File: rotseq.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (717 lines) | stat: -rw-r--r-- 21,127 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
/*
 * Main code for computing a sequence of stationary axisymmetric differentially
 * rotating stars
 */

/*
 *   Copyright (c) 2001-2003 Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char rotseq_C[] = "$Header: /cvsroot/Lorene/Codes/Rot_star/rotseq.C,v 1.10 2014/10/13 08:53:58 j_novak Exp $" ;

/*
 * $Id: rotseq.C,v 1.10 2014/10/13 08:53:58 j_novak Exp $
 * $Log: rotseq.C,v $
 * Revision 1.10  2014/10/13 08:53:58  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.9  2014/10/06 15:09:45  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.8  2004/03/25 12:35:44  j_novak
 * now using namespace Unites
 *
 * Revision 1.7  2003/09/16 13:06:24  e_gourgoulhon
 * Replaced the fich.getline(blabla, 120) by fich.ignore(1000, '\n')
 *
 * Revision 1.6  2003/08/26 08:58:50  e_gourgoulhon
 *
 * Added M/R and quantities in polytropic units in the
 * output file res.d
 *
 * Revision 1.5  2003/05/25 19:56:49  e_gourgoulhon
 *
 * Added the possibility to choose the factor a = R_eq / R0, instead of R0
 * in the differential rotation law.
 *
 * Revision 1.4  2003/05/14 20:06:09  e_gourgoulhon
 * Suppressed the qualifier ios::nocreate in call to fstream::open
 * (not supported by gcc 3.2).
 *
 * Revision 1.3  2003/01/09 11:07:50  j_novak
 * headcpp.h is now compliant with C++ norm.
 * The include files have been ordered, as well as the local_settings_linux
 *
 * Revision 1.2  2002/03/27 22:00:23  e_gourgoulhon
 * Now can computes sequences of rigidly rotating stars (class Etoile_rot)
 * as well as differentially rotating stars (class Et_rot_diff)
 *
 * Revision 1.1.1.1  2001/11/20 15:19:31  e_gourgoulhon
 * LORENE
 *
 * Revision 1.1  2001/10/26  17:02:18  eric
 * Initial revision
 *
 *
 * $Header: /cvsroot/Lorene/Codes/Rot_star/rotseq.C,v 1.10 2014/10/13 08:53:58 j_novak Exp $
 *
 */


// headers C
#include <cstdlib>
#include <cmath>
#include <cstring>

// headers Lorene
#include "et_rot_diff.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "nbr_spx.h"
#include "unites.h"

// Function defining the rotation profile
double frotlin(double omega, const Lorene::Tbl& par) ;
double primfrotlin(double omega, const Lorene::Tbl& par) ;

namespace Lorene {
// Local prototype (for drawings only)
Cmp raccord_c1(const Cmp& uu, int l1) ;
}
//******************************************************************************


using namespace Lorene ;

int main(){

  using namespace Unites ;

    // For the display :
    char display_bold[]="x[1m" ; display_bold[0] = 27 ;

    //------------------------------------------------------------------
    //	    Parameters of the computation 
    //------------------------------------------------------------------

    int relat_i, mer_max, mer_rot, mer_change_omega, mer_fix_omega, 
	delta_mer_kep, mer_mass, mermax_poisson, graph, nz, nzet, nzadapt,
	nt, np, mer_triax, n_conf, diffrot_i ;
    double entc_min, entc_max, fact_omega, mbar_wanted, precis, freq_min_si,
	    freq_max_si, thres_adapt, aexp_mass, relax, relax_poisson,
	    ampli_triax, precis_adapt, rrot_km, arot ;  
    
    ifstream fich("parrotseq.d") ;
	if ( !fich.good() ) {
		cout << "Problem with opening the file parrotseq.d ! " << endl ;
		abort() ;
	}
	
