1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
/*
* Simple wave equation.
*
*/
/*
* Copyright (c) 2003-2004 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char simple_wave_C[] = "$Header: /cvsroot/Lorene/Codes/Tutorial/simple_wave.C,v 1.15 2014/10/13 08:54:04 j_novak Exp $" ;
/*
* $Id: simple_wave.C,v 1.15 2014/10/13 08:54:04 j_novak Exp $
* $Log: simple_wave.C,v $
* Revision 1.15 2014/10/13 08:54:04 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.14 2005/03/25 20:39:27 e_gourgoulhon
* Call to the new function des_coupe_z for Scalar's.
*
* Revision 1.13 2004/05/11 20:17:04 e_gourgoulhon
* New prototype of des_evol.
*
* Revision 1.12 2004/04/06 08:26:21 j_novak
* Update of the list of arguments for Evolution constructors.
*
* Revision 1.11 2004/02/25 16:44:57 j_novak
* workflag is now allocated dynamically.
*
* Revision 1.10 2004/02/21 17:06:43 e_gourgoulhon
* Method Scalar::point renamed Scalar::val_grid_point.
*
* Revision 1.9 2004/02/18 18:59:29 e_gourgoulhon
* Suppressed unnecessary #include's.
*
* Revision 1.8 2004/02/17 22:20:49 e_gourgoulhon
* Much better plots thanks to the new function des_profile_mult.
* Added evolution of the central value of the field and its plot
* through the new function des_evol.
*
* Revision 1.7 2004/02/17 09:19:08 j_novak
* Cleaning of Param at the end of the code (memory leaks).
*
* Revision 1.6 2004/02/16 13:00:00 e_gourgoulhon
* Added the C headers (not required by GNU g++ !!!).
*
* Revision 1.5 2004/02/15 22:08:16 e_gourgoulhon
* The example with Poisson equation is now in file simple_poisson.C.
* simple_wave.C contains now an example of resolution of d'Alembert
* equation. The time evolution is managed thanks to the new
* class Evolution_std.
*
* Revision 1.4 2003/12/16 06:33:31 e_gourgoulhon
* Added call to method Scalar::visu_box.
*
* Revision 1.3 2003/12/14 21:53:26 e_gourgoulhon
* Added 3D visualization of vector field through Vector::visu_arrows.
*
* Revision 1.2 2003/12/11 16:21:05 e_gourgoulhon
* Use simplified version of Scalar::visu_section.
*
* Revision 1.1 2003/12/11 11:30:02 e_gourgoulhon
* First version.
*
*
*
* $Header: /cvsroot/Lorene/Codes/Tutorial/simple_wave.C,v 1.15 2014/10/13 08:54:04 j_novak Exp $
*
*/
// C++ headers
#include "headcpp.h"
// C headers
#include "stdlib.h"
#include "assert.h"
#include "math.h"
// Lorene headers
#include "metric.h"
#include "graphique.h"
#include "param.h"
#include "evolution.h"
#include "utilitaires.h"
using namespace Lorene ;
int main() {
// Setup of a multi-domain grid (Lorene class Mg3d)
// ------------------------------------------------
int nz = 2 ; // Number of domains
int nr = 17 ; // Number of collocation points in r in each domain
int nt = 9 ; // Number of collocation points in theta in each domain
int np = 8 ; // Number of collocation points in phi in each domain
int symmetry_theta = SYM ; // symmetry with respect to the equatorial plane
int symmetry_phi = NONSYM ; // no symmetry in phi
bool compact = false ; // external domain is not compactified
// Multi-domain grid construction:
Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi, compact) ;
cout << mgrid << endl ;
// Setup of an affine mapping : grid --> physical space (Lorene class Map_af)
// --------------------------------------------------------------------------
// radial boundaries of each domain:
