File: bin_ns_aux.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 26,472 kB
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (472 lines) | stat: -rw-r--r-- 15,243 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/*
 * Constructor of class Bin_NS (binary neutron star exportation)
 * which depends explicitely on Lorene objects.
 *
 * (see file bin_ns.h for documentation).
 */

/*
 *   Copyright (c) 2002  Eric Gourgoulhon
 *   Copyright (c) 2002  Keisuke Taniguchi
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char bin_ns_aux_C[] = "$Header: /cvsroot/Lorene/Export/C++/Source/bin_ns_aux.C,v 1.8 2014/10/13 08:54:05 j_novak Exp $" ;

/*
 * $Id: bin_ns_aux.C,v 1.8 2014/10/13 08:54:05 j_novak Exp $
 * $Log: bin_ns_aux.C,v $
 * Revision 1.8  2014/10/13 08:54:05  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.7  2014/10/06 15:13:25  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.6  2014/02/24 16:08:11  e_gourgoulhon
 * Eulerian velocities set to zero outside the stars
 *
 * Revision 1.5  2006/09/12 08:04:07  j_novak
 * Removal of the include path Export/C++/Include, updating of the relevant
 * source files in Export/C++/Source.
 *
 * Revision 1.4  2004/04/29 20:29:18  e_gourgoulhon
 * Corrected a bug in the computation of ener_spec.
 *
 * Revision 1.3  2004/03/25 10:29:27  j_novak
 * All LORENE's units are now defined in the namespace Unites (in file unites.h).
 *
 * Revision 1.2  2002/01/15 09:11:04  e_gourgoulhon
 * Display of Lorene object (class binaire) read in file
 *
 * Revision 1.1  2002/01/11 17:03:02  e_gourgoulhon
 * Exportation of binary neutron stars configuration to a Cartesian grid
 *
 *
 * $Header: /cvsroot/Lorene/Export/C++/Source/bin_ns_aux.C,v 1.8 2014/10/13 08:54:05 j_novak Exp $
 *
 */

#include "../Include/bin_ns.h"

// C headers
#include <cstring>
#include <cmath>

// Lorene headers
#include "tenseur.h"
#include "binaire.h"
#include "eos.h"
#include "unites.h"

		    //----------------------------------------//
		    //	    Constructor from LORENE data      //
		    //----------------------------------------//

namespace Lorene {
Bin_NS::Bin_NS(int nbpoints, const double* xi, const double* yi,
	       const double* zi, const char* filename)
	       : np(nbpoints) {

  using namespace Unites ;

    // Reading of data
    // ---------------
    FILE* fich = fopen(filename, "r") ;

    int mer ;
    fread(&mer, sizeof(int), 1, fich) ; // mer

    Mg3d mg1(fich) ;
    Map_et mp1(mg1, fich) ; 
    Eos* peos1 = Eos::eos_from_file(fich) ; 

    Mg3d mg2(fich) ;
    Map_et mp2(mg2, fich) ; 
    Eos* peos2 = Eos::eos_from_file(fich) ; 
    
    Binaire star(mp1, *peos1, mp2, *peos2, fich) ; 

    fclose(fich) ;
    
    if ( (star(1).is_relativistic() == false) ||
         (star(2).is_relativistic() == false)    ) {
        cout << "Bin_NS::Bin_NS can import only relativistic stars !" << endl ;
        abort() ;
    }

    // Construction of the binary system
    // ---------------------------------
    for (int i=1; i<=2; i++) {
	(star.set(i)).update_metric(star(3-i)) ;
    }

    for (int i=1; i<=2; i++) {
	(star.set(i)).update_metric_der_comp(star(3-i)) ;
    }

    for (int i=1; i<=2; i++) {
	(star.set(i)).equation_of_state() ;
	(star.set(i)).kinematics(star.get_omega(), star.get_x_axe()) ;
	(star.set(i)).fait_d_psi() ;
	(star.set(i)).hydro_euler() ;
    }

    // Initialisation of member data
    // -----------------------------

    const Eos_poly* p_eos_poly1 = dynamic_cast<const Eos_poly*>( peos1 ) ;
    const Eos_poly* p_eos_poly2 = dynamic_cast<const Eos_poly*>( peos2 ) ;

    if ( p_eos_poly1 != 0x0 ) {
        strcpy(eos_name1, "Polytropic EOS") ;
	gamma_poly1 = p_eos_poly1->get_gam() ;
	kappa_poly1 = p_eos_poly1->get_kap() ;
    }
    else {
        strncpy(eos_name1, (star(1).get_eos()).get_name(), 100) ;
        gamma_poly1 = 0 ;
        kappa_poly1 = 0 ;
    }

    if ( p_eos_poly2 != 0x0 ) {
        strcpy(eos_name2, "Polytropic EOS") ;
	gamma_poly2 = p_eos_poly2->get_gam() ;
	kappa_poly2 = p_eos_poly2->get_kap() ;
    }
    else {
        strncpy(eos_name2, (star(2).get_eos()).get_name(), 100) ;
        gamma_poly2 = 0 ;
        kappa_poly2 = 0 ;
    }