	fich.ignore(1000,'\n') ;
    fich >> relat_i ; fich.ignore(1000,'\n') ;
    bool relat = (relat_i == 1) ; 
    fich >> entc_min ; fich.ignore(1000,'\n') ;
    fich >> entc_max ; fich.ignore(1000,'\n') ;
    fich >> freq_min_si ; fich.ignore(1000,'\n') ;
    fich >> freq_max_si ; fich.ignore(1000,'\n') ;
    fich >> n_conf ; fich.ignore(1000,'\n') ;    
    if (n_conf > 1000) {
	cout << "rotseq: n_conf must be smaller than 1000" << endl ;
        abort() ; 
    }

    fich >> diffrot_i ;  fich.ignore(1000,'\n');
	if (diffrot_i <= 1) {
    	fich >> rrot_km ; fich.ignore(1000,'\n');
	arot = 0 ; 
    }
    else {
    	assert (diffrot_i == 2) ; 
    	fich >> arot ; fich.ignore(1000,'\n');
	rrot_km = 0 ; 	
    }
	
    fact_omega = 1 ; 
    fich >> mbar_wanted ; fich.ignore(1000,'\n');
    mbar_wanted *= msol ; 
    fich.ignore(1000,'\n');
    fich >> mer_max ; fich.ignore(1000,'\n');
    fich >> precis ; fich.ignore(1000,'\n');
    mer_rot = 0 ; 
    mer_change_omega = 0 ; 
    mer_fix_omega = 1 ; 
    delta_mer_kep = 0 ; 
    fich >> thres_adapt ; fich.ignore(1000,'\n');
    mer_triax = 100000 ; 
    ampli_triax = 0 ; 
    fich >> mer_mass ; fich.ignore(1000,'\n');
    fich >> aexp_mass ; fich.ignore(1000,'\n');
    fich >> relax ; fich.ignore(1000,'\n');
    fich >> mermax_poisson ; fich.ignore(1000,'\n');
    fich >> relax_poisson ; fich.ignore(1000,'\n');
    fich >> precis_adapt ; fich.ignore(1000,'\n');
    fich >> graph ; fich.ignore(1000,'\n');
    fich.ignore(1000,'\n');
    fich >> nz ; fich.ignore(1000,'\n') ;
    fich >> nzet; fich.ignore(1000,'\n') ;
    fich >> nzadapt; fich.ignore(1000,'\n') ;
    fich >> nt; fich.ignore(1000,'\n') ;
    fich >> np; fich.ignore(1000,'\n') ;

    int* nr = new int[nz];
    int* nt_tab = new int[nz];
    int* np_tab = new int[nz];
    double* bornes = new double[nz+1];
     
    fich.ignore(1000,'\n') ;
    for (int l=0; l<nz; l++) {
	fich >> nr[l]; 
	fich >> bornes[l]; fich.ignore(1000,'\n');
	np_tab[l] = np ; 
	nt_tab[l] = nt ; 
    }
    bornes[nz] = __infinity ;

    Tbl ent_limit(nzet) ;
    ent_limit.set_etat_qcq() ;
    ent_limit.set(nzet-1) = 0 ; 	// enthalpy at the stellar surface
    for (int l=0; l<nzet-1; l++) {
    	fich >> ent_limit.set(l) ; fich.ignore(1000,'\n');
    }


    fich.close();

    
    //-----------------------------------------------------------------------
    //		Equation of state
    //-----------------------------------------------------------------------

    fich.open("par_eos.d") ;

    Eos* peos = Eos::eos_from_file(fich) ;
    Eos& eos = *peos ;

    fich.close() ;


    // Special treatment of crust - liquid core boundary in the case
    //  of Eos_strange
    if (eos.identify() == 6) {
    	assert( nzet == 2 ) ;    	
    	const Eos_strange_cr* peos_cr = dynamic_cast<const Eos_strange_cr*>(peos) ;
    	if (peos_cr == 0x0) {
    	       cout << "rotseq: problem : peos is not of type Eos_strange_cr !" << endl ;
    	       abort() ;
    	}
    	
    	ent_limit.set(0) = peos_cr->get_ent_nd() ;  // enthalpy at core/crust transition

    }

    //-----------------------------------------------------------------------
    //		Construction of the multi-grid and the mapping
    //-----------------------------------------------------------------------

