File: simple_wave.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (259 lines) | stat: -rw-r--r-- 8,272 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
 *  Simple wave equation.
 *
 */

/*
 *   Copyright (c) 2003-2004 Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char simple_wave_C[] = "$Header: /cvsroot/Lorene/Codes/Tutorial/simple_wave.C,v 1.15 2014/10/13 08:54:04 j_novak Exp $" ;

/*
 * $Id: simple_wave.C,v 1.15 2014/10/13 08:54:04 j_novak Exp $
 * $Log: simple_wave.C,v $
 * Revision 1.15  2014/10/13 08:54:04  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.14  2005/03/25 20:39:27  e_gourgoulhon
 * Call to the new function des_coupe_z for Scalar's.
 *
 * Revision 1.13  2004/05/11 20:17:04  e_gourgoulhon
 * New prototype of des_evol.
 *
 * Revision 1.12  2004/04/06 08:26:21  j_novak
 * Update of the list of arguments for Evolution constructors.
 *
 * Revision 1.11  2004/02/25 16:44:57  j_novak
 * workflag is now allocated dynamically.
 *
 * Revision 1.10  2004/02/21 17:06:43  e_gourgoulhon
 * Method Scalar::point renamed Scalar::val_grid_point.
 *
 * Revision 1.9  2004/02/18 18:59:29  e_gourgoulhon
 * Suppressed unnecessary #include's.
 *
 * Revision 1.8  2004/02/17 22:20:49  e_gourgoulhon
 * Much better plots thanks to the new function des_profile_mult.
 * Added evolution of the central value of the field and its plot
 * through the new function des_evol.
 *
 * Revision 1.7  2004/02/17 09:19:08  j_novak
 * Cleaning of Param at the end of the code (memory leaks).
 *
 * Revision 1.6  2004/02/16 13:00:00  e_gourgoulhon
 * Added the C headers (not required by GNU g++ !!!).
 *
 * Revision 1.5  2004/02/15 22:08:16  e_gourgoulhon
 * The example with Poisson equation is now in file simple_poisson.C.
 * simple_wave.C contains now an example of resolution of d'Alembert
 * equation. The time evolution is managed thanks to the new
 * class Evolution_std.
 *
 * Revision 1.4  2003/12/16 06:33:31  e_gourgoulhon
 * Added call to method Scalar::visu_box.
 *
 * Revision 1.3  2003/12/14 21:53:26  e_gourgoulhon
 * Added 3D visualization of vector field through Vector::visu_arrows.
 *
 * Revision 1.2  2003/12/11 16:21:05  e_gourgoulhon
 * Use simplified version of Scalar::visu_section.
 *
 * Revision 1.1  2003/12/11 11:30:02  e_gourgoulhon
 * First version.
 *
 *
 *
 * $Header: /cvsroot/Lorene/Codes/Tutorial/simple_wave.C,v 1.15 2014/10/13 08:54:04 j_novak Exp $
 *
 */

// C++ headers
#include "headcpp.h"

// C headers
#include "stdlib.h"
#include "assert.h"
#include "math.h"

// Lorene headers
#include "metric.h"
#include "graphique.h"
#include "param.h"
#include "evolution.h"
#include "utilitaires.h"


using namespace Lorene ;

int main() {

    // Setup of a multi-domain grid (Lorene class Mg3d)
    // ------------------------------------------------
  
    int nz = 2 ; 	// Number of domains
    int nr = 17 ; 	// Number of collocation points in r in each domain
    int nt = 9 ; 	// Number of collocation points in theta in each domain
    int np = 8 ; 	// Number of collocation points in phi in each domain
    int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
    int symmetry_phi = NONSYM ; // no symmetry in phi
    bool compact = false ; // external domain is not compactified
  
    // Multi-domain grid construction:
    Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, compact) ;
	
    cout << mgrid << endl ; 

  
    // Setup of an affine mapping : grid --> physical space (Lorene class Map_af)
    // --------------------------------------------------------------------------

    // radial boundaries of each domain:
    double r_limits[] = {0., 2., 4.} ; 
    assert( nz == 2 ) ;  // since the above array described only 2 domains
  
    Map_af map(mgrid, r_limits) ;   // Mapping construction
  	
    cout << map << endl ;  
        
    // Denomination of various coordinates associated with the mapping 
    // ---------------------------------------------------------------

    const Coord& r = map.r ;        // r field 
    const Coord& x = map.x ;        // x field
    const Coord& y = map.y ;        // y field
    
