1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
/*
* Main code for computing a sequence of stationary axisymmetric differentially
* rotating stars
*/
/*
* Copyright (c) 2001-2003 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char rotseq_C[] = "$Header: /cvsroot/Lorene/Codes/Rot_star/rotseq.C,v 1.10 2014/10/13 08:53:58 j_novak Exp $" ;
/*
* $Id: rotseq.C,v 1.10 2014/10/13 08:53:58 j_novak Exp $
* $Log: rotseq.C,v $
* Revision 1.10 2014/10/13 08:53:58 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.9 2014/10/06 15:09:45 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.8 2004/03/25 12:35:44 j_novak
* now using namespace Unites
*
* Revision 1.7 2003/09/16 13:06:24 e_gourgoulhon
* Replaced the fich.getline(blabla, 120) by fich.ignore(1000, '\n')
*
* Revision 1.6 2003/08/26 08:58:50 e_gourgoulhon
*
* Added M/R and quantities in polytropic units in the
* output file res.d
*
* Revision 1.5 2003/05/25 19:56:49 e_gourgoulhon
*
* Added the possibility to choose the factor a = R_eq / R0, instead of R0
* in the differential rotation law.
*
* Revision 1.4 2003/05/14 20:06:09 e_gourgoulhon
* Suppressed the qualifier ios::nocreate in call to fstream::open
* (not supported by gcc 3.2).
*
* Revision 1.3 2003/01/09 11:07:50 j_novak
* headcpp.h is now compliant with C++ norm.
* The include files have been ordered, as well as the local_settings_linux
*
* Revision 1.2 2002/03/27 22:00:23 e_gourgoulhon
* Now can computes sequences of rigidly rotating stars (class Etoile_rot)
* as well as differentially rotating stars (class Et_rot_diff)
*
* Revision 1.1.1.1 2001/11/20 15:19:31 e_gourgoulhon
* LORENE
*
* Revision 1.1 2001/10/26 17:02:18 eric
* Initial revision
*
*
* $Header: /cvsroot/Lorene/Codes/Rot_star/rotseq.C,v 1.10 2014/10/13 08:53:58 j_novak Exp $
*
*/
// headers C
#include <cstdlib>
#include <cmath>
#include <cstring>
// headers Lorene
#include "et_rot_diff.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "nbr_spx.h"
#include "unites.h"
// Function defining the rotation profile
double frotlin(double omega, const Lorene::Tbl& par) ;
double primfrotlin(double omega, const Lorene::Tbl& par) ;
namespace Lorene {
// Local prototype (for drawings only)
Cmp raccord_c1(const Cmp& uu, int l1) ;
}
//******************************************************************************
using namespace Lorene ;
int main(){
using namespace Unites ;
// For the display :
char display_bold[]="x[1m" ; display_bold[0] = 27 ;
//------------------------------------------------------------------
// Parameters of the computation
//------------------------------------------------------------------
int relat_i, mer_max, mer_rot, mer_change_omega, mer_fix_omega,
delta_mer_kep, mer_mass, mermax_poisson, graph, nz, nzet, nzadapt,
nt, np, mer_triax, n_conf, diffrot_i ;
double entc_min, entc_max, fact_omega, mbar_wanted, precis, freq_min_si,
freq_max_si, thres_adapt, aexp_mass, relax, relax_poisson,
ampli_triax, precis_adapt, rrot_km, arot ;
ifstream fich("parrotseq.d") ;
if ( !fich.good() ) {
cout << "Problem with opening the file parrotseq.d ! " << endl ;
abort() ;
}
fich.ignore(1000,'\n') ;
fich >> relat_i ; fich.ignore(1000,'\n') ;
bool relat = (relat_i == 1) ;
fich >> entc_min ; fich.ignore(1000,'\n') ;
fich >> entc_max ; fich.ignore(1000,'\n') ;
fich >> freq_min_si ; fich.ignore(1000,'\n') ;
fich >> freq_max_si ; fich.ignore(1000,'\n') ;
fich >> n_conf ; fich.ignore(1000,'\n') ;
if (n_conf > 1000) {
cout << "rotseq: n_conf must be smaller than 1000" << endl ;
abort() ;
}
fich >> diffrot_i ; fich.ignore(1000,'\n');
if (diffrot_i <= 1) {
fich >> rrot_km ; fich.ignore(1000,'\n');
arot = 0 ;