    // Rescale of bornes in the case where there more than 1 domain inside
    //   the star

    for (int l=0; l<nzet-1; l++) {

    	bornes[l+1] = bornes[nzet] * sqrt(1 - ent_limit(l) / entc_min) ;

    }

    // Type of r sampling :
    int* type_r = new int[nz];
    type_r[0] = RARE ; 
    for (int l=1; l<nz-1; l++) {
	type_r[l] = FIN ; 
    }
    type_r[nz-1] = UNSURR ; 
    
    // Type of sampling in theta and phi :
    int type_t = SYM ; 
    int type_p = SYM ; 
    
    Mg3d mg(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;

    Map_et mp(mg, bornes) ;
   
    // Cleaning
    // --------

    delete [] nr ; 
    delete [] nt_tab ; 
    delete [] np_tab ; 
    delete [] type_r ; 
    delete [] bornes ; 
       


    cout << endl 
	 << "==========================================================" << endl
	 << "                    Physical parameters                   " << endl
	 << "=========================================================="
	 << endl ; 
    cout << endl ;

    cout << endl << "Equation of state : " 
	 << endl << "=================   " << endl ;
    cout << eos << endl ; 

    cout << "Central enthalpy range: " << entc_min << " - " << entc_max << " c^2" << endl ;
    cout << "Rotation frequency range : " << freq_min_si 
        << " - " << freq_max_si << " Hz" << endl ; 
    if ( abs(mer_mass) < mer_max ) {
	cout << "Required Baryon mass [M_sol] : " 
	     << mbar_wanted / msol << endl ; 
    }


    cout << endl 
	 << "==========================================================" << endl
	 << "               Computational parameters                   " << endl
	 << "=========================================================="
	 << endl << endl ; 

    cout << "Maximum number of steps in the main iteration : " 
	 << mer_max << endl ; 
    cout << "Relaxation factor in the main iteration  : " 
	 << relax << endl ; 
    cout << "Threshold on the enthalpy relative change for ending the computation : " 
	 << precis << endl ; 
    cout << "Maximum number of steps in Map_et::poisson : " 
	 << mermax_poisson << endl ; 
    cout << "Relaxation factor in Map_et::poisson : " 
	 << relax_poisson << endl ; 
    cout << "Step from which the baryon mass is forced to converge : " 
	 << mer_mass << endl ; 
    cout << "Exponent for the increase factor of the central enthalpy or frequency : "
	 << aexp_mass << endl ; 
    cout << 
    "Threshold on |dH/dr|_eq / |dH/dr|_pole for the adaptation of the mapping"
    << endl << thres_adapt << endl ; 


    cout << endl << "Multi-grid : " 
	 << endl << "==========" << endl << mg << endl ; 
    cout << "Mapping : " 
	 << endl << "=======" << endl << mp << endl ; 


    //-----------------------------------------------------------------------
    //		Parameters for the function defining the differential rotation
    //-----------------------------------------------------------------------
    
    double omega_c_min = 2 * M_PI * freq_min_si / f_unit ; 
    double omega_c_max = 2 * M_PI * freq_max_si / f_unit ; 

    double rrot = rrot_km * km ; 

    Tbl parfrot(3) ;
    parfrot.set_etat_qcq() ; 
    parfrot.set(0) = 0 ;  
    parfrot.set(1) = rrot ;  
    parfrot.set(2) = arot ;      
    
    //-----------------------------------------------------------------------
    //		Construction of the star
    //-----------------------------------------------------------------------

    bool diffrot = (diffrot_i >= 1) ;
    Etoile_rot* p_star ;
    Et_rot_diff* p_star_diff = 0x0 ;

    if ( diffrot ) {
        p_star_diff = new Et_rot_diff(mp, nzet, relat, eos, frotlin, primfrotlin, parfrot) ;
    	p_star = p_star_diff ;
    }
    else {
        p_star = new Etoile_rot(mp, nzet, relat, eos) ;
    }
    Etoile_rot& star = *p_star ;

    if ( star.is_relativistic() ) {
	cout << "========================" << endl ;
	cout << "Relativistic computation" << endl ;
	cout << "========================" << endl ;
    }
    else {
	cout << "=====================" << endl ;
	cout << "Newtonian computation" << endl ;
	cout << "=====================" << endl ;
    }