    // Setup of a scalar field (initial value for the d'Alembert equation)
    // -------------------------------------------------------------------

    Scalar uu0(map) ;  // construction of an object of Lorene class Scalar
    
    uu0 = 2* exp( - r*r ) * (1 + x + x*y) ; 
        
    uu0.std_spectral_base() ; // sets the bases for the spectral expansions
                                 // to the standard ones for a scalar field

    cout << uu0 << endl ;    // prints to screen 
    
    uu0.spectral_display() ;     // prints the spectral expansions
    
    // 2-D visualization via PGPLOT
    // ----------------------------

    des_coupe_z( uu0, 0., 1, "Field U") ; 
    

    // 3-D visualization via OpenDX
    // ----------------------------
    
    // double z0 = 0 ;     // section plane : z = z0
  
    // uu0.visu_section('z', z0, -2., 2., -1.5, 1.5, "Example of section vis.") ;

    // uu0.visu_box(-2., 2., -1.5, 1.5, -1., 1., "Example of volume rendering", 0x0) ;
    
    // Time evolution : d'Alembert equation 
    // ------------------------------------
    
    Scalar source(map) ; // source of d'Alembert equation 
    source = 0 ; 

    double dt = 0.02 ;  // time step 
    int bc = 2 ;    // type of boundary condition : 2 = Bayliss & Turkel outgoing wave
    int *workflag = new int(0) ; // working flag 
 
    Param par ; 
    par.add_double(dt) ; 
    par.add_int(bc) ; 
    par.add_int_mod(*workflag) ; 
    
    
    double t = 0 ; 

    int j_min = 0 ;

    Evolution_std<Scalar> uu(uu0, 3, j_min, t) ; // Time evolution of U    
    // Time evolution of the central value of U : 
    Evolution_full<double> uu_c(uu0.val_grid_point(0,0,0,0), j_min, t) ; 
    j_min++ ;
    t += dt ;

    uu.update(uu0, j_min, t) ;
    uu_c.update(uu0.val_grid_point(0,0,0,0), j_min, t) ;

    int j_max = 500 ; 
    
    for (int j = j_min; j <= j_max ; j++) {
    
        Scalar uu_jp1 = uu[j].avance_dalembert(par, uu[j-1], source) ; 
    
	t += dt ;
        uu.update(uu_jp1, j+1, t) ; 
        
        uu_c.update(uu_jp1.val_grid_point(0,0,0,0), j+1, t) ; 
   
    
        if ( j%2 == 0 ) {

        
            cout << "Step = " << j+1 << ", time = " << t << endl ; 
        
            const Scalar* des[] = {&uu[j+1], &uu[j+1], &uu[j+1]} ;            
            double tab_theta0[] = {0.5*M_PI, 0.5*M_PI, 0.5*M_PI} ; 
            double tab_phi0[] = {0., 0.5*M_PI, M_PI} ; 
            
            des_profile_mult(des, 3, 0., 4., tab_theta0, tab_phi0, 1., false, 
            "U", 
            "U in the equatorial plane for phi=0, pi/2, pi", 0) ;
        
            double tab_theta1[] = {0, 0.25*M_PI, 0.5*M_PI} ; 
            double tab_phi1[] = {0., 0., 0.} ; 
 
            des_profile_mult(des, 3, 0., 4., tab_theta1, tab_phi1, 1., false, 
            "U", "U in the merional plane phi=0 for theta=0, pi/4, pi/2", 1) ;
        
        }
    }
    
    des_evol(uu_c, "U\\dc\\u", "Evolution of central value of U") ; 
    arrete() ; 
    
    
//  uu.visu_section('z', z0, -2., 2., -1.5, 1.5, "Potential", "uu") ;

    // Construction of a flat metric
    // -----------------------------

    Metric_flat mets(map, map.get_bvect_spher()) ; // spherical representation
    Metric_flat metc(map, map.get_bvect_cart()) ;  // Cartesian representation

    Vector duu = uu[j_max-1].derive_cov(metc) ; 
    
    // des_coupe_vect_z(duu, 0., -2., 0.5, 2, "Gradient of potential") ; 

    //duu.visu_arrows(-1., 1., -1., 1., -1., 1., "Gradient of potential", 
    //                 "gradient") ; 

    par.clean_all() ;

    return EXIT_SUCCESS ; 
}