File: test_maclaurin.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (423 lines) | stat: -rw-r--r-- 13,279 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/*
 * Test program for solving Maclaurin-like figures
 * One zone for the internal of the star
 *
 */

/*
 *   Copyright (c) 1999-2001 Keisuke Taniguchi
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char test_maclaurin_C[] = "$Header: /cvsroot/Lorene/Codes/Rot_star/test_maclaurin.C,v 1.4 2014/10/13 08:53:59 j_novak Exp $" ;

/*
 * $Id: test_maclaurin.C,v 1.4 2014/10/13 08:53:59 j_novak Exp $
 * $Log: test_maclaurin.C,v $
 * Revision 1.4  2014/10/13 08:53:59  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.3  2014/10/06 15:09:46  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.2  2003/01/09 11:07:51  j_novak
 * headcpp.h is now compliant with C++ norm.
 * The include files have been ordered, as well as the local_settings_linux
 *
 * Revision 1.1.1.1  2001/11/20 15:19:31  e_gourgoulhon
 * LORENE
 *
 * Revision 1.2  1999/12/23  13:39:23  keisuke
 * Non significant change (for test only).
 *
 * Revision 1.1  1999/12/23  13:35:01  keisuke
 * Initial revision
 *
 *
 * $Header: /cvsroot/Lorene/Codes/Rot_star/test_maclaurin.C,v 1.4 2014/10/13 08:53:59 j_novak Exp $
 *
 */

// headers C
#include <cstdlib>
#include <cmath>

// headers Lorene
#include "type_parite.h"
#include "cmp.h"
#include "graphique.h"
#include "utilitaires.h"

namespace Lorene {
// Local prototypes:
Cmp eos_local(const Cmp& ent, int nzet, double n_index) ;
}
//**********************************************************************

int main(){
    
    // Identification of all the subroutines called by the code : 
    
    system("ident test_maclaurin > identif_maclaurin.d") ; 

    //-----------------------------------------------------------------------
    //			Input from file "part.d"
    //-----------------------------------------------------------------------
    
    int type_t, type_p, nt, np, nz, l;
    char blabla[80];
    //    const double criteria = 1.e-8 ;
    double n_index, radius ;

    //----------------------------------------------------
    //             Declear the polytropic index
    //----------------------------------------------------
    cout << "Input a polytropic index: " ;
    cin >> n_index ;
    cout << "Input an equatorial radius of the star : " ;
    cin >> radius ;

    ifstream fich("part.d") ;
    fich >> nt; fich.getline(blabla, 80);
    fich >> np; fich.getline(blabla, 80);
    fich >> nz; fich.getline(blabla, 80);

    cout << "nb de points en phi : np = " << np << endl;
    cout << "nb de points en theta : nt = " << nt << endl;
    cout << "nb de zones : nz = " << nz << endl;

    // initialisation des tableaux decrivant chaque zone 

    int* nr = new int[nz];
    int* nt_tab = new int[nz];
    int* np_tab = new int[nz];
    double* bornes = new double[nz+1];
    int* type_r = new int[nz];
     
    fich >> bornes[nz] ; fich.getline(blabla, 80) ;
    for (l=0; l<nz; l++) {
	fich >> nr[l]; 
	fich >> bornes[l]; 
	fich >> type_r[l]; fich.getline(blabla, 80);
	np_tab[l] = np ; 
	nt_tab[l] = nt ; 
    }
    if (type_r[nz-1]==UNSURR) bornes[nz] = 1./bornes[nz] ;

    fich.close();
   

    //-----------------------------------------------------------------------
    //		Construction of a multi-grid
    //-----------------------------------------------------------------------
    
    type_t = SYM ; 
    type_p = NONSYM ; 
    
    Mg3d mg(nz, nr, type_r, nt_tab, type_t, np_tab, type_p) ;

    cout << endl << "Grid mg : " << mg << endl ; 
    
    //-----------------------------------------------------------------------
    //		Construction of a mapping
    //-----------------------------------------------------------------------
    
    Map_af mp(mg, bornes) ;
    cout << "Mapping mp : " << mp << endl ; 

    //-----------------------------------------------------------------------
    //		Construction of a Cmp
    //-----------------------------------------------------------------------

    Cmp rho(mp) ; 

    const Coord& r = mp.r ; 
    //    const Coord& x = mp.x ; 
    //    const Coord& y = mp.y ; 
    const Coord& sint = mp.sint ; 
    
    rho = 1  ;
    rho.annule(nz-1) ;		// rho = 1 in internal domains
				// rho = 0 in external domain

    rho.set_dzpuis(4) ; 
    rho.std_base_scal() ; // Sets the standard basis for spectral expansions

    int nr_s = mg.get_nr(nz-2) ;

    Cmp pot(mp) ;
    Cmp rho_prev(mp) ;
    Cmp rot(mp) ;

    Cmp ent(mp) ;
    double ent_c = 1 ;  // central value of enthalpy
    double ent_s = 0 ;  // surface value of enthalpy

    double omega2 ;
    double omega2_prev ;
    double rel_omega ;
    omega2 = 0 ;

    do {

      // Solving the Poisson equation
      //------------------------------
      pot = - rho.poisson() ;