    //-----------------------------------------------------------------------
    //		Initialization of the enthalpy field
    //-----------------------------------------------------------------------


    const Coord& r = mp.r ;
    double ray0 = mp.val_r(nzet-1, 1., 0., 0.) ;
    Cmp ent0(mp) ;
    ent0 = entc_min * ( 1 - r*r / (ray0*ray0) ) ;
    ent0.annule(nz-1) ;
    ent0.std_base_scal() ;
    star.set_enthalpy(ent0) ;

    // Initialization of (n,e,p) from H
    star.equation_of_state() ;

    // Initialization of (E,S,U,etc...) (quantities relative to the Eulerian obs)
    star.hydro_euler() ;

    cout << endl << "Initial star : "
	 << endl << "============   " << endl ;

    cout << star << endl ;

    //---------------------------------------------------
    //  Sequence parameters saved in file "calcul_seq.d"
    //---------------------------------------------------
    ofstream fichseq("calcul_seq.d") ;
    fichseq << endl <<
    "================================================================" << endl ;
    fichseq <<
    "   PARAMETERS USED FOR THE COMPUTATION (file parrotseq.d) : " << endl ;
    fichseq <<
    "================================================================" << endl ;
    fichseq.close() ;
    system("cat parrotseq.d >> calcul_seq.d") ;

    fichseq.open("calcul_seq.d", ios::app) ;
    fichseq << endl <<
    "================================================================" << endl ;
    fichseq <<
    "	           EOS PARAMETERS (file par_eos.d) : " << endl ;
    fichseq <<
    "================================================================" << endl ;
    fichseq.close() ;
    system("cat par_eos.d >> calcul_seq.d") ;

    // Identification du code et de ses sous-routines (no. de version RCS) :
    fichseq.open("calcul_seq.d", ios::app) ;
    fichseq << endl <<
    "================================================================" << endl ;
    fichseq << "	    IDENTIFICATION OF THE CODE : " << endl ;
    fichseq <<
    "================================================================" << endl ;
    fichseq.close() ;
    system("ident rotseq >> calcul_seq.d") ;



    //-----------------------------------------------------------------------
    //		Computation of the equilibrium sequence
    //-----------------------------------------------------------------------


    Itbl icontrol(8) ;
    icontrol.set_etat_qcq() ;
    icontrol.set(0) = mer_max ;
    icontrol.set(1) = mer_rot ;
    icontrol.set(2) = mer_change_omega ;
    icontrol.set(3) = mer_fix_omega ;
    // icontrol.set(4) set later
    icontrol.set(5) = mermax_poisson ;
    icontrol.set(6) = mer_triax ;
    icontrol.set(7) = delta_mer_kep ;

    Tbl control(7) ;
    control.set_etat_qcq() ;
    control.set(0) = precis ;
    control.set(2) = relax ;
    control.set(3) = relax_poisson ;
    control.set(4) = thres_adapt ;
    control.set(5) = ampli_triax ;
    control.set(6) = precis_adapt ;

    Tbl diff(8) ;

    ofstream fichresu("seq.d") ;
    fichresu << "# M/R  M [poly]  M_B [poly]  J [G M_sol^2/c] M [M_sol]   f_c [Hz]     H_c     r_p/r_e"
             << "       T/W       M_B [M_sol]    GRV2       GRV3   " << endl ;