}
else {
assert (diffrot_i == 2) ;
fich >> arot ; fich.ignore(1000,'\n');
rrot_km = 0 ;
}
fact_omega = 1 ;
fich >> mbar_wanted ; fich.ignore(1000,'\n');
mbar_wanted *= msol ;
fich.ignore(1000,'\n');
fich >> mer_max ; fich.ignore(1000,'\n');
fich >> precis ; fich.ignore(1000,'\n');
mer_rot = 0 ;
mer_change_omega = 0 ;
mer_fix_omega = 1 ;
delta_mer_kep = 0 ;
fich >> thres_adapt ; fich.ignore(1000,'\n');
mer_triax = 100000 ;
ampli_triax = 0 ;
fich >> mer_mass ; fich.ignore(1000,'\n');
fich >> aexp_mass ; fich.ignore(1000,'\n');
fich >> relax ; fich.ignore(1000,'\n');
fich >> mermax_poisson ; fich.ignore(1000,'\n');
fich >> relax_poisson ; fich.ignore(1000,'\n');
fich >> precis_adapt ; fich.ignore(1000,'\n');
fich >> graph ; fich.ignore(1000,'\n');
fich.ignore(1000,'\n');
fich >> nz ; fich.ignore(1000,'\n') ;
fich >> nzet; fich.ignore(1000,'\n') ;
fich >> nzadapt; fich.ignore(1000,'\n') ;
fich >> nt; fich.ignore(1000,'\n') ;
fich >> np; fich.ignore(1000,'\n') ;
int* nr = new int[nz];
int* nt_tab = new int[nz];
int* np_tab = new int[nz];
double* bornes = new double[nz+1];
fich.ignore(1000,'\n') ;
for (int l=0; l<nz; l++) {
fich >> nr[l];
fich >> bornes[l]; fich.ignore(1000,'\n');
np_tab[l] = np ;
nt_tab[l] = nt ;
}
bornes[nz] = __infinity ;
Tbl ent_limit(nzet) ;
ent_limit.set_etat_qcq() ;
ent_limit.set(nzet-1) = 0 ; // enthalpy at the stellar surface
for (int l=0; l<nzet-1; l++) {
fich >> ent_limit.set(l) ; fich.ignore(1000,'\n');
}
fich.close();
//-----------------------------------------------------------------------
// Equation of state
//-----------------------------------------------------------------------
fich.open("par_eos.d") ;
Eos* peos = Eos::eos_from_file(fich) ;
Eos& eos = *peos ;
fich.close() ;
// Special treatment of crust - liquid core boundary in the case
// of Eos_strange
if (eos.identify() == 6) {
assert( nzet == 2 ) ;
const Eos_strange_cr* peos_cr = dynamic_cast<const Eos_strange_cr*>(peos) ;
if (peos_cr == 0x0) {
cout << "rotseq: problem : peos is not of type Eos_strange_cr !" << endl ;
abort() ;
}
ent_limit.set(0) = peos_cr->get_ent_nd() ; // enthalpy at core/crust transition
}
//-----------------------------------------------------------------------
// Construction of the multi-grid and the mapping
//-----------------------------------------------------------------------
// Rescale of bornes in the case where there more than 1 domain inside
// the star
for (int l=0; l<nzet-1; l++) {
bornes[l+1] = bornes[nzet] * sqrt(1 - ent_limit(l) / entc_min) ;
}
// Type of r sampling :
int* type_r = new int[nz];
type_r[0] = RARE ;
for (int l=1; l<nz-1; l++) {
type_r[l] = FIN ;
}
type_r[nz-1] = UNSURR ;
// Type of sampling in theta and phi :
int type_t = SYM ;
int type_p = SYM ;
Mg3d mg(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;
Map_et mp(mg, bornes) ;
// Cleaning
// --------
delete [] nr ;
delete [] nt_tab ;
delete [] np_tab ;
delete [] type_r ;
delete [] bornes ;
cout << endl
<< "==========================================================" << endl
<< " Physical parameters " << endl
<< "=========================================================="
<< endl ;
cout << endl ;
cout << endl << "Equation of state : "
<< endl << "================= " << endl ;
cout << eos << endl ;
cout << "Central enthalpy range: " << entc_min << " - " << entc_max << " c^2" << endl ;
cout << "Rotation frequency range : " << freq_min_si
<< " - " << freq_max_si << " Hz" << endl ;
if ( abs(mer_mass) < mer_max ) {
cout << "Required Baryon mass [M_sol] : "
<< mbar_wanted / msol << endl ;
}
cout << endl
<< "==========================================================" << endl
