1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/*
* Resolution of a simple Poisson equation.
*
*/
/*
* Copyright (c) 2004 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char simple_poisson_C[] = "$Header: /cvsroot/Lorene/Codes/Tutorial/simple_poisson.C,v 1.7 2014/10/13 08:54:03 j_novak Exp $" ;
/*
* $Id: simple_poisson.C,v 1.7 2014/10/13 08:54:03 j_novak Exp $
* $Log: simple_poisson.C,v $
* Revision 1.7 2014/10/13 08:54:03 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.6 2007/12/20 09:11:10 jl_cornou
* Correction of an error in op_sxpun about Jacobi(0,2) polynomials
*
* Revision 1.5 2007/12/11 15:28:27 jl_cornou
* Jacobi(0,2) polynomials partially implemented
*
* Revision 1.4 2005/03/25 20:29:57 e_gourgoulhon
* Use of new graphical routines for Scalar and Vector.
*
* Revision 1.3 2004/02/27 21:19:12 e_gourgoulhon
* Benefits from the fact that now derive_cov applied to a scalar
* returns a reference on a Vector (treatment of dpot).
*
* Revision 1.2 2004/02/16 13:00:00 e_gourgoulhon
* Added the C headers (not required by GNU g++ !!!).
*
* Revision 1.1 2004/02/15 22:08:16 e_gourgoulhon
* The example with Poisson equation is now in file simple_poisson.C.
* simple_wave.C contains now an example of resolution of d'Alembert
* equation. The time evolution is managed thanks to the new
* class Evolution_std.
*
*
*
* $Header: /cvsroot/Lorene/Codes/Tutorial/simple_poisson.C,v 1.7 2014/10/13 08:54:03 j_novak Exp $
*
*/
// C++ headers
#include "headcpp.h"
// C headers
#include "stdlib.h"
#include "assert.h"
#include "math.h"
// Lorene headers
#include "nbr_spx.h"
#include "tensor.h"
#include "metric.h"
#include "graphique.h"
#include "utilitaires.h"
using namespace Lorene ;
int main() {
// Setup of a multi-domain grid (Lorene class Mg3d)
// ------------------------------------------------
int nz = 3 ; // Number of domains
int nr = 7 ; // Number of collocation points in r in each domain
int nt = 5 ; // Number of collocation points in theta in each domain
int np = 8 ; // Number of collocation points in phi in each domain
int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
int symmetry_phi = NONSYM ; // no symmetry in phi
bool compact = true ; // external domain is compactified
// Multi-domain grid construction:
Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, compact) ;
cout << mgrid << endl ;
// Setup of an affine mapping : grid --> physical space (Lorene class Map_af)
// --------------------------------------------------------------------------
// radial boundaries of each domain:
double r_limits[] = {0., 2., 3., __infinity} ;
assert( nz == 3 ) ; // since the above array described only 3 domains
Map_af map(mgrid, r_limits) ; // Mapping construction
cout << map << endl ;
// Denomination of various coordinates associated with the mapping
// ---------------------------------------------------------------
const Coord& r = map.r ; // r field
const Coord& th = map.tet ; // theta field
const Coord& phi = map.phi ; // phi field
const Coord& x = map.x ; // x field
const Coord& y = map.y ; // y field
const Coord& z = map.z ; // z field
// Setup of a scalar field (source of the Poisson equation)
// --------------------------------------------------------
Scalar source(map) ; // construction of an object of Lorene class Scalar
source = 2* exp( - r*r ) * (1 + x + x*y) ;
source.annule_domain(nz-1) ; // The source is set to zero in the last
// domain
source.std_spectral_base() ; // sets the bases for the spectral expansions
// to the standard ones for a scalar field
cout << source << endl ; // prints to screen
source.spectral_display() ; // prints the spectral expansions
// 1-D visualization via PGPLOT
// ----------------------------
des_meridian(source, 0., 1.1* r_limits[nz-1], "source", 1) ;
arrete() ;
// 2-D visualization via PGPLOT
// ----------------------------
des_coupe_z(source, 0., 2, "Source") ;
// 3-D visualization via OpenDX
// ----------------------------
double z0 = 0 ; // section plane : z = z0
source.visu_section('z', z0, -2., 2., -1.5, 1.5, "Example of section vis.") ;
source.visu_box(-2., 2., -1.5, 1.5, -1., 1., "Example of volume rendering", 0x0) ;
// Resolution of a Poisson equation
// --------------------------------
Scalar pot = source.poisson() ;
cout << "Solution of the Poisson equation : " << endl ;
pot.spectral_display() ; // prints the spectral expansions
des_coupe_z( pot, 0., 2, "Potential") ;
// pot.visu_section('z', z0, -2., 2., -1.5, 1.5, "Potential", "pot") ;
// Construction of a flat metric
// -----------------------------
Metric_flat mets(map, map.get_bvect_spher()) ; // spherical representation
Metric_flat metc(map, map.get_bvect_cart()) ; // Cartesian representation
// Gradient of the potential
// -------------------------
Vector dpot = pot.derive_cov(metc) ;
dpot.dec_dzpuis(2) ;
des_coupe_vect_z(dpot, 0., -2., 0.5, 2, "Gradient of potential") ;
dpot.visu_arrows(-1., 1., -1., 1., -1., 1., "Gradient of potential",
"gradient") ;
return EXIT_SUCCESS ;
}
|