1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
/*
* Definition of class Mag_NS (magnetized neutron star exportation)
*
*/
/*
* Copyright (c) 2002 Eric Gourgoulhon
* Copyright (c) 2009 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef __MAG_NS_H_
#define __MAG_NS_H_
/*
* $Id: mag_ns.h,v 1.3 2014/10/13 08:54:05 j_novak Exp $
* $Log: mag_ns.h,v $
* Revision 1.3 2014/10/13 08:54:05 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.2 2014/10/06 15:13:25 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.1 2009/11/19 16:15:21 j_novak
* Export class for magnetized neutron stars.
*
*
*
* $Header: /cvsroot/Lorene/Export/C++/Include/mag_ns.h,v 1.3 2014/10/13 08:54:05 j_novak Exp $
*
*/
// Headers C
#include <cstdio>
#include <iostream>
#include <fstream>
using namespace std ;
namespace Lorene {
/**
* Magnetized neutron star configuration on a Cartesian grid.
*
* A magnetized neutron star is constructed on a Cartesian grid from
* data stored in a file resulting from a computation obtained from the
* code magstar following the Bocquet et al. (1995) paper.
*
* Importation of Lorene data is performed by means of the constructor
* {\tt Mag\_NS::Mag\_NS(int, const double*, const double*, const double*, const char*)}.
* This constructor takes general arrays for the location of the Cartesian coordinates
* $(x, y, z)$, i.e. it does not assume that the grid is a uniform one. Note also
* that these arrays are 1-D, as well as all the metric fields,
* in order to be use with any ordering of the 3-D storage. For the definitions of units,
* see the file Lorene/C++/Include/unites.h
*
* This class is very simple, with all data members being public.
* A typical example of use is the following one
*
* \begin{verbatim}
* // Define the Cartesian grid by means of the arrays xg, yg, zg:
* for (int i=0; i<nb_points; i++) {
* xg[i] = ...
* yg[i] = ...
* zg[i] = ...
* }
*
* // Read the file containing the spectral data and evaluate
* // all the fields on the Cartesian grid :
*
* Mag_NS star_mag(nb_points, xg, yg, zg, datafile) ;
*
* // Extract what you need :
*
* double* gamma_xx = binary_system.g_xx ; // metric coefficient g_xx
*
* double* shift_x = binary_system.beta_x ; // x comp. of shift vector
*
* ...
*
* // Save everything in an ASCII file :
*
* ofstream file_ini("ini.d") ;
* binary_system.save_form(file_ini) ;
* file_ini.close() ;
*
* \end{verbatim}
*
* @version #$Id: mag_ns.h,v 1.3 2014/10/13 08:54:05 j_novak Exp $#
*/
class Mag_NS {
// Data :
// -----
public:
/// Eos name star
char eos_name[100] ;
/// Adiabatic index of EOS if it is polytropic (0 otherwise)
double gamma_poly ;
/**
* Polytropic constant of EOS if it is polytropic (0 otherwise)
* [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$]
*/
double kappa_poly ;
/// Rotation frequency [unit: rad/s] (only rigid rotation)
double omega ;
/// Central density [unit: kg m${}^{-3}$]
double rho_c ;
/// Central specific internal energy [unit: c${}^2$]
double eps_c ;
/// Baryon mass [unit: solar mass]
double mass_b ;
/// Gravitational mass [unit: solar mass]
double mass_g ;
/// Coordinate equatorial radius [unit: km]
double r_eq ;
/// Coordinate polar radius [unit: km]
double r_p ;
/// Angular momentum [unit: $G M_{\textrm{sol}}^2/c$]
double angu_mom ;
/// Ratio T/W
double T_over_W ;
/// Magnetic momentum [unit: A m${}^2$]
double magn_mom ;
/// Magnetic field at the pole [unit: $10^9$ T]
double b_z_pole ;
/// Magnetic field at the equator [unit: $10^9$ T]
double b_z_eq ;
/// Total number of grid points
int np ;
/// 1-D array storing the values of coordinate x of the {\tt np} grid points [unit: km]
double* xx ;
/// 1-D array storing the values of coordinate y of the {\tt np} grid points [unit: km]
double* yy ;
/// 1-D array storing the values of coordinate z of the {\tt np} grid points [unit: km]
double* zz ;
/// Lapse function $N$ at the {\tt np} grid points (1-D array)
double* nnn ;
/// Component $\beta^x$ of the shift vector of non rotating coordinates [unit: $c$]
double* beta_x ;
/// Component $\beta^y$ of the shift vector of non rotating coordinates [unit: $c$]
double* beta_y ;
/// Component $\beta^z$ of the shift vector of non rotating coordinates [unit: $c$]
double* beta_z ;
/// Metric coefficient $\gamma_{xx}$ at the grid points (1-D array)
double* g_xx ;
/// Metric coefficient $\gamma_{xy}$ at the grid points (1-D array)
