1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
/*
* Constructor of class Bin_NS (binary neutron star exportation)
* which depends explicitely on Lorene objects.
*
* (see file bin_ns.h for documentation).
*/
/*
* Copyright (c) 2002 Eric Gourgoulhon
* Copyright (c) 2002 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char bin_ns_aux_C[] = "$Header: /cvsroot/Lorene/Export/C++/Source/bin_ns_aux.C,v 1.8 2014/10/13 08:54:05 j_novak Exp $" ;
/*
* $Id: bin_ns_aux.C,v 1.8 2014/10/13 08:54:05 j_novak Exp $
* $Log: bin_ns_aux.C,v $
* Revision 1.8 2014/10/13 08:54:05 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.7 2014/10/06 15:13:25 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.6 2014/02/24 16:08:11 e_gourgoulhon
* Eulerian velocities set to zero outside the stars
*
* Revision 1.5 2006/09/12 08:04:07 j_novak
* Removal of the include path Export/C++/Include, updating of the relevant
* source files in Export/C++/Source.
*
* Revision 1.4 2004/04/29 20:29:18 e_gourgoulhon
* Corrected a bug in the computation of ener_spec.
*
* Revision 1.3 2004/03/25 10:29:27 j_novak
* All LORENE's units are now defined in the namespace Unites (in file unites.h).
*
* Revision 1.2 2002/01/15 09:11:04 e_gourgoulhon
* Display of Lorene object (class binaire) read in file
*
* Revision 1.1 2002/01/11 17:03:02 e_gourgoulhon
* Exportation of binary neutron stars configuration to a Cartesian grid
*
*
* $Header: /cvsroot/Lorene/Export/C++/Source/bin_ns_aux.C,v 1.8 2014/10/13 08:54:05 j_novak Exp $
*
*/
#include "../Include/bin_ns.h"
// C headers
#include <cstring>
#include <cmath>
// Lorene headers
#include "tenseur.h"
#include "binaire.h"
#include "eos.h"
#include "unites.h"
//----------------------------------------//
// Constructor from LORENE data //
//----------------------------------------//
namespace Lorene {
Bin_NS::Bin_NS(int nbpoints, const double* xi, const double* yi,
const double* zi, const char* filename)
: np(nbpoints) {
using namespace Unites ;
// Reading of data
// ---------------
FILE* fich = fopen(filename, "r") ;
int mer ;
fread(&mer, sizeof(int), 1, fich) ; // mer
Mg3d mg1(fich) ;
Map_et mp1(mg1, fich) ;
Eos* peos1 = Eos::eos_from_file(fich) ;
Mg3d mg2(fich) ;
Map_et mp2(mg2, fich) ;
Eos* peos2 = Eos::eos_from_file(fich) ;
Binaire star(mp1, *peos1, mp2, *peos2, fich) ;
fclose(fich) ;
if ( (star(1).is_relativistic() == false) ||
(star(2).is_relativistic() == false) ) {
cout << "Bin_NS::Bin_NS can import only relativistic stars !" << endl ;
abort() ;
}
// Construction of the binary system
// ---------------------------------
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric(star(3-i)) ;
}
for (int i=1; i<=2; i++) {
(star.set(i)).update_metric_der_comp(star(3-i)) ;
}
for (int i=1; i<=2; i++) {
(star.set(i)).equation_of_state() ;
(star.set(i)).kinematics(star.get_omega(), star.get_x_axe()) ;
(star.set(i)).fait_d_psi() ;
(star.set(i)).hydro_euler() ;
}
// Initialisation of member data
// -----------------------------
const Eos_poly* p_eos_poly1 = dynamic_cast<const Eos_poly*>( peos1 ) ;
const Eos_poly* p_eos_poly2 = dynamic_cast<const Eos_poly*>( peos2 ) ;
if ( p_eos_poly1 != 0x0 ) {
strcpy(eos_name1, "Polytropic EOS") ;
gamma_poly1 = p_eos_poly1->get_gam() ;
kappa_poly1 = p_eos_poly1->get_kap() ;
}
else {
strncpy(eos_name1, (star(1).get_eos()).get_name(), 100) ;
