1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
/*
* Test program for solving Maclaurin-like figures
* One zone for the internal of the star
*
*/
/*
* Copyright (c) 1999-2001 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char test_maclaurin_C[] = "$Header: /cvsroot/Lorene/Codes/Rot_star/test_maclaurin.C,v 1.4 2014/10/13 08:53:59 j_novak Exp $" ;
/*
* $Id: test_maclaurin.C,v 1.4 2014/10/13 08:53:59 j_novak Exp $
* $Log: test_maclaurin.C,v $
* Revision 1.4 2014/10/13 08:53:59 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.3 2014/10/06 15:09:46 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.2 2003/01/09 11:07:51 j_novak
* headcpp.h is now compliant with C++ norm.
* The include files have been ordered, as well as the local_settings_linux
*
* Revision 1.1.1.1 2001/11/20 15:19:31 e_gourgoulhon
* LORENE
*
* Revision 1.2 1999/12/23 13:39:23 keisuke
* Non significant change (for test only).
*
* Revision 1.1 1999/12/23 13:35:01 keisuke
* Initial revision
*
*
* $Header: /cvsroot/Lorene/Codes/Rot_star/test_maclaurin.C,v 1.4 2014/10/13 08:53:59 j_novak Exp $
*
*/
// headers C
#include <cstdlib>
#include <cmath>
// headers Lorene
#include "type_parite.h"
#include "cmp.h"
#include "graphique.h"
#include "utilitaires.h"
namespace Lorene {
// Local prototypes:
Cmp eos_local(const Cmp& ent, int nzet, double n_index) ;
}
//**********************************************************************
int main(){
// Identification of all the subroutines called by the code :
system("ident test_maclaurin > identif_maclaurin.d") ;
//-----------------------------------------------------------------------
// Input from file "part.d"
//-----------------------------------------------------------------------
int type_t, type_p, nt, np, nz, l;
char blabla[80];
// const double criteria = 1.e-8 ;
double n_index, radius ;
//----------------------------------------------------
// Declear the polytropic index
//----------------------------------------------------
cout << "Input a polytropic index: " ;
cin >> n_index ;
cout << "Input an equatorial radius of the star : " ;
cin >> radius ;
ifstream fich("part.d") ;
fich >> nt; fich.getline(blabla, 80);
fich >> np; fich.getline(blabla, 80);
fich >> nz; fich.getline(blabla, 80);
cout << "nb de points en phi : np = " << np << endl;
cout << "nb de points en theta : nt = " << nt << endl;
cout << "nb de zones : nz = " << nz << endl;
// initialisation des tableaux decrivant chaque zone
int* nr = new int[nz];
int* nt_tab = new int[nz];
int* np_tab = new int[nz];
double* bornes = new double[nz+1];
int* type_r = new int[nz];
fich >> bornes[nz] ; fich.getline(blabla, 80) ;
for (l=0; l<nz; l++) {
fich >> nr[l];
fich >> bornes[l];
fich >> type_r[l]; fich.getline(blabla, 80);
np_tab[l] = np ;
nt_tab[l] = nt ;
}
if (type_r[nz-1]==UNSURR) bornes[nz] = 1./bornes[nz] ;
fich.close();
//-----------------------------------------------------------------------
// Construction of a multi-grid
//-----------------------------------------------------------------------
type_t = SYM ;
type_p = NONSYM ;
Mg3d mg(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;
cout << endl << "Grid mg : " << mg << endl ;
//-----------------------------------------------------------------------
// Construction of a mapping
//-----------------------------------------------------------------------
Map_af mp(mg, bornes) ;
cout << "Mapping mp : " << mp << endl ;
//-----------------------------------------------------------------------
// Construction of a Cmp
//-----------------------------------------------------------------------
Cmp rho(mp) ;
const Coord& r = mp.r ;
// const Coord& x = mp.x ;
// const Coord& y = mp.y ;
const Coord& sint = mp.sint ;
