1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
/*
* Definition of class Bin_NS (binary neutron star exportation)
*
*/
/*
* Copyright (c) 2002 Eric Gourgoulhon
* Copyright (c) 2002 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef __BIN_NS_H_
#define __BIN_NS_H_
/*
* $Id: bin_ns.h,v 1.7 2014/10/13 08:54:05 j_novak Exp $
* $Log: bin_ns.h,v $
* Revision 1.7 2014/10/13 08:54:05 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.6 2014/10/06 15:13:25 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.5 2010/07/14 16:47:30 e_gourgoulhon
* Corrected error in the documentation for K_xx, K_xy, etc...:
* the components are the covariant ones, not the contravariant ones.
*
* Revision 1.4 2004/10/20 15:01:37 e_gourgoulhon
* Corrected error in the comments on the shift vector:
* corotating coordinates -> non rotating coordinates.
*
* Revision 1.3 2003/10/24 15:49:03 e_gourgoulhon
* Updated documentation.
*
* Revision 1.2 2003/01/09 11:08:00 j_novak
* headcpp.h is now compliant with C++ norm.
* The include files have been ordered, as well as the local_settings_linux
*
* Revision 1.1 2002/01/11 17:03:02 e_gourgoulhon
* Exportation of binary neutron stars configuration to a Cartesian grid
*
*
* $Header: /cvsroot/Lorene/Export/C++/Include/bin_ns.h,v 1.7 2014/10/13 08:54:05 j_novak Exp $
*
*/
// Headers C
#include <cstdio>
#include <iostream>
#include <fstream>
using namespace std ;
namespace Lorene {
/**
* Binary neutron star configuration on a Cartesian grid.
*
* A binary black hole system is constructed on a Cartesian grid from
* data stored in a file resulting from a computation by Taniguchi
* and Gourgoulhon.
*
* Importation of Lorene data is performed by means of the constructor
* {\tt Bin\_NS::Bin\_NS(int, const double*, const double*, const double*, const char*)}.
* This constructor takes general arrays for the location of the Cartesian coordinates
* $(x, y, z)$, i.e. it does not assume that the grid is a uniform one. Note also
* that these arrays are 1-D, as well as all the metric fields,
* in order to be use with any ordering of the 3-D storage.
*
* This class is very simple, with all data members being public.
* A typical example of use is the following one
*
* \begin{verbatim}
* // Define the Cartesian grid by means of the arrays xg, yg, zg:
* for (int i=0; i<nb_points; i++) {
* xg[i] = ...
* yg[i] = ...
* zg[i] = ...
* }
*
* // Read the file containing the spectral data and evaluate
* // all the fields on the Cartesian grid :
*
* Bin_NS binary_system(nb_points, xg, yg, zg, datafile) ;
*
* // Extract what you need :
*
* double* gamma_xx = binary_system.g_xx ; // metric coefficient g_xx
*
* double* shift_x = binary_system.beta_x ; // x comp. of shift vector
*
* ...
*
* // Save everything in an ASCII file :
*
* ofstream file_ini("ini.d") ;
* binary_system.save_form(file_ini) ;
* file_ini.close() ;
*
* \end{verbatim}
*
* @version #$Id: bin_ns.h,v 1.7 2014/10/13 08:54:05 j_novak Exp $#
*/
class Bin_NS {
// Data :
// -----
public:
/// Eos name star 1
char eos_name1[100] ;
/// Adiabatic index of EOS 1 if it is polytropic (0 otherwise)
double gamma_poly1 ;
/**
* Polytropic constant of EOS 1 if it is polytropic (0 otherwise)
* [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$]
*/
double kappa_poly1 ;
/// Eos name star 2
char eos_name2[100] ;
/// Adiabatic index of EOS 2 if it is polytropic (0 otherwise)
double gamma_poly2 ;
/**
* Polytropic constant of EOS 2 if it is polytropic (0 otherwise)
* [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$]
*/
double kappa_poly2 ;
/// Orbital angular velocity [unit: rad/s]
double omega ;
/** Distance between the centers (maxiumum density) of the two neutron
* stars [unit: km]
*/
double dist ;
/** Distance between the center of masses of two neutron stars
* [unit: km]
*/
double dist_mass ;
/** Baryon mass of star 1 (less massive star)
* [unit: $M_\odot$]
*/
double mass1_b ;
/** Baryon mass of star 2 (massive star)
* [unit: $M_\odot$]
*/
double mass2_b ;
/** ADM mass of the binary system
* [unit: $M_\odot$]
*/
double mass_adm ;
/** Total angular momentum of the binary system
* [unit: $GM_\odot^2/c$]
*/
double angu_mom ;
/** Coordinate radius of star 1 (less massive star)
* parallel to the x axis toward the companion star
* [unit: km]
*/
double rad1_x_comp ;
/** Coordinate radius of star 1 (less massive star)
* parallel to the y axis [unit: km].
*/
double rad1_y ;
/** Coordinate radius of star 1 (less massive star)
* parallel to the z axis [unit: km].
*/
double rad1_z ;
/** Coordinate radius of star 1 (less massive star)
* parallel to the x axis opposite to the companion star
* [unit: km].