    // Loop on the configurations
    // --------------------------

    bool seq_freq = ( entc_min == entc_max ) ;
    if ( !seq_freq ) {
          if ( omega_c_min != omega_c_max ) {
          	cout << "rotseq : one must have freq_min == freq_max "
          	<< "when entc_min != entc_max !" << endl ;
          	abort() ;
          }
    }

    double domega = (n_conf > 1) ? 
    			(omega_c_max - omega_c_min) / double(n_conf-1) : 0 ;
    double dent = (n_conf > 1) ? (entc_max - entc_min) / double(n_conf-1) : 0 ;

    for (int jj = 0; jj < n_conf; jj++) {

    	double omega_c, ent_c ;

	if ( seq_freq ) {

    		icontrol.set(4) = mer_mass ;

		ent_c = star.get_ent()()(0, 0, 0, 0) ;
		omega_c = omega_c_min + jj * domega ;
	}
	else {

		icontrol.set(4) = - mer_mass ;

		ent_c = entc_min + jj * dent ;
		omega_c = star.get_omega_c() ;
		if (omega_c == double(0)) {
			omega_c = omega_c_min ;
			icontrol.set(1) = 10 ; 	// mer_rot = 10
    			icontrol.set(2) = 10 ;
    			icontrol.set(3) = 11 ;
		}
		else {
			icontrol.set(1) = 0 ; 	// mer_rot = 0
    			icontrol.set(2) = 0 ;
    			icontrol.set(3) = 1 ;
		}
	}

	control.set(1) = omega_c ;

        star.equilibrium(ent_c, omega_c, fact_omega, nzadapt, ent_limit,
			  icontrol, control, mbar_wanted, aexp_mass, diff) ;


    	const Eos_poly* p_eos_poly = dynamic_cast<const Eos_poly*>(
		&(star.get_eos()) ) ; 	  

    	double mass_g_poly, mass_b_poly ; 
	if (p_eos_poly != 0x0) {

		double kappa = p_eos_poly->get_kap() ; 
		double gamma = p_eos_poly->get_gam() ;  ; 

		// kappa^{n/2}
		double kap_ns2 = pow( kappa,  0.5 /(gamma-1) ) ; 
    
		// Polytropic unit of length in terms of r_unit : 
		double r_poly = kap_ns2 / sqrt(ggrav) ; 
    
		// Polytropic unit of mass in terms of m_unit :
		double m_poly = r_poly / ggrav ; 
    
		mass_g_poly = star.mass_g() / m_poly ;
		mass_b_poly = star.mass_b() / m_poly ;

	}
	else{
		mass_g_poly = 0 ;  
		mass_b_poly = 0 ;  
	}
	
	
	int precisaff = 8 ;
	int tailleaff = precisaff + 3 ;
	fichresu.precision(precisaff) ;
	fichresu << setw(tailleaff)
		 << ggrav * star.mass_g() / star.r_circ() << " "
		 << setw(tailleaff)
		 << mass_g_poly << " "
		 << setw(tailleaff)
		 << mass_b_poly << " "
		 << setw(tailleaff)
		 << star.angu_mom()/( qpig / (4* M_PI) * msol*msol) << " "
	         << setw(tailleaff)
		 << star.mass_g() / msol << " "
		 << setw(tailleaff)
		 << star.get_omega_c() / (2.*M_PI) * f_unit << " "
		 << setw(tailleaff)
		 << star.get_ent()()(0, 0, 0, 0) << " "
		 << setw(tailleaff)
		 << star.aplat() << " "
		 << setw(tailleaff)
		 << star.tsw() << " "
		 << setw(tailleaff)
		 << star.mass_b() / msol << " "
		 << setw(tailleaff)
		 << star.grv2() << " "
		 << setw(tailleaff)
		 << star.grv3() << endl ;

	cout << endl << "Configuration " << jj << " : "
	     << endl << "===========================" << endl ;

	cout.precision(10) ;
	cout << star << endl ;

	//-----------------------------------------------
	//  General features of the final configuration
	//  saved in a file
	//-----------------------------------------------

	char nomfich[20] ;
	strcpy(nomfich, "calcul") ;

	char numero[3] ;
	sprintf(numero, "%3.3d", jj) ;
	strcat(nomfich, numero) ;
	strcat(nomfich, ".d") ;
	cout << endl << "File name : " << nomfich << endl ;

	ofstream fichfinal(nomfich) ;
	fichfinal.precision(10) ;

	if ( star.is_relativistic() ) {
	    fichfinal << "Relativistic computation" << endl ;
	}
	else {
	    fichfinal << "Newtonian computation" << endl ;
	}