gamma_poly1 = 0 ;
kappa_poly1 = 0 ;
}
if ( p_eos_poly2 != 0x0 ) {
strcpy(eos_name2, "Polytropic EOS") ;
gamma_poly2 = p_eos_poly2->get_gam() ;
kappa_poly2 = p_eos_poly2->get_kap() ;
}
else {
strncpy(eos_name2, (star(2).get_eos()).get_name(), 100) ;
gamma_poly2 = 0 ;
kappa_poly2 = 0 ;
}
omega = star.get_omega() * f_unit ;
dist = star.separation() / km ;
dist_mass = ( star(2).xa_barycenter()
- star(1).xa_barycenter() ) / km ;
mass1_b = star(1).mass_b() / msol ;
mass2_b = star(2).mass_b() / msol ;
mass_adm = star.mass_adm() / msol ;
angu_mom = star.angu_mom()(2) / ( ggrav * msol*msol) ;
rad1_x_comp = star(1).ray_eq() / km ;
rad1_y = star(1).ray_eq_pis2() / km ;
rad1_z = star(1).ray_pole() / km ;
rad1_x_opp = star(1).ray_eq_pi() / km ;
rad2_x_comp = star(2).ray_eq() / km ;
rad2_y = star(2).ray_eq_pis2() / km ;
rad2_z = star(2).ray_pole() / km ;
rad2_x_opp = star(2).ray_eq_pi() / km ;
cout.precision(13) ;
cout << endl << "Binary system read in file : " << endl ;
cout << "---------------------------- " << endl ;
cout << star << endl ;
cout << endl << "Summary : " << endl ;
cout << "-------" << endl ;
cout << " Separation d : " << dist << " km" << endl ;
cout << " Separation d_G : " << dist_mass << " km" << endl ;
cout << " Omega : " << omega << " rad/s" << endl ;
cout << " Baryon mass of star 1 : " << mass1_b
<< " M_sol" << endl ;
cout << " Baryon mass of star 2 : " << mass2_b
<< " M_sol" << endl ;
cout << " ADM mass of the system : " << mass_adm
<< " M_sol" << endl ;
cout << " Total angular momentum : " << angu_mom
<< " G M_sol^2 / c" << endl ;
cout << " Radius of star 1 (x_comp) : " << rad1_x_comp
<< " km" << endl ;
cout << " Radius of star 1 (y) : " << rad1_y
<< " km" << endl ;
cout << " Radius of star 1 (z) : " << rad1_z
<< " km" << endl ;
cout << " Radius of star 1 (x_opp) : " << rad1_x_opp
<< " km" << endl ;
cout << " Radius of star 2 (x_comp) : " << rad2_x_comp
<< " km" << endl ;
cout << " Radius of star 2 (y) : " << rad2_y
<< " km" << endl ;
cout << " Radius of star 2 (z) : " << rad2_z
<< " km" << endl ;
cout << " Radius of star 2 (x_opp) : " << rad2_x_opp
<< " km" << endl ;
// Creation of the various arrays on the Cartesian grid
// ----------------------------------------------------
alloc_memory() ;
// Initialisation of the Cartesian grid
// ------------------------------------
for (int i=0; i<np; i++) {
xx[i] = xi[i] ;
}
for (int i=0; i<np; i++) {
yy[i] = yi[i] ;
}
for (int i=0; i<np; i++) {
zz[i] = zi[i] ;
}
// Computation of the values at the points of the Cartesian grid
// -------------------------------------------------------------
// Parameter 1/c^2
double unsurc2 = star(1).is_relativistic() ? double(1) : double(0) ;
Tenseur lapse1 = exp( unsurc2 * star(1).get_logn_auto() ) ;
lapse1.set_std_base() ;
Tenseur lapse2 = exp( unsurc2 * star(2).get_logn_auto() ) ;
lapse2.set_std_base() ;
Valeur vnn1 = lapse1().va ;
Valeur vnn2 = lapse2().va ;
vnn1.coef() ;
vnn2.coef() ;
const Valeur& vshiftx1 = (star(1).get_shift_auto()(0)).va ;
const Valeur& vshiftx2 = (star(2).get_shift_auto()(0)).va ;
const Valeur& vshifty1 = (star(1).get_shift_auto()(1)).va ;
const Valeur& vshifty2 = (star(2).get_shift_auto()(1)).va ;
const Valeur& vshiftz1 = (star(1).get_shift_auto()(2)).va ;
const Valeur& vshiftz2 = (star(2).get_shift_auto()(2)).va ;
vshiftx1.coef() ;