      // Obtaining "lambda" in order to rescale the mapping
      //----------------------------------------------------
      double pot_c = pot(0,0,0,0) ; // central value of potential

      // surface value of potential in the equatorial plane
      double pot_seq = pot(nz-2,0,nt-1,nr_s-1) ;

      double radi = mp.val_r(nz-2,1.,M_PI/2,0) ;

      double lambda = radius / radi ;
      cout << "lambda : " << lambda << endl ;

      // Angular velocity
      //------------------
      omega2_prev = omega2 ;
      omega2 = 8.*(ent_s - ent_c - pot_seq + pot_c) / (radius * radius) ;
      cout << "Omega^2/(pi G rho_c) : " << omega2 << endl ;

      rel_omega = fabs(1. - omega2_prev / omega2) ;
      cout << "Relative error in Omega^2 : " << rel_omega << endl ;

      // New potential after rescaling
      //-------------------------------
      pot = lambda * lambda * pot ;
      pot_c = lambda * lambda * pot_c ;
      pot_seq = lambda * lambda * pot_seq ;

      // First integral of motion
      //--------------------------
      rot = 0.125 * omega2 * r * r * sint * sint ;
      //      rot.annule(nz-1) ;
      ent = ent_c + pot - pot_c + rot ; // enthalpy
      ent.annule(nz-1) ;

      // Rescale of the map
      //--------------------
      mp.homothetie( lambda ) ; 

      rho_prev = rho ;

      // EOS : rho = rho(H)
      //--------------------
      rho = eos_local(ent, nz-1, n_index) ; 

      rho.set_dzpuis(4) ;
      rho.std_base_scal() ;

      cout << max(abs(rho - rho_prev)) << endl ;
      cout << "Maximum error in rho : "
	   << max(diffrel(rho, rho_prev)) << endl ;

    } while(max(diffrel(rho, rho_prev)) > 1.e-10) ;

    arrete() ;

    cout << "Coef of rho : " << endl ; 
    rho.affiche_seuil(cout) ;
    
    cout << "Coef of pot : " << endl ; 
    pot.affiche_seuil(cout) ; 

    arrete() ;
    cout << "Value of pot at the origin : " << pot(0,0,0,0) << endl ;
    cout << "Value of pot at the surface (r=radius_eq) : "
	 << pot(nz-1,0,0,0) << endl ;
    cout << "Value of pot at the surface (r=radius_eq) : "
	 << pot(nz-2,0,0,nr_s-1) << endl ;


    // Checking whether or not the potential satisfies the Poisson equation
    //----------------------------------------------------------------------
    Cmp lap = - pot.laplacien() ; 
    
    cout << "max( |lap(pot) - rho| ) " << max(abs(lap - rho)) << endl ; 
    cout << "relative error : " << diffrel(lap, rho) << endl ;


    // Serching the radius to the north pole
    //---------------------------------------
    double zaxis = 0 ;
    do {
      zaxis += 1.e-1 ;
    } while(ent.val_point(zaxis,0,0) >= 0) ;
    zaxis = zaxis - 1.e-1 ;
    do {
      zaxis += 1.e-2 ;
    } while(ent.val_point(zaxis,0,0) >= 0) ;
    zaxis = zaxis - 1.e-2 ;
    do {
      zaxis += 1.e-3 ;
    } while(ent.val_point(zaxis,0,0) >= 0) ;
    zaxis = zaxis - 1.e-3 ;
    do {
      zaxis += 1.e-4 ;
    } while(ent.val_point(zaxis,0,0) >= 0) ;
    zaxis = zaxis - 1.e-4 ;
    do {
      zaxis += 1.e-5 ;
    } while(ent.val_point(zaxis,0,0) >= 0) ;
    zaxis = zaxis - 1.e-5 ;
    do {
      zaxis += 1.e-6 ;
    } while(ent.val_point(zaxis,0,0) >= 0) ;
    zaxis = zaxis - 1.e-6 ;

    arrete() ;

    double radius_z = zaxis ;
    cout << "Radius of the star at the north pole : " << radius_z
	 << endl ; 

    // Radius of the star
    //--------------------
    double radius_eq = mp.val_r(nz-2,1.,M_PI/2,0) ;
    cout << "Radius of the star in the equatorial plane : "
	 << radius_eq << endl ;

    cout << "Ratio of the axes a_3/a_1 : " << radius_z/radius_eq << endl ;
    cout << "Eccentricity : " << sqrt(1. - pow(radius_z / radius_eq, 2))
	 << endl ;

    // Angular velocity
    //------------------
    double omega = sqrt(omega2) ;
    cout << "Angular velocity of the star Omega/(pi G rho_c)^{1/2} : "
         << omega << endl ;
    cout << "Omega^2/(pi G rho_c) : " << omega2 << endl ;

    arrete() ;

    // Mass of the star
    //------------------
    double mass = rho.integrale() ;
    cout << "Mass/rho_c : " << mass << endl ;