double r_limits[] = {0., 2., 4.} ;
assert( nz == 2 ) ; // since the above array described only 2 domains
Map_af map(mgrid, r_limits) ; // Mapping construction
cout << map << endl ;
// Denomination of various coordinates associated with the mapping
// ---------------------------------------------------------------
const Coord& r = map.r ; // r field
const Coord& x = map.x ; // x field
const Coord& y = map.y ; // y field
// Setup of a scalar field (initial value for the d'Alembert equation)
// -------------------------------------------------------------------
Scalar uu0(map) ; // construction of an object of Lorene class Scalar
uu0 = 2* exp( - r*r ) * (1 + x + x*y) ;
uu0.std_spectral_base() ; // sets the bases for the spectral expansions
// to the standard ones for a scalar field
cout << uu0 << endl ; // prints to screen
uu0.spectral_display() ; // prints the spectral expansions
// 2-D visualization via PGPLOT
// ----------------------------
des_coupe_z( uu0, 0., 1, "Field U") ;
// 3-D visualization via OpenDX
// ----------------------------
// double z0 = 0 ; // section plane : z = z0
// uu0.visu_section('z', z0, -2., 2., -1.5, 1.5, "Example of section vis.") ;
// uu0.visu_box(-2., 2., -1.5, 1.5, -1., 1., "Example of volume rendering", 0x0) ;
// Time evolution : d'Alembert equation
// ------------------------------------
Scalar source(map) ; // source of d'Alembert equation
source = 0 ;
double dt = 0.02 ; // time step
int bc = 2 ; // type of boundary condition : 2 = Bayliss & Turkel outgoing wave
int *workflag = new int(0) ; // working flag
Param par ;
par.add_double(dt) ;
par.add_int(bc) ;
par.add_int_mod(*workflag) ;
double t = 0 ;
int j_min = 0 ;
Evolution_std<Scalar> uu(uu0, 3, j_min, t) ; // Time evolution of U
// Time evolution of the central value of U :
Evolution_full<double> uu_c(uu0.val_grid_point(0,0,0,0), j_min, t) ;
j_min++ ;
t += dt ;
uu.update(uu0, j_min, t) ;
uu_c.update(uu0.val_grid_point(0,0,0,0), j_min, t) ;
int j_max = 500 ;
for (int j = j_min; j <= j_max ; j++) {
Scalar uu_jp1 = uu[j].avance_dalembert(par, uu[j-1], source) ;
t += dt ;
uu.update(uu_jp1, j+1, t) ;
uu_c.update(uu_jp1.val_grid_point(0,0,0,0), j+1, t) ;
if ( j%2 == 0 ) {
cout << "Step = " << j+1 << ", time = " << t << endl ;
const Scalar* des[] = {&uu[j+1], &uu[j+1], &uu[j+1]} ;
double tab_theta0[] = {0.5*M_PI, 0.5*M_PI, 0.5*M_PI} ;
double tab_phi0[] = {0., 0.5*M_PI, M_PI} ;
des_profile_mult(des, 3, 0., 4., tab_theta0, tab_phi0, 1., false,
"U",
"U in the equatorial plane for phi=0, pi/2, pi", 0) ;
double tab_theta1[] = {0, 0.25*M_PI, 0.5*M_PI} ;
double tab_phi1[] = {0., 0., 0.} ;
des_profile_mult(des, 3, 0., 4., tab_theta1, tab_phi1, 1., false,
"U", "U in the merional plane phi=0 for theta=0, pi/4, pi/2", 1) ;
}
}
des_evol(uu_c, "U\\dc\\u", "Evolution of central value of U") ;
arrete() ;
// uu.visu_section('z', z0, -2., 2., -1.5, 1.5, "Potential", "uu") ;
// Construction of a flat metric
// -----------------------------
Metric_flat mets(map, map.get_bvect_spher()) ; // spherical representation
Metric_flat metc(map, map.get_bvect_cart()) ; // Cartesian representation
Vector duu = uu[j_max-1].derive_cov(metc) ;
// des_coupe_vect_z(duu, 0., -2., 0.5, 2, "Gradient of potential") ;
//duu.visu_arrows(-1., 1., -1., 1., -1., 1., "Gradient of potential",
// "gradient") ;
par.clean_all() ;
return EXIT_SUCCESS ;
}
|