    omega = star.get_omega() * f_unit ;
    dist = star.separation() / km ;
    dist_mass = ( star(2).xa_barycenter()
		  - star(1).xa_barycenter() ) / km ;
    mass1_b = star(1).mass_b() / msol ;
    mass2_b = star(2).mass_b() / msol ;
    mass_adm = star.mass_adm() / msol ;
    angu_mom = star.angu_mom()(2) / ( ggrav * msol*msol) ;
    rad1_x_comp = star(1).ray_eq() / km ;
    rad1_y = star(1).ray_eq_pis2() / km ;
    rad1_z = star(1).ray_pole() / km ;
    rad1_x_opp = star(1).ray_eq_pi() / km ;
    rad2_x_comp = star(2).ray_eq() / km ;
    rad2_y = star(2).ray_eq_pis2() / km ;
    rad2_z = star(2).ray_pole() / km ;
    rad2_x_opp = star(2).ray_eq_pi() / km ;

    cout.precision(13) ;
    cout << endl << "Binary system read in file : " << endl ;
    cout <<	    "---------------------------- " << endl ;
    cout << star << endl ;
    cout << endl << "Summary : " << endl ;
    cout << "-------" << endl ;
    cout << "  Separation d   : " << dist << " km" << endl ;
    cout << "  Separation d_G : " << dist_mass << " km" << endl ;
    cout << "  Omega          : " << omega << " rad/s" << endl ;
    cout << "  Baryon mass of star 1  : " << mass1_b
	 << " M_sol" << endl ;
    cout << "  Baryon mass of star 2  : " << mass2_b
	 << " M_sol" << endl ;
    cout << "  ADM mass of the system : " << mass_adm
         << " M_sol" << endl ;
    cout << "  Total angular momentum : " << angu_mom
	 << " G M_sol^2 / c" << endl ;
    cout << "  Radius of star 1 (x_comp) : " << rad1_x_comp
	 << " km" << endl ;
    cout << "  Radius of star 1 (y)      : " << rad1_y
	 << " km" << endl ;
    cout << "  Radius of star 1 (z)      : " << rad1_z
	 << " km" << endl ;
    cout << "  Radius of star 1 (x_opp)  : " << rad1_x_opp
	 << " km" << endl ;
    cout << "  Radius of star 2 (x_comp) : " << rad2_x_comp
	 << " km" << endl ;
    cout << "  Radius of star 2 (y)      : " << rad2_y
	 << " km" << endl ;
    cout << "  Radius of star 2 (z)      : " << rad2_z
	 << " km" << endl ;
    cout << "  Radius of star 2 (x_opp)  : " << rad2_x_opp
	 << " km" << endl ;

    // Creation of the various arrays on the Cartesian grid
    // ----------------------------------------------------

    alloc_memory() ;

    // Initialisation of the Cartesian grid
    // ------------------------------------

    for (int i=0; i<np; i++) {
	xx[i] = xi[i] ;
    }
    for (int i=0; i<np; i++) {
	yy[i] = yi[i] ;
    }
    for (int i=0; i<np; i++) {
	zz[i] = zi[i] ;
    }

    // Computation of the values at the points of the Cartesian grid
    // -------------------------------------------------------------

    // Parameter 1/c^2
    double unsurc2 = star(1).is_relativistic() ? double(1) : double(0) ;

    Tenseur lapse1 = exp( unsurc2 * star(1).get_logn_auto() ) ;
    lapse1.set_std_base() ;
    Tenseur lapse2 = exp( unsurc2 * star(2).get_logn_auto() ) ;
    lapse2.set_std_base() ;

    Valeur vnn1 = lapse1().va ;
    Valeur vnn2 = lapse2().va ;
    vnn1.coef() ;
    vnn2.coef() ;

    const Valeur& vshiftx1 = (star(1).get_shift_auto()(0)).va ;
    const Valeur& vshiftx2 = (star(2).get_shift_auto()(0)).va ;
    const Valeur& vshifty1 = (star(1).get_shift_auto()(1)).va ;
    const Valeur& vshifty2 = (star(2).get_shift_auto()(1)).va ;
    const Valeur& vshiftz1 = (star(1).get_shift_auto()(2)).va ;
    const Valeur& vshiftz2 = (star(2).get_shift_auto()(2)).va ;
    vshiftx1.coef() ;
    vshiftx2.coef() ;
    vshifty1.coef() ;
    vshifty2.coef() ;
    vshiftz1.coef() ;
    vshiftz2.coef() ;

    Tenseur a_car1 = exp( 2.*unsurc2*( star(1).get_beta_auto()
				       - star(1).get_logn_auto() ) ) ;
    a_car1.set_std_base() ;
    Tenseur a_car2 = exp( 2.*unsurc2*( star(2).get_beta_auto()
				       - star(2).get_logn_auto() ) ) ;
    a_car2.set_std_base() ;

    Valeur vacar1 = a_car1().va ;
    Valeur vacar2 = a_car2().va ;
    vacar1.coef() ;
    vacar2.coef() ;

