1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
/*
* Main code for computing stationary axisymmetric differentially rotating
* stars in Dirac gauge and maximal slicing.
* (*** Under development ***)
*
*/
/*
* Copyright (c) 2005 Motoyuki Saijo
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char rotstar_dirac_C[] = "$Header: /cvsroot/Lorene/Codes/Rot_star/rotstar_dirac_diff.C,v 1.3 2014/10/13 08:53:59 j_novak Exp $" ;
/*
*
* $Header: /cvsroot/Lorene/Codes/Rot_star/rotstar_dirac_diff.C,v 1.3 2014/10/13 08:53:59 j_novak Exp $
*
*/
// headers C
#include <cstdlib>
// headers Lorene
#include "star_rot_dirac_diff.h"
#include "eos.h"
#include "utilitaires.h"
#include "graphique.h"
#include "nbr_spx.h"
#include "unites.h"
#include "cmp.h"
// Function defining the rotation profile
double frotlin(double omega, const Lorene::Tbl& par) ;
double primfrotlin(double omega, const Lorene::Tbl& par) ;
namespace Lorene {
// Local prototype (for drawings only)
//Scalar raccord_c1(const Scalar& uu, int l1) ;
Cmp raccord_c1(const Cmp& uu, int l1) ;
}
//******************************************************************************
using namespace Lorene ;
int main(){
using namespace Unites ;
// Identification of all the subroutines called by the code :
system("ident rotstar_dirac_diff > identif.d") ;
//------------------------------------------------------------------
// Parameters of the computation
//------------------------------------------------------------------
char blabla[120] ;
int mer_max, mer_rot, mer_change_omega, mer_fix_omega,
delta_mer_kep, mer_mass, mermax_poisson, graph, nz, nzet, nzadapt,
nt, np, mer_triax, type_rot ;
double ent_c, freq_si, fact_omega, mbar_wanted, precis, freq_ini_si,
thres_adapt, aexp_mass, relax, relax_poisson, ampli_triax,
precis_adapt, rrot_si, arot ;
ifstream fich("parrotdiff.d") ;
if ( !(fich.is_open()) ) {
cerr << "Problem in openning the file parrotdiff.d !" << '\n' ;
abort() ;
}
fich.getline(blabla, 120) ;
fich.getline(blabla, 120) ;
fich >> ent_c ; fich.getline(blabla, 120) ;
fich >> freq_si ; fich.getline(blabla, 120) ;
fich >> type_rot ; fich.getline(blabla, 120) ;
if (type_rot == 0) {
fich >> rrot_si ; fich.getline(blabla, 120) ;
arot = 0 ;
}
else {
assert (type_rot == 1) ;
fich >> arot ; fich.getline(blabla, 120) ;
rrot_si = 0 ;
}
fich >> fact_omega ; fich.getline(blabla, 120) ;
fich >> mbar_wanted ; fich.getline(blabla, 120) ;
mbar_wanted *= msol ;
fich.getline(blabla, 120) ;
fich >> mer_max ; fich.getline(blabla, 120) ;
fich >> precis ; fich.getline(blabla, 120) ;
fich >> mer_rot ; fich.getline(blabla, 120) ;
fich >> freq_ini_si ; fich.getline(blabla, 120) ;
fich >> mer_change_omega ; fich.getline(blabla, 120) ;
fich >> mer_fix_omega ; fich.getline(blabla, 120) ;
fich >> delta_mer_kep ; fich.getline(blabla, 120) ;
fich >> thres_adapt ; fich.getline(blabla, 120) ;
fich >> mer_triax ; fich.getline(blabla, 120) ;
fich >> ampli_triax ; fich.getline(blabla, 120) ;
fich >> mer_mass ; fich.getline(blabla, 120) ;
fich >> aexp_mass ; fich.getline(blabla, 120) ;
fich >> relax ; fich.getline(blabla, 120) ;
fich >> mermax_poisson ; fich.getline(blabla, 120) ;
fich >> relax_poisson ; fich.getline(blabla, 120) ;
fich >> precis_adapt ; fich.getline(blabla, 120) ;
fich >> graph ; fich.getline(blabla, 120) ;
fich.getline(blabla, 120) ;
fich >> nz ; fich.getline(blabla, 120) ;
fich >> nzet; fich.getline(blabla, 120) ;
fich >> nzadapt; fich.getline(blabla, 120) ;
fich >> nt; fich.getline(blabla, 120) ;
fich >> np; fich.getline(blabla, 120) ;