<< " Computational parameters " << endl
<< "=========================================================="
<< endl << endl ;
cout << "Maximum number of steps in the main iteration : "
<< mer_max << endl ;
cout << "Relaxation factor in the main iteration : "
<< relax << endl ;
cout << "Threshold on the enthalpy relative change for ending the computation : "
<< precis << endl ;
cout << "Maximum number of steps in Map_et::poisson : "
<< mermax_poisson << endl ;
cout << "Relaxation factor in Map_et::poisson : "
<< relax_poisson << endl ;
cout << "Step from which the baryon mass is forced to converge : "
<< mer_mass << endl ;
cout << "Exponent for the increase factor of the central enthalpy or frequency : "
<< aexp_mass << endl ;
cout <<
"Threshold on |dH/dr|_eq / |dH/dr|_pole for the adaptation of the mapping"
<< endl << thres_adapt << endl ;
cout << endl << "Multi-grid : "
<< endl << "==========" << endl << mg << endl ;
cout << "Mapping : "
<< endl << "=======" << endl << mp << endl ;
//-----------------------------------------------------------------------
// Parameters for the function defining the differential rotation
//-----------------------------------------------------------------------
double omega_c_min = 2 * M_PI * freq_min_si / f_unit ;
double omega_c_max = 2 * M_PI * freq_max_si / f_unit ;
double rrot = rrot_km * km ;
Tbl parfrot(3) ;
parfrot.set_etat_qcq() ;
parfrot.set(0) = 0 ;
parfrot.set(1) = rrot ;
parfrot.set(2) = arot ;
//-----------------------------------------------------------------------
// Construction of the star
//-----------------------------------------------------------------------
bool diffrot = (diffrot_i >= 1) ;
Etoile_rot* p_star ;
Et_rot_diff* p_star_diff = 0x0 ;
if ( diffrot ) {
p_star_diff = new Et_rot_diff(mp, nzet, relat, eos, frotlin, primfrotlin, parfrot) ;
p_star = p_star_diff ;
}
else {
p_star = new Etoile_rot(mp, nzet, relat, eos) ;
}
Etoile_rot& star = *p_star ;
if ( star.is_relativistic() ) {
cout << "========================" << endl ;
cout << "Relativistic computation" << endl ;
cout << "========================" << endl ;
}
else {
cout << "=====================" << endl ;
cout << "Newtonian computation" << endl ;
cout << "=====================" << endl ;
}
//-----------------------------------------------------------------------
// Initialization of the enthalpy field
//-----------------------------------------------------------------------
const Coord& r = mp.r ;
double ray0 = mp.val_r(nzet-1, 1., 0., 0.) ;
Cmp ent0(mp) ;
ent0 = entc_min * ( 1 - r*r / (ray0*ray0) ) ;
ent0.annule(nz-1) ;
ent0.std_base_scal() ;
star.set_enthalpy(ent0) ;
// Initialization of (n,e,p) from H
star.equation_of_state() ;
// Initialization of (E,S,U,etc...) (quantities relative to the Eulerian obs)
star.hydro_euler() ;
cout << endl << "Initial star : "
<< endl << "============ " << endl ;
cout << star << endl ;
//---------------------------------------------------
// Sequence parameters saved in file "calcul_seq.d"
//---------------------------------------------------
ofstream fichseq("calcul_seq.d") ;
fichseq << endl <<
"================================================================" << endl ;
fichseq <<
" PARAMETERS USED FOR THE COMPUTATION (file parrotseq.d) : " << endl ;
fichseq <<
"================================================================" << endl ;
fichseq.close() ;
system("cat parrotseq.d >> calcul_seq.d") ;
fichseq.open("calcul_seq.d", ios::app) ;
fichseq << endl <<
"================================================================" << endl ;
fichseq <<
" EOS PARAMETERS (file par_eos.d) : " << endl ;
fichseq <<
