1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*
* Test of scalar Poisson equation for a source that accounts for a Gibbs-like
* phenomenon
*/
/*
* Copyright (c) 2000-2001 Philippe Grandclement
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char gibbs_log_C[] = "$Header: /cvsroot/Lorene/Codes/Test/Poisson_scal/gibbs_log.C,v 1.3 2014/10/06 15:12:54 j_novak Exp $" ;
/*
* $Id: gibbs_log.C,v 1.3 2014/10/06 15:12:54 j_novak Exp $
* $Log: gibbs_log.C,v $
* Revision 1.3 2014/10/06 15:12:54 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.2 2003/01/09 11:07:54 j_novak
* headcpp.h is now compliant with C++ norm.
* The include files have been ordered, as well as the local_settings_linux
*
* Revision 1.1.1.1 2001/11/20 15:19:31 e_gourgoulhon
* LORENE
*
* Revision 1.1 2000/02/15 14:53:03 phil
* Initial revision
*
*
* $Header: /cvsroot/Lorene/Codes/Test/Poisson_scal/gibbs_log.C,v 1.3 2014/10/06 15:12:54 j_novak Exp $
*
*/
// LORENE
#include "itbl.h"
#include "type_parite.h"
#include "nbr_spx.h"
#include "grilles.h"
#include "map.h"
#include "valeur.h"
#include "proto.h"
#include "coord.h"
#include "cmp.h"
#include "graphique.h"
//standard
#include <ctime>
#include <cstdlib>
#include <cstdio>
#include <cmath>
Tbl donne_pl (int l) {
assert (l>=0) ;
Tbl plp1(l+1) ;
Tbl pl(l+1) ;
Tbl plm1(l+1) ;
double a, b ;
//Initialisation :
plm1.annule_hard() ;
plm1.set(0) = 1 ;
if (l==0)
return plm1 ;
assert (l != 0) ;
pl.annule_hard() ;
pl.set(1) = sqrt(3.) ;
if (l==1)
return pl ;
plp1.set_etat_qcq() ;
assert (l>=2) ;
for (int conte = 1 ; conte<l ; conte++) {
a = (conte+1)/sqrt((2*conte+1)*(2*conte+3)) ;
b = conte/sqrt((2*conte+1)*(2*conte-1)) ;
plp1.set(0) = -b*plm1(0) ;
for (int i=1 ; i<l+1 ; i++)
plp1.set(i) = pl(i-1)-b*plm1(i) ;
plm1 = pl ;
pl = plp1/a ;
}
return pl ;
}
void main() {
// nbres de points en r possibles ...
Itbl r_pos (10) ;
r_pos.set_etat_qcq() ;
r_pos.set(0) = 7 ;
r_pos.set(1) = 13 ;
r_pos.set(2) = 17 ;
r_pos.set(3) = 19 ;
r_pos.set(4) = 21 ;
r_pos.set(5) = 25 ;
r_pos.set(6) = 33 ;
r_pos.set(7) = 49 ;
r_pos.set(8) = 65 ;
r_pos.set(9) = 129 ;
int puis_zec = 4 ;
int l ;
cin >> l ;
assert (l>=0) ;
if (l==0)
assert (puis_zec == 2) ;
// Construction de la grille ...