*/
double rad1_x_opp ;
/** Coordinate radius of star 2 (massive star)
* parallel to the x axis toward the companion star
* [unit: km].
*/
double rad2_x_comp ;
/** Coordinate radius of star 2 (massive star)
* parallel to the y axis [unit: km].
*/
double rad2_y ;
/** Coordinate radius of star 2 (massive star)
* parallel to the z axis [unit: km].
*/
double rad2_z ;
/** Coordinate radius of star 2 (massive star)
* parallel to the x axis opposite to the companion star
* [unit: km].
*/
double rad2_x_opp ;
/// Total number of grid points
int np ;
/// 1-D array storing the values of coordinate x of the {\tt np} grid points [unit: km]
double* xx ;
/// 1-D array storing the values of coordinate y of the {\tt np} grid points [unit: km]
double* yy ;
/// 1-D array storing the values of coordinate z of the {\tt np} grid points [unit: km]
double* zz ;
/// Lapse function $N$ at the {\tt np} grid points (1-D array)
double* nnn ;
/// Component $\beta^x$ of the shift vector of non rotating coordinates [unit: $c$]
double* beta_x ;
/// Component $\beta^y$ of the shift vector of non rotating coordinates [unit: $c$]
double* beta_y ;
/// Component $\beta^z$ of the shift vector of non rotating coordinates [unit: $c$]
double* beta_z ;
/// Metric coefficient $\gamma_{xx}$ at the grid points (1-D array)
double* g_xx ;
/// Metric coefficient $\gamma_{xy}$ at the grid points (1-D array)
double* g_xy ;
/// Metric coefficient $\gamma_{xz}$ at the grid points (1-D array)
double* g_xz ;
/// Metric coefficient $\gamma_{yy}$ at the grid points (1-D array)
double* g_yy ;
/// Metric coefficient $\gamma_{yz}$ at the grid points (1-D array)
double* g_yz ;
/// Metric coefficient $\gamma_{zz}$ at the grid points (1-D array)
double* g_zz ;
/// Component $K_{xx}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_xx ;
/// Component $K_{xy}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_xy ;
/// Component $K_{xz}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_xz ;
/// Component $K_{yy}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_yy ;
/// Component $K_{yz}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_yz ;
/// Component $K_{zz}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_zz ;
// Hydro components
//------------------
/** Baryon density in the fluid frame at the {\tt np} grid points (1-D array)
* [unit: ${\rm kg \, m}^{-3}$]
*/
double* nbar ;
/// Specific internal energy at the {\tt np} grid points (1-D array) [unit: $c^2$]
double* ener_spec ;
/** Component $U^x$ of the fluid 3-velocity with respect to the Eulerian
* observer, at the {\tt np} grid points (1-D array) [unit: $c$]
*/
double* u_euler_x ;
/** Component $U^y$ of the fluid 3-velocity with respect to the Eulerian
* observer, at the {\tt np} grid points (1-D array) [unit: $c$]
*/
double* u_euler_y ;
/** Component $U^z$ of the fluid 3-velocity with respect to the Eulerian
* observer, at the {\tt np} grid points (1-D array) [unit: $c$]
*/
double* u_euler_z ;
// Constructors - Destructor
// -------------------------
public:
/** Constructor from Lorene spectral data.
*
* This constructor takes general arrays {\tt xi, yi, zi}
* for the location of the Cartesian coordinates
* $(x, y, z)$, i.e. it does not assume that the grid is a uniform one.
* These arrays are 1-D to deal with any ordering of a 3-D storage.
*
* @param nbpoints [input] Total number of grid points
* @param xi [input] 1-D array (size {\tt nbpoints}) storing the
* values of coordinate x of the grid points [unit: km]
* @param yi [input] 1-D array (size {\tt nbpoints}) storing the
* values of coordinate y of the grid points [unit: km]
* @param zi [input] 1-D array (size {\tt nbpoints}) storing the
* values of coordinate z of the grid points [unit: km]
* @param filename [input] Name of the (binary) file containing the result
* of a computation by means of the multi-domain
* spectral method.
*/
Bin_NS(int nbpoints, const double* xi, const double* yi,
const double* zi, const char* filename) ;
/** Constructor from a binary file
* (previously created by {\tt save\_bin})
*/
Bin_NS(FILE* ) ;
/** Constructor from a formatted file
* (previously created by {\tt save\_form})
*/
Bin_NS(ifstream& ) ;
/// Destructor
~Bin_NS() ;
// Memory management
// -----------------
private:
/// Allocate the memory for the arrays g\_ij, k\_ij, etc...
void alloc_memory() ;
// Outputs
// -------
public:
/** Save in a binary file.
* This file can be subsenquently read by the evolution code,
* or by the constructor {\tt Bin\_NS::Bin\_NS(FILE* )}.
*/
void save_bin(FILE* ) const ;
/** Save in a formatted file.
* This file can be subsenquently read by the evolution code,
* or by the constructor {\tt Bin\_NS::Bin\_NS(ifstream\& )}.
*/
void save_form(ofstream& ) const ;
/// Display
friend ostream& operator<<(ostream& , const Bin_NS& ) ;
};
}
#endif
|