"================================================================" << endl ;
fichseq.close() ;
system("cat par_eos.d >> calcul_seq.d") ;
// Identification du code et de ses sous-routines (no. de version RCS) :
fichseq.open("calcul_seq.d", ios::app) ;
fichseq << endl <<
"================================================================" << endl ;
fichseq << " IDENTIFICATION OF THE CODE : " << endl ;
fichseq <<
"================================================================" << endl ;
fichseq.close() ;
system("ident rotseq >> calcul_seq.d") ;
//-----------------------------------------------------------------------
// Computation of the equilibrium sequence
//-----------------------------------------------------------------------
Itbl icontrol(8) ;
icontrol.set_etat_qcq() ;
icontrol.set(0) = mer_max ;
icontrol.set(1) = mer_rot ;
icontrol.set(2) = mer_change_omega ;
icontrol.set(3) = mer_fix_omega ;
// icontrol.set(4) set later
icontrol.set(5) = mermax_poisson ;
icontrol.set(6) = mer_triax ;
icontrol.set(7) = delta_mer_kep ;
Tbl control(7) ;
control.set_etat_qcq() ;
control.set(0) = precis ;
control.set(2) = relax ;
control.set(3) = relax_poisson ;
control.set(4) = thres_adapt ;
control.set(5) = ampli_triax ;
control.set(6) = precis_adapt ;
Tbl diff(8) ;
ofstream fichresu("seq.d") ;
fichresu << "# M/R M [poly] M_B [poly] J [G M_sol^2/c] M [M_sol] f_c [Hz] H_c r_p/r_e"
<< " T/W M_B [M_sol] GRV2 GRV3 " << endl ;
// Loop on the configurations
// --------------------------
bool seq_freq = ( entc_min == entc_max ) ;
if ( !seq_freq ) {
if ( omega_c_min != omega_c_max ) {
cout << "rotseq : one must have freq_min == freq_max "
<< "when entc_min != entc_max !" << endl ;
abort() ;
}
}
double domega = (n_conf > 1) ?
(omega_c_max - omega_c_min) / double(n_conf-1) : 0 ;
double dent = (n_conf > 1) ? (entc_max - entc_min) / double(n_conf-1) : 0 ;
for (int jj = 0; jj < n_conf; jj++) {
double omega_c, ent_c ;
if ( seq_freq ) {
icontrol.set(4) = mer_mass ;
ent_c = star.get_ent()()(0, 0, 0, 0) ;
omega_c = omega_c_min + jj * domega ;
}
else {
icontrol.set(4) = - mer_mass ;
ent_c = entc_min + jj * dent ;
omega_c = star.get_omega_c() ;
if (omega_c == double(0)) {
omega_c = omega_c_min ;
icontrol.set(1) = 10 ; // mer_rot = 10
icontrol.set(2) = 10 ;
icontrol.set(3) = 11 ;
}
else {
icontrol.set(1) = 0 ; // mer_rot = 0
icontrol.set(2) = 0 ;
icontrol.set(3) = 1 ;
}
}
control.set(1) = omega_c ;
star.equilibrium(ent_c, omega_c, fact_omega, nzadapt, ent_limit,
icontrol, control, mbar_wanted, aexp_mass, diff) ;
const Eos_poly* p_eos_poly = dynamic_cast<const Eos_poly*>(
&(star.get_eos()) ) ;
double mass_g_poly, mass_b_poly ;
if (p_eos_poly != 0x0) {
double kappa = p_eos_poly->get_kap() ;
double gamma = p_eos_poly->get_gam() ; ;
// kappa^{n/2}
double kap_ns2 = pow( kappa, 0.5 /(gamma-1) ) ;
// Polytropic unit of length in terms of r_unit :
double r_poly = kap_ns2 / sqrt(ggrav) ;
// Polytropic unit of mass in terms of m_unit :
double m_poly = r_poly / ggrav ;
mass_g_poly = star.mass_g() / m_poly ;
mass_b_poly = star.mass_b() / m_poly ;
}
else{
mass_g_poly = 0 ;
mass_b_poly = 0 ;
}
int precisaff = 8 ;
int tailleaff = precisaff + 3 ;
fichresu.precision(precisaff) ;
fichresu << setw(tailleaff)
<< ggrav * star.mass_g() / star.r_circ() << " "
<< setw(tailleaff)
<< mass_g_poly << " "
<< setw(tailleaff)
<< mass_b_poly << " "
<< setw(tailleaff)
<< star.angu_mom()/( qpig / (4* M_PI) * msol*msol) << " "
<< setw(tailleaff)
<< star.mass_g() / msol << " "
<< setw(tailleaff)
<< star.get_omega_c() / (2.*M_PI) * f_unit << " "
<< setw(tailleaff)
<< star.get_ent()()(0, 0, 0, 0) << " "
<< setw(tailleaff)
<< star.aplat() << " "
<< setw(tailleaff)