rho = 1 ;
rho.annule(nz-1) ; // rho = 1 in internal domains
// rho = 0 in external domain
rho.set_dzpuis(4) ;
rho.std_base_scal() ; // Sets the standard basis for spectral expansions
int nr_s = mg.get_nr(nz-2) ;
Cmp pot(mp) ;
Cmp rho_prev(mp) ;
Cmp rot(mp) ;
Cmp ent(mp) ;
double ent_c = 1 ; // central value of enthalpy
double ent_s = 0 ; // surface value of enthalpy
double omega2 ;
double omega2_prev ;
double rel_omega ;
omega2 = 0 ;
do {
// Solving the Poisson equation
//------------------------------
pot = - rho.poisson() ;
// Obtaining "lambda" in order to rescale the mapping
//----------------------------------------------------
double pot_c = pot(0,0,0,0) ; // central value of potential
// surface value of potential in the equatorial plane
double pot_seq = pot(nz-2,0,nt-1,nr_s-1) ;
double radi = mp.val_r(nz-2,1.,M_PI/2,0) ;
double lambda = radius / radi ;
cout << "lambda : " << lambda << endl ;
// Angular velocity
//------------------
omega2_prev = omega2 ;
omega2 = 8.*(ent_s - ent_c - pot_seq + pot_c) / (radius * radius) ;
cout << "Omega^2/(pi G rho_c) : " << omega2 << endl ;
rel_omega = fabs(1. - omega2_prev / omega2) ;
cout << "Relative error in Omega^2 : " << rel_omega << endl ;
// New potential after rescaling
//-------------------------------
pot = lambda * lambda * pot ;
pot_c = lambda * lambda * pot_c ;
pot_seq = lambda * lambda * pot_seq ;
// First integral of motion
//--------------------------
rot = 0.125 * omega2 * r * r * sint * sint ;
// rot.annule(nz-1) ;
ent = ent_c + pot - pot_c + rot ; // enthalpy
ent.annule(nz-1) ;
// Rescale of the map
//--------------------
mp.homothetie( lambda ) ;
rho_prev = rho ;
// EOS : rho = rho(H)
//--------------------
rho = eos_local(ent, nz-1, n_index) ;
rho.set_dzpuis(4) ;
rho.std_base_scal() ;
cout << max(abs(rho - rho_prev)) << endl ;
cout << "Maximum error in rho : "
<< max(diffrel(rho, rho_prev)) << endl ;
} while(max(diffrel(rho, rho_prev)) > 1.e-10) ;
arrete() ;
cout << "Coef of rho : " << endl ;
rho.affiche_seuil(cout) ;
cout << "Coef of pot : " << endl ;
pot.affiche_seuil(cout) ;
arrete() ;
cout << "Value of pot at the origin : " << pot(0,0,0,0) << endl ;
cout << "Value of pot at the surface (r=radius_eq) : "
<< pot(nz-1,0,0,0) << endl ;
cout << "Value of pot at the surface (r=radius_eq) : "
<< pot(nz-2,0,0,nr_s-1) << endl ;
// Checking whether or not the potential satisfies the Poisson equation
//----------------------------------------------------------------------
Cmp lap = - pot.laplacien() ;
cout << "max( |lap(pot) - rho| ) " << max(abs(lap - rho)) << endl ;
cout << "relative error : " << diffrel(lap, rho) << endl ;
// Serching the radius to the north pole
//---------------------------------------
double zaxis = 0 ;
do {
zaxis += 1.e-1 ;
} while(ent.val_point(zaxis,0,0) >= 0) ;
zaxis = zaxis - 1.e-1 ;
do {
zaxis += 1.e-2 ;
} while(ent.val_point(zaxis,0,0) >= 0) ;
zaxis = zaxis - 1.e-2 ;
do {
zaxis += 1.e-3 ;
} while(ent.val_point(zaxis,0,0) >= 0) ;
zaxis = zaxis - 1.e-3 ;
do {
zaxis += 1.e-4 ;
} while(ent.val_point(zaxis,0,0) >= 0) ;
zaxis = zaxis - 1.e-4 ;
do {
zaxis += 1.e-5 ;
} while(ent.val_point(zaxis,0,0) >= 0) ;
zaxis = zaxis - 1.e-5 ;
do {
zaxis += 1.e-6 ;
} while(ent.val_point(zaxis,0,0) >= 0) ;
zaxis = zaxis - 1.e-6 ;
arrete() ;
double radius_z = zaxis ;
cout << "Radius of the star at the north pole : " << radius_z
<< endl ;
// Radius of the star
//--------------------
double radius_eq = mp.val_r(nz-2,1.,M_PI/2,0) ;
cout << "Radius of the star in the equatorial plane : "
<< radius_eq << endl ;
cout << "Ratio of the axes a_3/a_1 : " << radius_z/radius_eq << endl ;
cout << "Eccentricity : " << sqrt(1. - pow(radius_z / radius_eq, 2))
<< endl ;
// Angular velocity