double* g_xy ;
/// Metric coefficient $\gamma_{xz}$ at the grid points (1-D array)
double* g_xz ;
/// Metric coefficient $\gamma_{yy}$ at the grid points (1-D array)
double* g_yy ;
/// Metric coefficient $\gamma_{yz}$ at the grid points (1-D array)
double* g_yz ;
/// Metric coefficient $\gamma_{zz}$ at the grid points (1-D array)
double* g_zz ;
/// Component $K^{xx}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_xx ;
/// Component $K^{xy}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_xy ;
/// Component $K^{xz}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_xz ;
/// Component $K^{yy}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_yy ;
/// Component $K^{yz}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_yz ;
/// Component $K^{zz}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
double* k_zz ;
// Magneto-Hydro components
//-------------------------
/** Baryon density in the fluid frame at the {\tt np} grid points (1-D array)
* [unit: ${\rm kg \, m}^{-3}$]
*/
double* nbar ;
/// Specific internal energy at the {\tt np} grid points (1-D array) [unit: $c^2$]
double* ener_spec ;
/** Component $U^x$ of the fluid 3-velocity with respect to the Eulerian
* observer, at the {\tt np} grid points (1-D array) [unit: $c$]
*/
double* u_euler_x ;
/** Component $U^y$ of the fluid 3-velocity with respect to the Eulerian
* observer, at the {\tt np} grid points (1-D array) [unit: $c$]
*/
double* u_euler_y ;
/** Component $U^z$ of the fluid 3-velocity with respect to the Eulerian
* observer, at the {\tt np} grid points (1-D array) [unit: $c$]
*/
double* u_euler_z ;
/** Component $B^x$ of the magnetic field, at the {\tt np} grid points (1-D array)
* [unit: $10^9$ T]
*/
double* bb_x ;
/** Component $B^y$ of the magnetic field, at the {\tt np} grid points (1-D array)
* [unit: $10^9$ T]
*/
double* bb_y ;
/** Component $B^z$ of the magnetic field, at the {\tt np} grid points (1-D array)
* [unit: $10^9$ T]
*/
double* bb_z ;
/** Component $j^t$ of the 4-current, at the {\tt np} grid points (1-D array)
* [unit: A m${}^{-2$}]
*/
double* jj_t ;
/** Component $j^x$ of the 4-current, at the {\tt np} grid points (1-D array)
* [unit: A m${}^{-2$}]
*/
double* jj_x ;
/** Component $j^y$ of the 4-current, at the {\tt np} grid points (1-D array)
* [unit: A m${}^{-2$}]
*/
double* jj_y ;
/** Component $j^z$ of the 4-current, at the {\tt np} grid points (1-D array)
* [unit: A m${}^{-2$}]
*/
double* jj_z ;
// Constructors - Destructor
// -------------------------
public:
/** Constructor from Lorene spectral data.
*
* This constructor takes general arrays {\tt xi, yi, zi}
* for the location of the Cartesian coordinates
* $(x, y, z)$, i.e. it does not assume that the grid is a uniform one.
* These arrays are 1-D to deal with any ordering of a 3-D storage.
*
* @param nbpoints [input] Total number of grid points
* @param xi [input] 1-D array (size {\tt nbpoints}) storing the
* values of coordinate x of the grid points [unit: km]
* @param yi [input] 1-D array (size {\tt nbpoints}) storing the
* values of coordinate y of the grid points [unit: km]
* @param zi [input] 1-D array (size {\tt nbpoints}) storing the
* values of coordinate z of the grid points [unit: km]
* @param filename [input] Name of the (binary) file containing the result
* of a computation by means of the multi-domain
* spectral method.
*/
Mag_NS(int nbpoints, const double* xi, const double* yi,
const double* zi, const char* filename) ;
/** Constructor from a binary file
* (previously created by {\tt save\_bin})
*/
Mag_NS(FILE* ) ;
/** Constructor from a formatted file
* (previously created by {\tt save\_form})
*/
Mag_NS(ifstream& ) ;
/// Destructor
~Mag_NS() ;
// Memory management
// -----------------
private:
/// Allocate the memory for the arrays g\_ij, k\_ij, etc...
void alloc_memory() ;
// Outputs
// -------
public:
/** Save in a binary file.
* This file can be subsenquently read by the evolution code,
* or by the constructor {\tt Bin\_NS::Bin\_NS(FILE* )}.
*/
void save_bin(FILE* ) const ;
/** Save in a formatted file.
* This file can be subsenquently read by the evolution code,
* or by the constructor {\tt Bin\_NS::Bin\_NS(ifstream\& )}.
*/
void save_form(ofstream& ) const ;
/// Display
friend ostream& operator<<(ostream& , const Mag_NS& ) ;
};
}
#endif
|