vshiftx2.coef() ;
vshifty1.coef() ;
vshifty2.coef() ;
vshiftz1.coef() ;
vshiftz2.coef() ;
Tenseur a_car1 = exp( 2.*unsurc2*( star(1).get_beta_auto()
- star(1).get_logn_auto() ) ) ;
a_car1.set_std_base() ;
Tenseur a_car2 = exp( 2.*unsurc2*( star(2).get_beta_auto()
- star(2).get_logn_auto() ) ) ;
a_car2.set_std_base() ;
Valeur vacar1 = a_car1().va ;
Valeur vacar2 = a_car2().va ;
vacar1.coef() ;
vacar2.coef() ;
Tenseur_sym k_one(star(1).get_tkij_auto()) ;
k_one.set_std_base() ;
k_one.dec2_dzpuis() ;
Tenseur_sym k_two(star(2).get_tkij_auto()) ;
k_two.set_std_base() ;
k_two.dec2_dzpuis() ;
Valeur vkxx1 = (k_one(0, 0)).va ;
Valeur vkxx2 = (k_two(0, 0)).va ;
Valeur vkxy1 = (k_one(0, 1)).va ;
Valeur vkxy2 = (k_two(0, 1)).va ;
Valeur vkxz1 = (k_one(0, 2)).va ;
Valeur vkxz2 = (k_two(0, 2)).va ;
Valeur vkyy1 = (k_one(1, 1)).va ;
Valeur vkyy2 = (k_two(1, 1)).va ;
Valeur vkyz1 = (k_one(1, 2)).va ;
Valeur vkyz2 = (k_two(1, 2)).va ;
Valeur vkzz1 = (k_one(2, 2)).va ;
Valeur vkzz2 = (k_two(2, 2)).va ;
vkxx1.set_base( (star(1).get_tkij_auto()(0, 0)).va.base ) ;
vkxx2.set_base( (star(2).get_tkij_auto()(0, 0)).va.base ) ;
vkxy1.set_base( (star(1).get_tkij_auto()(0, 1)).va.base ) ;
vkxy2.set_base( (star(2).get_tkij_auto()(0, 1)).va.base ) ;
vkxz1.set_base( (star(1).get_tkij_auto()(0, 2)).va.base ) ;
vkxz2.set_base( (star(2).get_tkij_auto()(0, 2)).va.base ) ;
vkyy1.set_base( (star(1).get_tkij_auto()(1, 1)).va.base ) ;
vkyy2.set_base( (star(2).get_tkij_auto()(1, 1)).va.base ) ;
vkyz1.set_base( (star(1).get_tkij_auto()(1, 2)).va.base ) ;
vkyz2.set_base( (star(2).get_tkij_auto()(1, 2)).va.base ) ;
vkzz1.set_base( (star(1).get_tkij_auto()(2, 2)).va.base ) ;
vkzz2.set_base( (star(2).get_tkij_auto()(2, 2)).va.base ) ;
vkxx1.coef() ;
vkxx2.coef() ;
vkxy1.coef() ;
vkxy2.coef() ;
vkxz1.coef() ;
vkxz2.coef() ;
vkyy1.coef() ;
vkyy2.coef() ;
vkyz1.coef() ;
vkyz2.coef() ;
vkzz1.coef() ;
vkzz2.coef() ;
const Valeur& vnbar1 = (star(1).get_nbar()()).va ;
const Valeur& vnbar2 = (star(2).get_nbar()()).va ;
vnbar1.coef() ;
vnbar2.coef() ;
const Valeur& vener1 = (star(1).get_ener()()).va ;
const Valeur& vener2 = (star(2).get_ener()()).va ;
vener1.coef() ;
vener2.coef() ;
Valeur vueulerx1 = (star(1).get_u_euler()(0)).va ;
Valeur vueulerx2 = (star(2).get_u_euler()(0)).va ;
Valeur vueulery1 = (star(1).get_u_euler()(1)).va ;
Valeur vueulery2 = (star(2).get_u_euler()(1)).va ;
Valeur vueulerz1 = (star(1).get_u_euler()(2)).va ;
Valeur vueulerz2 = (star(2).get_u_euler()(2)).va ;
// Velocities set to zero outside the stars:
int nzet1 = star(1).get_nzet() ;
int nz1m1 = mg1.get_nzone() - 1 ;
int nzet2 = star(2).get_nzet() ;
int nz2m1 = mg2.get_nzone() - 1 ;
vueulerx1.annule(nzet1, nz1m1) ;
vueulery1.annule(nzet1, nz1m1) ;
vueulerz1.annule(nzet1, nz1m1) ;
vueulerx2.annule(nzet2, nz2m1) ;
vueulery2.annule(nzet2, nz2m1) ;
vueulerz2.annule(nzet2, nz2m1) ;
vueulerx1.coef() ;
vueulerx2.coef() ;
vueulery1.coef() ;
vueulery2.coef() ;
vueulerz1.coef() ;
vueulerz2.coef() ;
for (int i=0; i<np; i++) {
double x0 = xx[i] * km ; // x in Lorene's unit
double y0 = yy[i] * km ;
double z0 = zz[i] * km ;
// Values of (l1, xi1, theta1, phi1) (grid 1)
// corresponding to (x,y,z):
// ------------------------------------------
double r1, theta1, phi1 ; // polar coordinates centered on NS 1
mp1.convert_absolute(x0, y0, z0, r1, theta1, phi1) ;
