1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/* Computes the Kerr metric in Dirac gauge.
*
*/
/*
* Copyright (c) 2010 Nicolas Vasset
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char kerr_C[] = "$Header: /cvsroot/Lorene/Codes/Kerr2/kerr.C,v 1.6 2014/10/13 08:53:57 j_novak Exp $" ;
// headers Lorene
#include "nbr_spx.h"
#include "excised_slice.h"
#include "unites.h"
using namespace Lorene ;
int main(){
using namespace Unites ;
//------------------------------------------------------------------
// Parameters of the computation
//------------------------------------------------------------------
int nr, nt, np, CFornot, mer_max, mer_max2;
double relax, precis, Omega, N_hor;
bool isCF;
ifstream fpar("parkerr.d") ;
fpar.ignore(1000, '\n') ;
fpar.ignore(1000, '\n') ;
fpar >> nr; fpar.ignore(1000, '\n');
fpar >> nt; fpar.ignore(1000, '\n');
fpar >> np; fpar.ignore(1000, '\n');
fpar >> CFornot; fpar.ignore(1000, '\n');
isCF = (CFornot == 1) ;
int nz=6; // Number of domain; unable to change it in parameter file until now, bu can be changed inside the code.
cout << "==========GRID PARAMETERS========" << endl;
cout << "total number of domains : nz = " << nz << endl ;
cout << "number of points in r : nr = " << nr << endl ;
cout << "number of points in phi : np = " << np << endl ;
cout << "number of points in theta : nt = " << nt << endl ;
fpar >> relax; fpar.ignore(1000, '\n');
fpar >> precis; fpar.ignore(1000, '\n');
fpar >> mer_max; fpar.ignore(1000, '\n');
fpar >> mer_max2; fpar.ignore(1000, '\n');
fpar >> Omega; fpar.ignore(1000, '\n');
fpar >> N_hor; fpar.ignore(1000, '\n');
cout << "=============PHYSICAL PARAMETERS===============" << endl;
cout << "Chosen rotation parameter : Omega= " << Omega << endl;
cout << "Value for the lapse at the horizon : N= " << N_hor << endl;
fpar.close();
//----------------------------------------------------------
// Construction of a multi-grid (Mg3d) and associated mapping
// ----------------------------------------------------------
// Note that the horizon radius is set by default to 1, which is
// the inner boundary of the first shell.
int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
int symmetry_phi = SYM ; // symmetry in phi
int nbr[] = {nr, nr, nr, nr, nr, nr};
int nbt[] = {nt, nt, nt, nt, nt, nt} ;
int nbp[] = {np, np, np, np, np, np} ;
int tipe_r[] = {RARE, FIN, FIN, FIN, FIN, UNSURR} ;
Mg3d mgrid(nz, nbr, tipe_r, nbt, symmetry_theta, nbp, symmetry_phi) ;
// Construct angular grid for h(theta,phi)
const Mg3d& g_angu = *mgrid.get_angu_1dom() ;
// Construction of an affine mapping (Map_af)
// ------------------------------------------
// Boundaries of each domains
double Rmax = (1/0.3) ;
double r_limits[] = {0., 0.3*Rmax, 0.6*Rmax, 1.*Rmax, 2.*Rmax, 4.*Rmax, __infinity} ;
double r_limits2[] = {0.3*Rmax, 0.6*Rmax} ;
const Map_af map(mgrid, r_limits);
const Map_af map_2(g_angu, r_limits2);
// Some helpful stuff...
const Coord& rr = map.r;
Scalar rrr (map) ;
rrr = rr ;
rrr.std_spectral_base();
// const Metric_flat& mets = map.flat_met_spher() ;
// Definition of the class for black hole data containing an isolated horizon
//---------------------------------------------------------------------------
Scalar lapse_hor(map); lapse_hor = N_hor; lapse_hor.std_spectral_base();
Excised_slice Kerr_hole(*(dynamic_cast<const Map*>(&map)), 1 ,1);
// Compute the metric data using the Isol_hole class
//--------------------------------------------------
Kerr_hole.compute_stat_metric(precis, Omega, false, lapse_hor, isCF, relax, mer_max, mer_max2);
// Once metric fields are calculated, it is possible to perform several diagnostics on the data.
cout << "==============================================" << endl;
cout << " Computation for the ADM mass" << endl;
cout << " (LORENE Units) " << endl;
cout << " M_ADM = " << Kerr_hole.adm_mass() << endl;
cout << "==============================================" << endl;
cout << "==============================================" << endl;
cout << " Total Komar angular momentum " << endl;
cout << " (LORENE Units) " << endl;
cout << " J_K = " << Kerr_hole.komar_angmom() << endl;
cout << "==============================================" << endl;
cout << "==============================================" << endl;
cout << " Virial residue (stationarity marker) " << endl;
cout << " Difference between Komar and ADM masses" << endl;
cout << " (Rescaled values) " << endl;
cout << " Vir = " << Kerr_hole.virial_residue() << endl;
cout << "==============================================" << endl;
cout << "==============================================" << endl;
cout << " Violation of Einstein Equations " << endl;
Kerr_hole.Einstein_errors();
cout << "==============================================" << endl;
// The computed metric fields are saved as a whole in Isol_hole data.
FILE* Kerr_holedata = fopen("Kerr_data_Om0.05_N0.55.d", "w");
Kerr_hole.get_mp().get_mg()->sauve(Kerr_holedata) ; // writing of the grid
Kerr_hole.get_mp().sauve(Kerr_holedata) ;
Kerr_hole.sauve(Kerr_holedata);
fclose(Kerr_holedata);
return EXIT_SUCCESS ;
}
|