File: test_schwarzschild.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (246 lines) | stat: -rw-r--r-- 7,339 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 *  Test of Metric and Connection classes through the Schwarzschild metric
 *
 */

/*
 *   Copyright (c) 2004 Eric Gourgoulhon & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char test_schwarzschild_C[] = "$Header: /cvsroot/Lorene/Codes/Test/Metric/test_schwarzschild.C,v 1.4 2014/10/13 08:54:01 j_novak Exp $" ;

/*
 * $Id: test_schwarzschild.C,v 1.4 2014/10/13 08:54:01 j_novak Exp $
 * $Log: test_schwarzschild.C,v $
 * Revision 1.4  2014/10/13 08:54:01  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.3  2014/10/06 15:12:53  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.2  2004/01/28 15:27:59  e_gourgoulhon
 * Minor modifs.
 *
 * Revision 1.1  2004/01/27 14:46:22  e_gourgoulhon
 * First version of test_schwarzschild.
 *
 *
 * $Header: /cvsroot/Lorene/Codes/Test/Metric/test_schwarzschild.C,v 1.4 2014/10/13 08:54:01 j_novak Exp $
 *
 */

// C++ headers
#include "headcpp.h"

// C headers
#include <cstdlib>
#include <cmath>

// Lorene headers
#include "metric.h"
#include "nbr_spx.h"
#include "graphique.h"
#include "utilitaires.h"
#include "proto.h"

using namespace Lorene ;

int main() {

    // Setup of a multi-domain grid (Lorene class Mg3d)
    // ------------------------------------------------
  
    int nz = 3 ; 	// Number of domains
    int nr = 17 ; 	// Number of collocation points in r in each domain
    int nt = 5 ; 	// Number of collocation points in theta in each domain
    int np = 4 ; 	// Number of collocation points in phi in each domain
    int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
    int symmetry_phi = NONSYM ; // no symmetry in phi
    bool compact = true ; // external domain is compactified
  
    // Multi-domain grid construction:
    Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, compact) ;
	
    cout << mgrid << endl ; 

  
    // Setup of an affine mapping : grid --> physical space (Lorene class Map_af)
    // --------------------------------------------------------------------------

    // radial boundaries of each domain:
    double r_limits[] = {0., 2., 3., __infinity} ; 
    assert( nz == 3 ) ;  // since the above array describes only 3 domains
  
    Map_af map(mgrid, r_limits) ;   // Mapping construction
  	
    cout << map << endl ;  
    
    // Denomination of various coordinates associated with the mapping 
    // ---------------------------------------------------------------

    const Coord& r = map.r ;        // r field 
    
    // Schwarzschild metric in isotropic coordinates
    // ----------------------------------------------
    
    // Total mass = twice the radius at the horizon 
    double mm = 2. * map.val_r(0, 1., 0., 0.) ; 
        
    // Conformal factor
    Scalar psi4(map) ; 
    psi4 = pow( 1 + mm / (2*r), 4) ; 
    psi4.set_domain(0) = 1 ; 
    psi4.std_spectral_base() ;

    
    // Spatial metric

    const Metric_flat& fmet = map.flat_met_spher() ; 
    
    Sym_tensor gij_spher = psi4 * fmet.cov() ; 
    
    Metric gam(gij_spher) ; // construction from the covariant components 
   
    cout << gam << endl ; 
    arrete() ; 
    


    // Test: covariant derivative of the metric / flat metric:
    
    const Tensor& dg_cov = gam.cov().derive_cov( fmet ) ; 
    
    Vector dpsi4 = psi4.derive_cov( fmet ) ; 
    Tensor_sym d_gij_schw = fmet.cov() * dpsi4 ;
    
    Tensor diff_dg = dg_cov - d_gij_schw ; 
    cout << "Error on the covariant derivative of the metric / flat metric:" << endl ; 
    // diff_dg.spectral_display() ; 
    maxabs(diff_dg) ; 
    arrete() ; 

    // Test: Connection symbols Delta
    // ------------------------------
    const Tensor_sym& delta =  gam.connect().get_delta() ;     
    cout << "Connection (delta) : " << endl ; 
    delta.spectral_display() ; 
    maxabs(delta) ; 