int* nr = new int[nz];
int* nt_tab = new int[nz];
int* np_tab = new int[nz];
double* bornes = new double[nz+1];
fich.getline(blabla, 120);
for (int l=0; l<nz; l++) {
fich >> nr[l];
fich >> bornes[l]; fich.getline(blabla, 120) ;
np_tab[l] = np ;
nt_tab[l] = nt ;
}
bornes[nz] = __infinity ;
Tbl ent_limit(nzet) ;
ent_limit.set_etat_qcq() ;
ent_limit.set(nzet-1) = 0 ; // enthalpy at the stellar surface
for (int l=0; l<nzet-1; l++) {
fich >> ent_limit.set(l) ; fich.getline(blabla, 120) ;
}
fich.close();
// Particular cases
// ----------------
// Initial frequency = final frequency
if ( freq_ini_si < 0 ) {
freq_ini_si = freq_si ;
mer_change_omega = mer_rot ;
mer_fix_omega = mer_rot + 1 ;
}
//-----------------------------------------------------------------------
// Equation of state
//-----------------------------------------------------------------------
fich.open("par_eos.d") ;
Eos* peos = Eos::eos_from_file(fich) ;
Eos& eos = *peos ;
fich.close() ;
//-----------------------------------------------------------------------
// Construction of the multi-grid and the mapping
//-----------------------------------------------------------------------
// Rescale of bornes in the case where there more than 1 domain inside
// the star
for (int l=0; l<nzet-1; l++) {
bornes[l+1] = bornes[nzet] * sqrt(1 - ent_limit(l) / ent_c) ;
}
// Type of r sampling :
int* type_r = new int[nz];
type_r[0] = RARE ;
for (int l=1; l<nz-1; l++) {
type_r[l] = FIN ;
}
type_r[nz-1] = UNSURR ;
// Type of sampling in theta and phi :
int type_t = SYM ;
int type_p = SYM ;
Mg3d mg(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;
Map_af mp(mg, bornes) ;
// Cleaning
// --------
delete [] nr ;
delete [] nt_tab ;
delete [] np_tab ;
delete [] type_r ;
delete [] bornes ;
cout << '\n'
<< "==========================================================" << '\n'
<< " Physical parameters " << '\n'
<< "=========================================================="
<< '\n';
cout << '\n';
cout << '\n'<< "Equation of state : "
<< '\n'<< "================= " << '\n';
cout << eos << '\n';
cout << "Central enthalpy : " << ent_c << " c^2" << '\n';
cout << "Rotation frequency : " << freq_si << " Hz" << '\n';
if ( abs(mer_mass) < mer_max ) {
cout << "Required Baryon mass [M_sol] : "
<< mbar_wanted / msol << '\n';
}
cout << '\n'
<< "==========================================================" << '\n'
<< " Computational parameters " << '\n'
<< "=========================================================="
<< '\n'<< '\n';
cout << "Maximum number of steps in the main iteration : "
<< mer_max << '\n';
cout << "Relaxation factor in the main iteration : "
<< relax << '\n';
cout << "Threshold on the enthalpy relative change for ending the computation : "
<< precis << '\n';
cout << "Maximum number of steps in Map_et::poisson : "
<< mermax_poisson << '\n';
cout << "Relaxation factor in Map_et::poisson : "
<< relax_poisson << '\n';
cout << "Step from which the baryon mass is forced to converge : "
<< mer_mass << '\n';
cout << "Exponent for the increase factor of the central enthalpy : "
<< aexp_mass << '\n';
cout <<
"Threshold on |dH/dr|_eq / |dH/dr|_pole for the adaptation of the mapping"
<< '\n'<< thres_adapt << '\n';
cout << '\n'<< "Multi-grid : "
<< '\n'<< "==========" << '\n'<< mg << '\n';
cout << "Mapping : "
<< '\n'<< "=======" << '\n'<< mp << '\n';
//-----------------------------------------------------------------------
// Parameters for the function defining the differential rotation