//------------------
double omega = sqrt(omega2) ;
cout << "Angular velocity of the star Omega/(pi G rho_c)^{1/2} : "
<< omega << endl ;
cout << "Omega^2/(pi G rho_c) : " << omega2 << endl ;
arrete() ;
// Mass of the star
//------------------
double mass = rho.integrale() ;
cout << "Mass/rho_c : " << mass << endl ;
// Total energy of the star
//--------------------------
Cmp rho_n(mp) ;
rho_n = pow(abs(rho), 1 + 1/n_index) ;
rho_n.annule(nz-1) ;
rho_n.set_dzpuis(4) ;
rho_n.std_base_scal() ;
double energy_internal = 4. * M_PI *
(1 / (1 + n_index)) * rho_n.integrale() * radius_eq / (mass * mass) ;
cout << "Internal energy of the axisymmetric star : "
<< "E_int/(GM^2/radius_eq) : "
<< n_index * energy_internal << endl ;
Cmp rho_pot(mp) ;
rho_pot = rho * pot ;
rho_pot.annule(nz-1) ;
rho_pot.set_dzpuis(4) ;
rho_pot.std_base_scal() ;
double energy_selfgrav = -2. * M_PI * rho_pot.integrale() * radius_eq /
(mass * mass) ;
cout << "Self-gravity energy of the axisymmetric star : "
<< "E_self/(GM^2/radius_eq) : "
<< energy_selfgrav << endl ;
Cmp rr(mp) ;
Cmp rho_quad(mp) ;
rr = r * r * sint * sint ;
rr.annule(nz-1) ;
rr.set_dzpuis(4) ;
rr.std_base_scal() ;
rho_quad = rho * rr ;
rho_quad.annule(nz-1) ;
rho_quad.set_dzpuis(4) ;
rho_quad.std_base_scal() ;
double energy_kinetic = 0.5 * M_PI * omega2 * rho_quad.integrale() *
radius_eq / (mass * mass) ;
cout << "Kinetic energy of the axisymmetric star : "
<< "E_kinet/(GM^2/radius_eq) : "
<< energy_kinetic << endl ;
double energy_total = n_index * energy_internal + energy_selfgrav
+ energy_kinetic ;
cout << "Total energy of the axisymmetric star : "
<< "E/(GM^2/radius_eq) : "
<< energy_total << endl ;
// Angular momentum
//------------------
double angmom = sqrt(M_PI) * omega * rho_quad.integrale() /
sqrt( mass * mass * mass * radius_eq ) ;
cout << "Angular momentum of the axisymmetric star : "
<< "J/(GM^3 radius_eq)^{1/2} : "
<< angmom << endl ;
// Ratio T/|W|
//-------------
cout << "Ratio T/|W| : "
<< energy_kinetic / fabs(energy_selfgrav) << endl ;
// Virial relation
//-----------------
double virial = 3. * energy_internal + energy_selfgrav
+ 2. * energy_kinetic ;
cout << "Virial relation : " << virial << endl ;
//------------------------------------------
// Plot the figures
//------------------------------------------
double rmax ;
cout << "r_max ?" << endl ;
cin >> rmax ;
des_profile(rho, 0., rmax, 0., 0., "rho/rho_c", "rho (z direction)") ;
des_profile(rho, 0., rmax, M_PI/2, 0., "rho/rho_c", "rho (x-y plane)") ;
des_profile(ent,0.,rmax,0.,0., "enthalpy", "enthalpy (z direction)") ;
des_profile(ent,0.,rmax,M_PI/2,0., "enthalpy", "enthalpy (x-y plane)") ;
des_coupe_x(rho, 0., -rmax, rmax, -rmax, rmax, "rho (y-z plane)") ;
des_coupe_y(rho, 0., -rmax, rmax, -rmax, rmax, "rho (z-x plane)") ;
des_coupe_z(rho, 0., -rmax, rmax, -rmax, rmax, "rho (x-y plane)") ;
des_profile(rho_n,0.,rmax,0.,0.,"internal","internal (z direction)") ;
des_profile(rho_n,0.,rmax,M_PI/2,0.,"internal","internal (x-y plane)") ;
des_profile(rho_pot,0.,rmax,0.,0.,"selfgrav","selfgrav (z direction)") ;
des_profile(rho_pot,0.,rmax,M_PI/2,0.,"selfgrav","selfgrav (x-y plane)") ;
des_profile(rho_quad,0.,rmax,0.,0.,"kinetic","kinetic (z direction)") ;
des_profile(rho_quad,0.,rmax,M_PI/2,0.,"kinetic","kinetic (x-y plane)") ;
des_coef_xi(rho.va, 0, 0, 0, 1.e-14, "log|c_i|", "domain no. 0") ;
des_coef_theta(rho.va, 0, 0, 0) ;
des_coef_phi(rho.va, 0, 0, 0) ;
des_coef_xi(rho.va, 1, 0, 0, 1.e-14, "log|c_i|", "domain no. 1") ;
des_coef_theta(rho.va, 0, 0, 0) ;
des_coef_phi(rho.va, 0, 0, 0) ;
// des_coef_xi(rho.va, 2, 0, 0, 1.e-14, "log|c_i|", "domain no. 2") ;
// des_coef_theta(rho.va, 0, 0, 0) ;
// des_coef_phi(rho.va, 0, 0, 0) ;
exit(-1) ;
}
|