    Scalar diff = delta(1,1,1) - 0.5 * dpsi4(1) / psi4 ; 
    cout << "Error on Delta^r_rr: \n " ; maxabs(diff) ; 

    diff = delta(1,2,1) - 0 ; 
    cout << "Error on Delta^r_rt: \n " ; maxabs(diff) ; 
    diff = delta(1,3,1) - 0 ; 
    cout << "Error on Delta^r_rp: \n " ; maxabs(diff) ; 
    
    diff = delta(1,2,2) + 0.5 * dpsi4(1) / psi4 ; 
    cout << "Error on Delta^r_tt: \n " ; maxabs(diff) ; 

    diff = delta(1,3,2) - 0  ; 
    cout << "Error on Delta^r_tp: \n " ; maxabs(diff) ; 

    diff = delta(2,1,1) - 0 ; 
    cout << "Error on Delta^t_rr: \n " ; maxabs(diff) ; 

    diff = delta(2,2,1) - 0.5 * dpsi4(1) / psi4 ; 
    cout << "Error on Delta^t_rt: \n " ; maxabs(diff) ; 

    diff = delta(2,3,1) - 0 ; 
    cout << "Error on Delta^t_rp: \n " ; maxabs(diff) ; 

    diff = delta(2,2,2) - 0 ; 
    cout << "Error on Delta^t_tt: \n " ; maxabs(diff) ; 

    diff = delta(2,3,2) - 0 ; 
    cout << "Error on Delta^t_tp: \n " ; maxabs(diff) ; 

    diff = delta(2,3,3) - 0 ; 
    cout << "Error on Delta^t_pp: \n " ; maxabs(diff) ; 

    diff = delta(3,1,1) - 0 ; 
    cout << "Error on Delta^p_rr: \n " ; maxabs(diff) ; 

    diff = delta(3,2,1) - 0 ; 
    cout << "Error on Delta^p_rt: \n " ; maxabs(diff) ; 

    diff = delta(3,3,1) - 0.5 * dpsi4(1) / psi4 ; 
    cout << "Error on Delta^p_rp: \n " ; maxabs(diff) ; 

    arrete() ; 
    
    // Test: covariant derivative of the metric / itself:
    // --------------------------------------------------
    
    const Tensor& dg_auto = gam.cov().derive_cov( gam ) ; 
    
    cout << "Error on the covariant derivative of the metric / itself:" << endl ; 
    maxabs(dg_auto) ; 
    arrete() ; 

    // Lapse function
    // --------------

    Scalar nn(map) ;
    
    nn = (1 - mm / (2*r) ) / (1 + mm / (2*r) ) ;
    
    nn.set_domain(0) = 1 ; 
    
    nn.std_spectral_base() ;
    
    cout << "Lapse N : " << nn << endl ; 
    arrete() ; 

    // Hamiltonian constraint
    // ----------------------
    
    const Tensor& ricci = gam.ricci() ; 
    
    const Scalar& ricci_scal = gam.ricci_scal() ; 
    
    cout << "Hamiltonian constraint (Ricci scalar) : " << endl ; 
    ricci_scal.spectral_display() ; 
    maxabs(ricci_scal) ; 
    arrete() ; 

    // Dynamical Einstein equations
    //-----------------------------
    
    Sym_tensor dyn1 = - (nn.derive_cov(gam)).derive_cov(gam) ;
    
    Sym_tensor dyn2 = nn * ricci ; 
        
    Sym_tensor dyn_einstein = dyn1 + dyn2 ; 
    
    cout << "Dynamical Einstein equations:" << endl ; 
    dyn_einstein.spectral_display() ;     
    maxabs(dyn_einstein) ; 
    
    cout << "maxabs(dyn1) : " << endl ; 
    maxabs(dyn1) ; 
    cout << "maxabs(dyn2) : " << endl ; 
    maxabs(dyn2) ; 
    
    cout << "Relative error:" << endl ; 
    diffrel(dyn2, -dyn1) ; 

    return EXIT_SUCCESS ; 

}