File: simple_poisson.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (192 lines) | stat: -rw-r--r-- 6,328 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 *  Resolution of a simple Poisson equation. 
 *
 */

/*
 *   Copyright (c) 2004 Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char simple_poisson_C[] = "$Header: /cvsroot/Lorene/Codes/Tutorial/simple_poisson.C,v 1.7 2014/10/13 08:54:03 j_novak Exp $" ;

/*
 * $Id: simple_poisson.C,v 1.7 2014/10/13 08:54:03 j_novak Exp $
 * $Log: simple_poisson.C,v $
 * Revision 1.7  2014/10/13 08:54:03  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.6  2007/12/20 09:11:10  jl_cornou
 * Correction of an error in op_sxpun about Jacobi(0,2) polynomials
 *
 * Revision 1.5  2007/12/11 15:28:27  jl_cornou
 * Jacobi(0,2) polynomials partially implemented
 *
 * Revision 1.4  2005/03/25 20:29:57  e_gourgoulhon
 * Use of new graphical routines for Scalar and Vector.
 *
 * Revision 1.3  2004/02/27 21:19:12  e_gourgoulhon
 * Benefits from the fact that now derive_cov applied to a scalar
 * returns a reference on a Vector (treatment of dpot).
 *
 * Revision 1.2  2004/02/16 13:00:00  e_gourgoulhon
 * Added the C headers (not required by GNU g++ !!!).
 *
 * Revision 1.1  2004/02/15 22:08:16  e_gourgoulhon
 * The example with Poisson equation is now in file simple_poisson.C.
 * simple_wave.C contains now an example of resolution of d'Alembert
 * equation. The time evolution is managed thanks to the new
 * class Evolution_std.
 *
 *
 *
 * $Header: /cvsroot/Lorene/Codes/Tutorial/simple_poisson.C,v 1.7 2014/10/13 08:54:03 j_novak Exp $
 *
 */

// C++ headers
#include "headcpp.h"

// C headers
#include "stdlib.h"
#include "assert.h"
#include "math.h"

// Lorene headers
#include "nbr_spx.h"
#include "tensor.h"
#include "metric.h"
#include "graphique.h"
#include "utilitaires.h"

using namespace Lorene ;

int main() {

    // Setup of a multi-domain grid (Lorene class Mg3d)
    // ------------------------------------------------
  
    int nz = 3 ; 	// Number of domains
    int nr = 7 ; 	// Number of collocation points in r in each domain
    int nt = 5 ; 	// Number of collocation points in theta in each domain
    int np = 8 ; 	// Number of collocation points in phi in each domain
    int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
    int symmetry_phi = NONSYM ; // no symmetry in phi
    bool compact = true ; // external domain is compactified
  
    // Multi-domain grid construction:
    Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, compact) ;
	
    cout << mgrid << endl ; 

  
    // Setup of an affine mapping : grid --> physical space (Lorene class Map_af)
    // --------------------------------------------------------------------------

    // radial boundaries of each domain:
    double r_limits[] = {0., 2., 3., __infinity} ; 
    assert( nz == 3 ) ;  // since the above array described only 3 domains
  
    Map_af map(mgrid, r_limits) ;   // Mapping construction
  	
    cout << map << endl ;  
    
    // Denomination of various coordinates associated with the mapping 
    // ---------------------------------------------------------------

    const Coord& r = map.r ;        // r field 
    const Coord& th = map.tet ;     // theta field 
    const Coord& phi = map.phi ;    // phi field 
    const Coord& x = map.x ;        // x field
    const Coord& y = map.y ;        // y field
    const Coord& z = map.z ;        // z field
    
    // Setup of a scalar field (source of the Poisson equation)
    // --------------------------------------------------------

    Scalar source(map) ;  // construction of an object of Lorene class Scalar
    
    source = 2* exp( - r*r ) * (1 + x + x*y) ;  
    
    source.annule_domain(nz-1) ; // The source is set to zero in the last
                                 // domain 
    
    source.std_spectral_base() ; // sets the bases for the spectral expansions
                                 // to the standard ones for a scalar field

    cout << source << endl ;    // prints to screen 

       
    source.spectral_display() ;     // prints the spectral expansions


    
    // 1-D visualization via PGPLOT
    // ----------------------------
    
    des_meridian(source, 0., 1.1* r_limits[nz-1], "source", 1) ;  
    arrete() ; 

    // 2-D visualization via PGPLOT
    // ----------------------------

    des_coupe_z(source, 0., 2, "Source") ; 
    

    // 3-D visualization via OpenDX
    // ----------------------------
    
    double z0 = 0 ;     // section plane : z = z0
  
    source.visu_section('z', z0, -2., 2., -1.5, 1.5, "Example of section vis.") ;

    source.visu_box(-2., 2., -1.5, 1.5, -1., 1., "Example of volume rendering", 0x0) ;
    
    // Resolution of a Poisson equation 
    // --------------------------------
    
    Scalar pot = source.poisson() ; 
    
    cout << "Solution of the Poisson equation : " << endl ; 
        
    pot.spectral_display() ;     // prints the spectral expansions 
                                     
    des_coupe_z( pot, 0., 2, "Potential") ; 
    
//  pot.visu_section('z', z0, -2., 2., -1.5, 1.5, "Potential", "pot") ;

    // Construction of a flat metric
    // -----------------------------

    Metric_flat mets(map, map.get_bvect_spher()) ; // spherical representation
    Metric_flat metc(map, map.get_bvect_cart()) ;  // Cartesian representation

    // Gradient of the potential
    // -------------------------
    
    Vector dpot = pot.derive_cov(metc) ; 
    dpot.dec_dzpuis(2) ; 
    
    des_coupe_vect_z(dpot, 0., -2., 0.5, 2, "Gradient of potential") ; 

    dpot.visu_arrows(-1., 1., -1., 1., -1., 1., "Gradient of potential", 
                     "gradient") ; 
                     

    return EXIT_SUCCESS ; 
}