	fichfinal << star.get_eos() << endl ;

	fichfinal << endl << "Total CPU time  : " << endl ;
	fichfinal << "Memory size : " << endl << endl ;

	fichfinal << endl << endl ; 
	fichfinal << "Grid : " << endl ; 
	fichfinal << "------ " << endl ; 
	fichfinal << *(star.get_mp().get_mg()) << endl ; 
	fichfinal << endl << "Physical characteristics : " << endl ; 
	fichfinal	  << "-------------------------" << endl ; 
	fichfinal << star << endl ;
	fichfinal << "Growing rate of triaxial perturbation: 0 " << endl ; 

	fichfinal << endl <<
    "===================================================================" 
    << endl ; 
	fichfinal << "Diff_ent : " << diff(0) << endl ; 
	fichfinal << "Relative error on the virial theorem GRV2 : "
	      << star.grv2() << endl ;   
	fichfinal << "Relative error on the virial theorem GRV3 : "
	      << star.grv3() << endl ;   
    
	fichfinal.close() ;

    


	// Drawings
	// --------
    
	if (graph == 1) {

	des_map_et(mp, 0) ; 

	// Cmp defining the surface of the star (via the enthalpy field)
	Cmp surf = star.get_ent()() ; 
	Cmp surf_ext(mp) ; 
	surf_ext = - 0.2 * surf(0, 0, 0, 0) ; 
	surf_ext.annule(0, star.get_nzet()-1) ; 
	surf.annule(star.get_nzet(), mg.get_nzone()-1) ; 
	surf = surf + surf_ext ;
	surf = raccord_c1(surf, star.get_nzet()) ; 

	int nzdes = star.get_nzet() ; 

	des_coupe_y(star.get_ent()(), 0., nzdes, "Enthalpy", &surf) ; 
	
	if (mer_triax < mer_max) { 
	    des_coupe_z(star.get_ent()(), 0., nzdes, "Enthalpy (equatorial plane)",
			&surf) ;
	}

	if (diffrot) {
		Cmp tmpdes = p_star_diff->get_omega_field()() / (2*M_PI) * f_unit ;
		des_profile(tmpdes, 0., star.ray_eq(),
			    M_PI/2., 0., "\\gW/2\\gp  [Hz]",
			"Angular velocity in equatorial plane") ;
         	
		des_coupe_y(p_star_diff->get_omega_field()(), 0., nzdes,
				"\\gW", &surf) ;
	}

	des_coupe_y(star.get_logn()(), 0., nzdes,
		    "Gravitational potential \\gn", &surf) ;

	if (star.is_relativistic()) {

	    des_coupe_y(star.get_nphi()(), 0., nzdes,
		    "Azimuthal shift N\\u\\gf", &surf) ;

	    des_coupe_y(star.get_dzeta()(), 0., nzdes,
		    "Metric potential \\gz", &surf) ;

	    des_coupe_y(star.get_tggg()(), 0., nzdes,
		    "Metric potential (NB-1) r sin\\gh", &surf) ;
	
	    des_coupe_y(star.get_ak_car()(), 0., nzdes, 
		    "A\\u2\\d K\\dij\\u K\\uij\\d", &surf) ; 
	}
	
	}


    } // End of the loop on the configurations

    fichresu.close() ; 
 
    // Cleaning
    // --------

    delete p_star ;

    delete peos ;

    exit(EXIT_SUCCESS) ; 
    
    return EXIT_SUCCESS ; 
   
}

		//------------------------------//
		//	Function F(Omega)	//
		//------------------------------//

double frotlin(double omega, const Tbl& par){
    
	double omega_c = par(0) ; 
	double rrot = par(1) ; 
    
	return rrot*rrot* (omega_c - omega) ;  
    
}

		//------------------------------//
		//	Primitive of  F(Omega)	//
		//------------------------------//

double primfrotlin(double omega, const Tbl& par){
    
	double omega_c = par(0) ; 
	double rrot = par(1) ; 
    
	return - 0.5 * rrot*rrot* (omega_c - omega)*(omega_c - omega) ;  
    
}