1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/*
* Test of Metric and Connection classes through the Schwarzschild metric
*
*/
/*
* Copyright (c) 2004 Eric Gourgoulhon & Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char test_schwarzschild_C[] = "$Header: /cvsroot/Lorene/Codes/Test/Metric/test_schwarzschild.C,v 1.4 2014/10/13 08:54:01 j_novak Exp $" ;
/*
* $Id: test_schwarzschild.C,v 1.4 2014/10/13 08:54:01 j_novak Exp $
* $Log: test_schwarzschild.C,v $
* Revision 1.4 2014/10/13 08:54:01 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.3 2014/10/06 15:12:53 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.2 2004/01/28 15:27:59 e_gourgoulhon
* Minor modifs.
*
* Revision 1.1 2004/01/27 14:46:22 e_gourgoulhon
* First version of test_schwarzschild.
*
*
* $Header: /cvsroot/Lorene/Codes/Test/Metric/test_schwarzschild.C,v 1.4 2014/10/13 08:54:01 j_novak Exp $
*
*/
// C++ headers
#include "headcpp.h"
// C headers
#include <cstdlib>
#include <cmath>
// Lorene headers
#include "metric.h"
#include "nbr_spx.h"
#include "graphique.h"
#include "utilitaires.h"
#include "proto.h"
using namespace Lorene ;
int main() {
// Setup of a multi-domain grid (Lorene class Mg3d)
// ------------------------------------------------
int nz = 3 ; // Number of domains
int nr = 17 ; // Number of collocation points in r in each domain
int nt = 5 ; // Number of collocation points in theta in each domain
int np = 4 ; // Number of collocation points in phi in each domain
int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
int symmetry_phi = NONSYM ; // no symmetry in phi
bool compact = true ; // external domain is compactified
// Multi-domain grid construction:
Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, compact) ;
cout << mgrid << endl ;
// Setup of an affine mapping : grid --> physical space (Lorene class Map_af)
// --------------------------------------------------------------------------
// radial boundaries of each domain:
double r_limits[] = {0., 2., 3., __infinity} ;
assert( nz == 3 ) ; // since the above array describes only 3 domains
Map_af map(mgrid, r_limits) ; // Mapping construction
cout << map << endl ;
// Denomination of various coordinates associated with the mapping
// ---------------------------------------------------------------
const Coord& r = map.r ; // r field
// Schwarzschild metric in isotropic coordinates
// ----------------------------------------------
// Total mass = twice the radius at the horizon
double mm = 2. * map.val_r(0, 1., 0., 0.) ;
// Conformal factor
Scalar psi4(map) ;
psi4 = pow( 1 + mm / (2*r), 4) ;
psi4.set_domain(0) = 1 ;
psi4.std_spectral_base() ;
// Spatial metric
const Metric_flat& fmet = map.flat_met_spher() ;
Sym_tensor gij_spher = psi4 * fmet.cov() ;
Metric gam(gij_spher) ; // construction from the covariant components
cout << gam << endl ;
arrete() ;
// Test: covariant derivative of the metric / flat metric:
const Tensor& dg_cov = gam.cov().derive_cov( fmet ) ;
Vector dpsi4 = psi4.derive_cov( fmet ) ;
Tensor_sym d_gij_schw = fmet.cov() * dpsi4 ;
Tensor diff_dg = dg_cov - d_gij_schw ;
cout << "Error on the covariant derivative of the metric / flat metric:" << endl ;
// diff_dg.spectral_display() ;
maxabs(diff_dg) ;
arrete() ;
// Test: Connection symbols Delta
// ------------------------------
const Tensor_sym& delta = gam.connect().get_delta() ;
cout << "Connection (delta) : " << endl ;
delta.spectral_display() ;
maxabs(delta) ;
Scalar diff = delta(1,1,1) - 0.5 * dpsi4(1) / psi4 ;
cout << "Error on Delta^r_rr: \n " ; maxabs(diff) ;
diff = delta(1,2,1) - 0 ;
cout << "Error on Delta^r_rt: \n " ; maxabs(diff) ;
diff = delta(1,3,1) - 0 ;
cout << "Error on Delta^r_rp: \n " ; maxabs(diff) ;
diff = delta(1,2,2) + 0.5 * dpsi4(1) / psi4 ;
cout << "Error on Delta^r_tt: \n " ; maxabs(diff) ;
diff = delta(1,3,2) - 0 ;
cout << "Error on Delta^r_tp: \n " ; maxabs(diff) ;
diff = delta(2,1,1) - 0 ;
cout << "Error on Delta^t_rr: \n " ; maxabs(diff) ;
diff = delta(2,2,1) - 0.5 * dpsi4(1) / psi4 ;
cout << "Error on Delta^t_rt: \n " ; maxabs(diff) ;
diff = delta(2,3,1) - 0 ;
cout << "Error on Delta^t_rp: \n " ; maxabs(diff) ;
diff = delta(2,2,2) - 0 ;
cout << "Error on Delta^t_tt: \n " ; maxabs(diff) ;
diff = delta(2,3,2) - 0 ;
cout << "Error on Delta^t_tp: \n " ; maxabs(diff) ;
diff = delta(2,3,3) - 0 ;
cout << "Error on Delta^t_pp: \n " ; maxabs(diff) ;
diff = delta(3,1,1) - 0 ;
cout << "Error on Delta^p_rr: \n " ; maxabs(diff) ;
diff = delta(3,2,1) - 0 ;
cout << "Error on Delta^p_rt: \n " ; maxabs(diff) ;
diff = delta(3,3,1) - 0.5 * dpsi4(1) / psi4 ;
cout << "Error on Delta^p_rp: \n " ; maxabs(diff) ;
arrete() ;
// Test: covariant derivative of the metric / itself:
// --------------------------------------------------
const Tensor& dg_auto = gam.cov().derive_cov( gam ) ;
cout << "Error on the covariant derivative of the metric / itself:" << endl ;
maxabs(dg_auto) ;
arrete() ;
// Lapse function
// --------------
Scalar nn(map) ;
nn = (1 - mm / (2*r) ) / (1 + mm / (2*r) ) ;
nn.set_domain(0) = 1 ;
nn.std_spectral_base() ;
cout << "Lapse N : " << nn << endl ;
arrete() ;
// Hamiltonian constraint
// ----------------------
const Tensor& ricci = gam.ricci() ;
const Scalar& ricci_scal = gam.ricci_scal() ;
cout << "Hamiltonian constraint (Ricci scalar) : " << endl ;
ricci_scal.spectral_display() ;
maxabs(ricci_scal) ;
arrete() ;
// Dynamical Einstein equations
//-----------------------------
Sym_tensor dyn1 = - (nn.derive_cov(gam)).derive_cov(gam) ;
Sym_tensor dyn2 = nn * ricci ;
Sym_tensor dyn_einstein = dyn1 + dyn2 ;
cout << "Dynamical Einstein equations:" << endl ;
dyn_einstein.spectral_display() ;
maxabs(dyn_einstein) ;
cout << "maxabs(dyn1) : " << endl ;
maxabs(dyn1) ;
cout << "maxabs(dyn2) : " << endl ;
maxabs(dyn2) ;
cout << "Relative error:" << endl ;
diffrel(dyn2, -dyn1) ;
return EXIT_SUCCESS ;
}
|