int l1 ; // domain index
double xi1 ; // radial coordinate xi in [0,1] or [-1,1]
mp1.val_lx(r1, theta1, phi1, l1, xi1) ;
// Values of (l2, xi2, theta2, phi2) (grid 2)
// corresponding to (x,y,z):
// ------------------------------------------
double r2, theta2, phi2 ; // polar coordinates centered on b.h. 2
mp2.convert_absolute(x0, y0, z0, r2, theta2, phi2) ;
int l2 ; // domain index
double xi2 ; // radial coordinate xi in [0,1] or [-1,1]
mp2.val_lx(r2, theta2, phi2, l2, xi2) ;
// Lapse function
// --------------
nnn[i] = vnn1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
* vnn2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ;
// Shift vector
// ------------
beta_x[i] = vshiftx1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
+ vshiftx2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ;
beta_y[i] = vshifty1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
+ vshifty2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ;
// + omega * xx[i] ;
beta_z[i] = vshiftz1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
+ vshiftz2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ;
// Conformal factor
// ----------------
double psi4 = vacar1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
* vacar2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ;
g_xx[i] = psi4 ;
g_yy[i] = psi4 ;
g_zz[i] = psi4 ;
g_xy[i] = 0 ;
g_xz[i] = 0 ;
g_yz[i] = 0 ;
// Extrinsic curvature
// -------------------
double pre = km * psi4 ;
k_xx[i] = pre*( vkxx1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
+vkxx2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ) ;
k_xy[i] = pre*( vkxy1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
+vkxy2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ) ;
k_xz[i] = pre*( vkxz1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
+vkxz2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ) ;
k_yy[i] = pre*( vkyy1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
+vkyy2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ) ;
k_yz[i] = pre*( vkyz1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
+vkyz2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ) ;
k_zz[i] = pre*( vkzz1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
+vkzz2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ) ;
// Baryon density [kg/m^3]
// --------------
nbar[i] = rho_unit*(
vnbar1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
+ vnbar2.c_cf->val_point_symy(l2, xi2, theta2, phi2)
) ;
// Energy density
// --------------
double ener = vener1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
+ vener2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ;
if ( nbar[i] == double(0) ) {
ener_spec[i] = 0 ;
}
else {
ener_spec[i] = ener / (nbar[i]/rho_unit) - double(1) ;
}
// 3-velocity with respect to the Eulerian observer
// ------------------------------------------------
u_euler_x[i] = vueulerx1.c_cf->val_point(l1, xi1, theta1, phi1)
+ vueulerx2.c_cf->val_point(l2, xi2, theta2, phi2) ;
u_euler_y[i] = vueulery1.c_cf->val_point(l1, xi1, theta1, phi1)
+ vueulery2.c_cf->val_point(l2, xi2, theta2, phi2) ;
// + omega * xx[i] ;
u_euler_z[i] = vueulerz1.c_cf->val_point(l1, xi1, theta1, phi1)
+ vueulerz2.c_cf->val_point(l2, xi2, theta2, phi2) ;
} // End of loop on the points
delete peos1 ;
delete peos2 ;
}
}
|