<< star.tsw() << " "
<< setw(tailleaff)
<< star.mass_b() / msol << " "
<< setw(tailleaff)
<< star.grv2() << " "
<< setw(tailleaff)
<< star.grv3() << endl ;
cout << endl << "Configuration " << jj << " : "
<< endl << "===========================" << endl ;
cout.precision(10) ;
cout << star << endl ;
//-----------------------------------------------
// General features of the final configuration
// saved in a file
//-----------------------------------------------
char nomfich[20] ;
strcpy(nomfich, "calcul") ;
char numero[3] ;
sprintf(numero, "%3.3d", jj) ;
strcat(nomfich, numero) ;
strcat(nomfich, ".d") ;
cout << endl << "File name : " << nomfich << endl ;
ofstream fichfinal(nomfich) ;
fichfinal.precision(10) ;
if ( star.is_relativistic() ) {
fichfinal << "Relativistic computation" << endl ;
}
else {
fichfinal << "Newtonian computation" << endl ;
}
fichfinal << star.get_eos() << endl ;
fichfinal << endl << "Total CPU time : " << endl ;
fichfinal << "Memory size : " << endl << endl ;
fichfinal << endl << endl ;
fichfinal << "Grid : " << endl ;
fichfinal << "------ " << endl ;
fichfinal << *(star.get_mp().get_mg()) << endl ;
fichfinal << endl << "Physical characteristics : " << endl ;
fichfinal << "-------------------------" << endl ;
fichfinal << star << endl ;
fichfinal << "Growing rate of triaxial perturbation: 0 " << endl ;
fichfinal << endl <<
"==================================================================="
<< endl ;
fichfinal << "Diff_ent : " << diff(0) << endl ;
fichfinal << "Relative error on the virial theorem GRV2 : "
<< star.grv2() << endl ;
fichfinal << "Relative error on the virial theorem GRV3 : "
<< star.grv3() << endl ;
fichfinal.close() ;
// Drawings
// --------
if (graph == 1) {
des_map_et(mp, 0) ;
// Cmp defining the surface of the star (via the enthalpy field)
Cmp surf = star.get_ent()() ;
Cmp surf_ext(mp) ;
surf_ext = - 0.2 * surf(0, 0, 0, 0) ;
surf_ext.annule(0, star.get_nzet()-1) ;
surf.annule(star.get_nzet(), mg.get_nzone()-1) ;
surf = surf + surf_ext ;
surf = raccord_c1(surf, star.get_nzet()) ;
int nzdes = star.get_nzet() ;
des_coupe_y(star.get_ent()(), 0., nzdes, "Enthalpy", &surf) ;
if (mer_triax < mer_max) {
des_coupe_z(star.get_ent()(), 0., nzdes, "Enthalpy (equatorial plane)",
&surf) ;
}
if (diffrot) {
Cmp tmpdes = p_star_diff->get_omega_field()() / (2*M_PI) * f_unit ;
des_profile(tmpdes, 0., star.ray_eq(),
M_PI/2., 0., "\\gW/2\\gp [Hz]",
"Angular velocity in equatorial plane") ;
des_coupe_y(p_star_diff->get_omega_field()(), 0., nzdes,
"\\gW", &surf) ;
}
des_coupe_y(star.get_logn()(), 0., nzdes,
"Gravitational potential \\gn", &surf) ;
if (star.is_relativistic()) {
des_coupe_y(star.get_nphi()(), 0., nzdes,
"Azimuthal shift N\\u\\gf", &surf) ;
des_coupe_y(star.get_dzeta()(), 0., nzdes,
"Metric potential \\gz", &surf) ;
des_coupe_y(star.get_tggg()(), 0., nzdes,
"Metric potential (NB-1) r sin\\gh", &surf) ;
des_coupe_y(star.get_ak_car()(), 0., nzdes,
"A\\u2\\d K\\dij\\u K\\uij\\d", &surf) ;
}
}
} // End of the loop on the configurations
fichresu.close() ;
// Cleaning
// --------
delete p_star ;
delete peos ;
exit(EXIT_SUCCESS) ;
return EXIT_SUCCESS ;
}
//------------------------------//
// Function F(Omega) //
//------------------------------//
double frotlin(double omega, const Tbl& par){
double omega_c = par(0) ;
double rrot = par(1) ;
return rrot*rrot* (omega_c - omega) ;
}
//------------------------------//
// Primitive of F(Omega) //
//------------------------------//
double primfrotlin(double omega, const Tbl& par){
double omega_c = par(0) ;
double rrot = par(1) ;
return - 0.5 * rrot*rrot* (omega_c - omega)*(omega_c - omega) ;
}
|