//-----------------------------------------------------------------------
double omega_c = 2 * M_PI * freq_si / f_unit ;
double omega_c_ini = 2 * M_PI * freq_ini_si / f_unit ;
double rrot = rrot_si * km ;
Tbl parfrot(3) ;
parfrot.set_etat_qcq() ;
parfrot.set(0) = omega_c_ini ;
parfrot.set(1) = rrot ;
parfrot.set(2) = arot ;
//-----------------------------------------------------------------------
// Construction of the star
//-----------------------------------------------------------------------
Star_rot_Dirac_diff star(mp, nzet, eos, frotlin, primfrotlin, parfrot) ;
//-----------------------------------------------------------------------
// Initialization of the enthalpy field
//-----------------------------------------------------------------------
const Coord& r = mp.r ;
double ray0 = mp.val_r(nzet-1, 1., 0., 0.) ;
Scalar ent0(mp) ;
ent0 = ent_c * ( 1 - r*r / (ray0*ray0) ) ;
ent0.annule_domain(nz-1) ;
ent0.std_spectral_base() ;
star.set_enthalpy(ent0) ;
// Initialization of (n,e,p) from H
star.equation_of_state() ;
// Initialization of (E,S,U,etc...) (quantities relative to the Eulerian obs)
star.hydro_euler() ;
cout << '\n'<< "Initial star : "
<< '\n'<< "============ " << '\n';
cout << star.get_gamma() ;
cout << star << '\n';
//-----------------------------------------------------------------------
// Computation of the rotating equilibrium
//-----------------------------------------------------------------------
// double omega = 2 * M_PI * freq_si / f_unit ;
// double omega_ini = 2 * M_PI * freq_ini_si / f_unit ;
Itbl icontrol(6) ;
icontrol.set_etat_qcq() ;
icontrol.set(0) = mer_max ;
icontrol.set(1) = mer_rot ;
icontrol.set(2) = mer_change_omega ;
icontrol.set(3) = mer_fix_omega ;
icontrol.set(4) = mer_mass ;
icontrol.set(5) = delta_mer_kep ;
Tbl control(3) ;
control.set_etat_qcq() ;
control.set(0) = precis ;
control.set(1) = omega_c_ini ;
control.set(2) = relax ;
// control.set(3) = relax_poisson ;
// control.set(4) = thres_adapt ;
// control.set(5) = ampli_triax ;
// control.set(6) = precis_adapt ;
Tbl diff(8) ;
star.equilibrium(ent_c, omega_c, fact_omega, nzadapt, ent_limit, icontrol, control,
mbar_wanted, aexp_mass, diff) ;
cout << '\n'<< "Final star : "
<< '\n'<< "========== " << '\n';
cout.precision(10) ;
cout << star << '\n';
double rho_c = star.get_ener().val_grid_point(0,0,0,0) ;
cout << "r_p/r_eq :" << star.aplat() << '\n';
cout << "Omega rho0^{-1/2} : " << star.get_omega() /
sqrt( ggrav * rho_c ) << '\n';
cout << "M rho0^{1/2} : " << star.mass_g() * pow(ggrav,1.5) *
sqrt( rho_c ) << '\n';
cout << "M_B rho0^{1/2} : " << star.mass_b() * pow(ggrav,1.5) *
sqrt( rho_c ) << '\n';
cout << "R_circ rho0^{1/2} : " << star.r_circ() *
sqrt( ggrav * rho_c ) << '\n';
cout << "J rho0 : " << star.angu_mom() * ggrav * ggrav * rho_c
<< '\n';
cout << "GRV2: " << star.grv2() << '\n';
cout << "GRV3: " << star.grv3() << '\n';
double vit_triax = diff(6) ;
//-----------------------------------------------
// General features of the final configuration
// saved in a file
//-----------------------------------------------
ofstream fichfinal("calcul.d") ;
fichfinal.precision(10) ;
fichfinal << star.get_eos() << '\n';
fichfinal << '\n'<< "Total CPU time : " << '\n';
fichfinal << "Memory size : " << '\n'<< '\n';
fichfinal << '\n'<< '\n';
fichfinal << "Grid : " << '\n';
fichfinal << "------ " << '\n';
fichfinal << *(star.get_mp().get_mg()) << '\n';
fichfinal << '\n'<< "Physical characteristics : " << '\n';
fichfinal << "-------------------------" << '\n';
fichfinal << star << '\n';