    // Total energy of the star
    //--------------------------
    Cmp rho_n(mp) ;

    rho_n = pow(abs(rho), 1 + 1/n_index) ;
    rho_n.annule(nz-1) ;
    rho_n.set_dzpuis(4) ;
    rho_n.std_base_scal() ;

    double energy_internal = 4. * M_PI *
      (1 / (1 + n_index)) * rho_n.integrale() * radius_eq / (mass * mass) ;
    cout << "Internal energy of the axisymmetric star : "
	 << "E_int/(GM^2/radius_eq) : "
         << n_index * energy_internal << endl ;

    Cmp rho_pot(mp) ;
    rho_pot = rho * pot ;
    rho_pot.annule(nz-1) ;
    rho_pot.set_dzpuis(4) ;
    rho_pot.std_base_scal() ;
    double energy_selfgrav = -2. * M_PI * rho_pot.integrale() * radius_eq /
      (mass * mass) ;
    cout << "Self-gravity energy of the axisymmetric star : "
	 << "E_self/(GM^2/radius_eq) : "
         << energy_selfgrav << endl ;

    Cmp rr(mp) ;
    Cmp rho_quad(mp) ;
    rr = r * r * sint * sint ;
    rr.annule(nz-1) ;
    rr.set_dzpuis(4) ;
    rr.std_base_scal() ;
    rho_quad = rho * rr ;
    rho_quad.annule(nz-1) ;
    rho_quad.set_dzpuis(4) ;
    rho_quad.std_base_scal() ;
    double energy_kinetic = 0.5 * M_PI * omega2 * rho_quad.integrale() *
      radius_eq / (mass * mass) ;
    cout << "Kinetic energy of the axisymmetric star : "
	 << "E_kinet/(GM^2/radius_eq) : "
         << energy_kinetic << endl ;

    double energy_total = n_index * energy_internal + energy_selfgrav
      + energy_kinetic ;

    cout << "Total energy of the axisymmetric star : "
	 << "E/(GM^2/radius_eq) : "
         << energy_total << endl ;

    // Angular momentum
    //------------------
    double angmom = sqrt(M_PI) * omega * rho_quad.integrale() /
      sqrt( mass * mass * mass * radius_eq ) ;

    cout << "Angular momentum of the axisymmetric star : "
	 << "J/(GM^3 radius_eq)^{1/2} : "
	 << angmom << endl ;

    // Ratio T/|W|
    //-------------
    cout << "Ratio T/|W| : "
	 << energy_kinetic / fabs(energy_selfgrav) << endl ;

    // Virial relation
    //-----------------
    double virial = 3. * energy_internal + energy_selfgrav
      + 2. * energy_kinetic ;
    cout << "Virial relation : " << virial << endl ;

    //------------------------------------------
    //          Plot the figures
    //------------------------------------------
    double rmax ;
    cout << "r_max ?" << endl ;
    cin >> rmax ;

    des_profile(rho, 0., rmax, 0., 0., "rho/rho_c", "rho (z direction)") ;
    des_profile(rho, 0., rmax, M_PI/2, 0., "rho/rho_c", "rho (x-y plane)") ;
    des_profile(ent,0.,rmax,0.,0., "enthalpy", "enthalpy (z direction)") ;
    des_profile(ent,0.,rmax,M_PI/2,0., "enthalpy", "enthalpy (x-y plane)") ;
    des_coupe_x(rho, 0., -rmax, rmax, -rmax, rmax, "rho (y-z plane)") ;
    des_coupe_y(rho, 0., -rmax, rmax, -rmax, rmax, "rho (z-x plane)") ;
    des_coupe_z(rho, 0., -rmax, rmax, -rmax, rmax, "rho (x-y plane)") ;

    des_profile(rho_n,0.,rmax,0.,0.,"internal","internal (z direction)") ;
    des_profile(rho_n,0.,rmax,M_PI/2,0.,"internal","internal (x-y plane)") ;
    des_profile(rho_pot,0.,rmax,0.,0.,"selfgrav","selfgrav (z direction)") ;
    des_profile(rho_pot,0.,rmax,M_PI/2,0.,"selfgrav","selfgrav (x-y plane)") ;
    des_profile(rho_quad,0.,rmax,0.,0.,"kinetic","kinetic (z direction)") ;
    des_profile(rho_quad,0.,rmax,M_PI/2,0.,"kinetic","kinetic (x-y plane)") ;

    des_coef_xi(rho.va, 0, 0, 0, 1.e-14, "log|c_i|", "domain no. 0") ;
    des_coef_theta(rho.va, 0, 0, 0) ;
    des_coef_phi(rho.va, 0, 0, 0) ;

    des_coef_xi(rho.va, 1, 0, 0, 1.e-14, "log|c_i|", "domain no. 1") ;
    des_coef_theta(rho.va, 0, 0, 0) ;
    des_coef_phi(rho.va, 0, 0, 0) ;

    //    des_coef_xi(rho.va, 2, 0, 0, 1.e-14, "log|c_i|", "domain no. 2") ;
    //    des_coef_theta(rho.va, 0, 0, 0) ;
    //    des_coef_phi(rho.va, 0, 0, 0) ;

    exit(-1) ; 
        
}