << endl << eos1 << endl ;
cout << endl << "Equation of state of star 2 : "
<< endl << "=========================== " << endl << eos2 << endl ;
//-----------------------------------------------------------------------
// Physical parameters imput
//-----------------------------------------------------------------------
using namespace Unites ;
fich.open("par_init.d") ;
fich.getline(blabla, 80) ;
fich.getline(blabla, 80) ;
double separ ;
fich >> separ; fich.getline(blabla, 80) ;
separ *= km ; // translation in machine units
int irrot1_i, irrot2_i ;
double ent_c1, ent_c2 ;
fich >> ent_c1 ; fich.getline(blabla, 80) ;
fich >> irrot1_i ; fich.getline(blabla, 80) ;
bool irrot1 = (irrot1_i == 1) ;
fich >> ent_c2 ; fich.getline(blabla, 80) ;
fich >> irrot2_i ; fich.getline(blabla, 80) ;
bool irrot2 = (irrot2_i == 1) ;
int conf_flat_i ;
fich >> conf_flat_i; fich.getline(blabla, 80) ;
bool conf_flat = (conf_flat_i == 1) ;
fich.close() ;
cout << endl << "Requested orbital separation : " << separ / km
<< " km" << endl ;
//-----------------------------------------------------------------------
// Construction of a binary system
//-----------------------------------------------------------------------
Binary star(mp1, nzet1, eos1, irrot1,
mp2, nzet2, eos2, irrot2, conf_flat) ;
//-----------------------------------------------------------------------
// Computation of two static configurations
//-----------------------------------------------------------------------
double precis = 1.e-12 ;
cout << endl << "Computation of a static configuration for star 1"
<< endl << "================================================" << endl ;
(star.set(1)).equilibrium_spher(ent_c1, precis) ;
(star.set(1)).set_logn_auto (star(1).get_logn()) ;
(star.set(1)).set_lnq_auto (star(1).get_lnq()) ;
cout << endl << "Computation of a static configuration for star 2"
<< endl << "================================================" << endl ;
(star.set(2)).equilibrium_spher(ent_c2, precis) ;
(star.set(2)).set_logn_auto (star(2).get_logn()) ;
(star.set(2)).set_lnq_auto (star(2).get_lnq()) ;
//-----------------------------------------------------------------------
// Sets the stars at Newtonian (Keplerian) position
//-----------------------------------------------------------------------
// Omega and rotation axis
// -----------------------
double total_mass = star(1).mass_g() + star(2).mass_g() ;
star.set_omega() = sqrt( g_si/g_unit * total_mass / pow(separ, 3.) ) ;
star.set_x_axe() = 0 ;
// Position of the two stars
// -------------------------
for (int i=1 ; i<=2 ; i++) {
double xa_et = (star(3-i).mass_g()) / total_mass * separ ;
if (i == 1) xa_et = - xa_et ;
((star.set(i)).set_mp()).set_ori(xa_et, 0., 0.) ;
}
// Orientation of the two stars
// ----------------------------
// Star 1 aligned with the absolute frame :
((star.set(1)).set_mp()).set_rot_phi(0.) ;
// Star 2 anti-aligned with the absolute frame :
((star.set(2)).set_mp()).set_rot_phi(M_PI) ;
cout << endl
<< "=============================================================" << endl
<< "=============================================================" << endl ;
cout << endl << "Final characteristics of the computed system : " << endl ;
cout.precision(16) ;
cout << star << endl ;
//-----------------------------------------------------------------------
// The result is written in a file
//-----------------------------------------------------------------------
FILE* fresu = fopen("ini.d", "w") ;
int mer = 0 ;
fwrite(&mer, sizeof(int), 1, fresu) ; // mer
mg1.sauve(fresu) ;
mp1.sauve(fresu) ;
eos1.sauve(fresu) ;
mg2.sauve(fresu) ;
mp2.sauve(fresu) ;
eos2.sauve(fresu) ;
star.sauve(fresu) ;
fclose(fresu) ;
// Cleaning
// --------
delete peos1 ;
delete peos2 ;
return EXIT_SUCCESS ;
}
|