fichfinal << "Growing rate of triaxial perturbation: " << vit_triax
<< '\n';
fichfinal << '\n'<<
"==================================================================="
<< '\n';
fichfinal << "Diff_ent : " << diff(0) << '\n';
fichfinal << "Relative error on the virial theorem GRV2 : "
<< star.grv2() << '\n';
fichfinal << "Relative error on the virial theorem GRV3 : "
<< star.grv3() << '\n';
fichfinal << '\n'<<
"================================================================" << '\n';
fichfinal <<
" PARAMETERS USED FOR THE COMPUTATION (file parrotdiff.d) : " << '\n';
fichfinal <<
"================================================================" << '\n';
fichfinal.close() ;
system("cat parrotdiff.d >> calcul.d") ;
fichfinal.open("calcul.d", ios::app) ;
fichfinal << '\n'<<
"================================================================" << '\n';
fichfinal <<
" EOS PARAMETERS (file par_eos.d) : " << '\n';
fichfinal <<
"================================================================" << '\n';
fichfinal.close() ;
system("cat par_eos.d >> calcul.d") ;
// Identification du code et de ses sous-routines (no. de version RCS) :
fichfinal.open("calcul.d", ios::app) ;
fichfinal << '\n'<<
"================================================================" << '\n';
fichfinal << " IDENTIFICATION OF THE CODE : " << '\n';
fichfinal <<
"================================================================" << '\n';
fichfinal.close() ;
system("ident rotstar_dirac_diff >> calcul.d") ;
// Saveguard of the whole configuration
// ------------------------------------
FILE* fresu = fopen("resu.d", "w") ;
star.get_mp().get_mg()->sauve(fresu) ; // writing of the grid
star.get_mp().sauve(fresu) ; // writing of the mapping
star.get_eos().sauve(fresu) ; // writing of the EOS
star.sauve(fresu) ; // writing of the star
fclose(fresu) ;
// Drawings
// --------
if (graph == 1) {
// for (int i=1; i<=3; i++)
// for (int j=i; j<=3; j++) {
// des_profile(star.get_hh()(i,j), 0., 3*rr, 1, 1) ;
// }
// Cmp defining the surface of the star (via the enthalpy field)
Cmp surf(star.get_ent()) ;
Cmp surf_ext(mp) ;
surf_ext = - 0.2 * surf(0, 0, 0, 0) ;
surf_ext.annule(0, star.get_nzet()-1) ;
surf.annule(star.get_nzet(), mg.get_nzone()-1) ;
surf = surf + surf_ext ;
surf = raccord_c1(surf, star.get_nzet()) ;
int nzdes = star.get_nzet() ;
des_coupe_y(star.get_ent(), 0., nzdes, "Enthalpy", &surf) ;
Cmp tmpdes = star.get_omega_field() / (2*M_PI) * f_unit ;
des_profile(tmpdes, 0., star.ray_eq(),
M_PI/2., 0., "\\gW/2\\gp [Hz]",
"Angular velocity in equatorial plane") ;
des_coupe_y(star.get_omega_field(), 0., nzdes, "\\gW", &surf) ;
des_coupe_y(star.get_logn(), 0., nzdes, "Gravitational potential \\gn", &surf) ;
des_coupe_y(star.get_beta()(3), 0., nzdes, "Azimuthal shift \\gb\\u\\gf",
&surf) ;
des_coupe_y(star.get_lnq(), 0., nzdes, "Potential ln(Q)", &surf) ;
des_coupe_y(star.get_hh()(1,1), 0., nzdes, "Metric potential h\\urr", &surf) ;
}
// Cleaning
// --------
delete peos ;
exit(EXIT_SUCCESS) ;
return EXIT_SUCCESS ;
}
//------------------------------//
// Function F(Omega) //
//------------------------------//
double frotlin(double omega, const Tbl& par){
double omega_c = par(0) ;
double rrot = par(1) ;
return rrot*rrot* (omega_c - omega) ;
}
//------------------------------//
// Primitive of F(Omega) //
//------------------------------//
double primfrotlin(double omega, const Tbl& par){
double omega_c = par(0) ;
double rrot = par(1) ;
return - 0.5 * rrot*rrot* (omega_c - omega)*(omega_c - omega) ;
}
|