int nz = 3 ;
double R = (nz-1) ;
//Construction du mapping :
double* bornes = new double[nz+1] ;
for (int i=0 ; i<nz ; i++)
bornes[i] = i ;
bornes[nz] = __infinity ;
//On determine le nombre de points minimal en theta :
int ntmin = (l%2==0) ? l/2+1 : (l+3)/2;
assert (ntmin <= 129) ;
int nbret = 0 ;
int conte = 0 ;
while (ntmin > r_pos(conte))
conte++ ;
nbret = r_pos(conte) ;
int symetrie = (l%2 == 0) ? SYM : NONSYM ;
int nbrep = (l%2 == 0) ? 1 : 4 ;
// echantillonnage en phi :
int* np = new int [nz] ;
for (int lz=0 ; lz<nz ; lz++)
np[lz] = nbrep ;
int type_p = symetrie ;
// echantillonnage en theta :
int* nt = new int [nz] ;
for (int lz=0 ; lz<nz ; lz++)
nt[lz] = nbret ;
int type_t = SYM ;
// echantillonage en r :
int* nr = new int [nz] ;
int* type_r = new int[nz] ;
type_r[0] = RARE ;
for (int lz=1 ; lz<nz-1 ; lz++)
type_r[lz] = FIN ;
type_r[nz-1] = UNSURR ;
// C'est parti pour la grande boucle (vas y Richard ...)
int nrmin = 2*nbret ;
assert (nrmin <=129) ;
conte = 0 ;
while (nrmin > r_pos(conte))
conte++ ;
int borne = (l%2 == 0) ? 10 : 9 ;
for (int boucle = conte ; boucle<borne ; boucle ++) {
for (int lz=0 ; lz<nz ; lz++)
nr[lz] = r_pos(boucle) ;
Mg3d grille (nz, nr, type_r, nt, type_t, np, type_p) ;
Map_af mapping(grille, bornes) ;
Base_val** bases ;
bases = grille.std_base_vect_cart() ;
Base_val base(nz) ;
if (l%2 ==0)
base = *bases[0] ;
else
base = *bases[2] ;
for (int i=0 ; i<3 ; i++)
delete bases[i] ;
delete [] bases ;
//Les coord :
Coord& r = mapping.r ;
Coord& z = mapping.z ;
Coord& cost = mapping.cost ;
//Tableau contenant les coefficients du Pl considere :
Tbl pl (donne_pl(l)) ;
//Construction des Mtbl contenant Pl dans la zec et r^l*Pl dans ZI :
Mtbl pl_zec (grille) ;
pl_zec.annule_hard() ;
for (int i=l ; i>=0 ; i-=2)
pl_zec += pl(i)*pow(cost, double(i)) ;
pl_zec.annule(0, nz-2) ;
Mtbl pl_zin (grille) ;
pl_zin.annule_hard() ;
for (int i=l ; i>=0 ; i-=2)
pl_zin += pl(i)*pow(z, double(i))*pow(r, double(l-i)) ;
pl_zin.annule(nz-1, nz-1) ;
// Construction de la source.
Valeur val_so(&grille) ;
val_so = -pl_zec/pow(r, double(l+3-puis_zec)) ;
val_so.annule(0, nz-2) ;
Cmp source(mapping) ;
source = val_so ;
source.set_dzpuis(puis_zec) ;
source.va.set_base(base) ;
// On construit la solution analytique
Valeur val_sol(&grille) ;
val_sol = pl_zin/pow(2*l+1, 2)/pow(R, double(2*l+1)) ;
Valeur val_sol_zec(&grille) ;
val_sol_zec = pl_zec*(log(r)+1./(2*l+1)-log(R))/(2*l+1)/pow(r, double(l+1)) ;
for (int k=0 ; k<np[nz-1] ; k++)
for (int j=0 ; j<nt[nz-1] ; j++)
val_sol_zec.set(nz-1, k, j, nr[nz-1]-1) = 0. ;
*(val_sol.c->t[nz-1]) = *(val_sol_zec.c->t[nz-1]) ;
// On construit le vecteur ...
Cmp soluce(mapping) ;
soluce = val_sol ;
soluce.va.set_base(base) ;
soluce.set_dzpuis(0) ;
Cmp sol_poisson(source.poisson()) ;
cout << nr[0] << " " ;
Tbl erreur(diffrel(soluce, sol_poisson)) ;
for (int i=0 ; i<nz ; i++)
cout << erreur(i) << " " ;
cout << endl ;
}
delete [] nr ;
delete [] nt ;
delete [] np ;
delete [] type_r ;
delete [] bornes ;
}
|