    Tenseur_sym k_one(star(1).get_tkij_auto()) ;
    k_one.set_std_base() ;
    k_one.dec2_dzpuis() ;
    Tenseur_sym k_two(star(2).get_tkij_auto()) ;
    k_two.set_std_base() ;
    k_two.dec2_dzpuis() ;

    Valeur vkxx1 = (k_one(0, 0)).va ;
    Valeur vkxx2 = (k_two(0, 0)).va ;
    Valeur vkxy1 = (k_one(0, 1)).va ;
    Valeur vkxy2 = (k_two(0, 1)).va ;
    Valeur vkxz1 = (k_one(0, 2)).va ;
    Valeur vkxz2 = (k_two(0, 2)).va ;
    Valeur vkyy1 = (k_one(1, 1)).va ;
    Valeur vkyy2 = (k_two(1, 1)).va ;
    Valeur vkyz1 = (k_one(1, 2)).va ;
    Valeur vkyz2 = (k_two(1, 2)).va ;
    Valeur vkzz1 = (k_one(2, 2)).va ;
    Valeur vkzz2 = (k_two(2, 2)).va ;

    vkxx1.set_base( (star(1).get_tkij_auto()(0, 0)).va.base ) ;
    vkxx2.set_base( (star(2).get_tkij_auto()(0, 0)).va.base ) ;
    vkxy1.set_base( (star(1).get_tkij_auto()(0, 1)).va.base ) ;
    vkxy2.set_base( (star(2).get_tkij_auto()(0, 1)).va.base ) ;
    vkxz1.set_base( (star(1).get_tkij_auto()(0, 2)).va.base ) ;
    vkxz2.set_base( (star(2).get_tkij_auto()(0, 2)).va.base ) ;
    vkyy1.set_base( (star(1).get_tkij_auto()(1, 1)).va.base ) ;
    vkyy2.set_base( (star(2).get_tkij_auto()(1, 1)).va.base ) ;
    vkyz1.set_base( (star(1).get_tkij_auto()(1, 2)).va.base ) ;
    vkyz2.set_base( (star(2).get_tkij_auto()(1, 2)).va.base ) ;
    vkzz1.set_base( (star(1).get_tkij_auto()(2, 2)).va.base ) ;
    vkzz2.set_base( (star(2).get_tkij_auto()(2, 2)).va.base ) ;
    vkxx1.coef() ;
    vkxx2.coef() ;
    vkxy1.coef() ;
    vkxy2.coef() ;
    vkxz1.coef() ;
    vkxz2.coef() ;
    vkyy1.coef() ;
    vkyy2.coef() ;
    vkyz1.coef() ;
    vkyz2.coef() ;
    vkzz1.coef() ;
    vkzz2.coef() ;

    const Valeur& vnbar1 = (star(1).get_nbar()()).va ;
    const Valeur& vnbar2 = (star(2).get_nbar()()).va ;
    vnbar1.coef() ;
    vnbar2.coef() ;

    const Valeur& vener1 = (star(1).get_ener()()).va ;
    const Valeur& vener2 = (star(2).get_ener()()).va ;
    vener1.coef() ;
    vener2.coef() ;

    Valeur vueulerx1 = (star(1).get_u_euler()(0)).va ;
    Valeur vueulerx2 = (star(2).get_u_euler()(0)).va ;
    Valeur vueulery1 = (star(1).get_u_euler()(1)).va ;
    Valeur vueulery2 = (star(2).get_u_euler()(1)).va ;
    Valeur vueulerz1 = (star(1).get_u_euler()(2)).va ;
    Valeur vueulerz2 = (star(2).get_u_euler()(2)).va ;

    // Velocities set to zero outside the stars:
    int nzet1 = star(1).get_nzet() ; 
    int nz1m1 = mg1.get_nzone() - 1 ; 
    int nzet2 = star(2).get_nzet() ; 
    int nz2m1 = mg2.get_nzone() - 1 ; 
    vueulerx1.annule(nzet1, nz1m1) ; 
    vueulery1.annule(nzet1, nz1m1) ; 
    vueulerz1.annule(nzet1, nz1m1) ; 
    vueulerx2.annule(nzet2, nz2m1) ; 
    vueulery2.annule(nzet2, nz2m1) ; 
    vueulerz2.annule(nzet2, nz2m1) ; 
    
    vueulerx1.coef() ;
    vueulerx2.coef() ;
    vueulery1.coef() ;
    vueulery2.coef() ;
    vueulerz1.coef() ;
    vueulerz2.coef() ;

    for (int i=0; i<np; i++) {

	double x0 = xx[i] * km ;    // x in Lorene's unit
	double y0 = yy[i] * km ;
	double z0 = zz[i] * km ;

	// Values of (l1, xi1, theta1, phi1) (grid 1)
	// corresponding to (x,y,z):
	// ------------------------------------------
	double r1, theta1, phi1 ;   // polar coordinates centered on NS 1
	mp1.convert_absolute(x0, y0, z0, r1, theta1, phi1) ;

	int l1 ;	    // domain index
	double xi1 ;	    // radial coordinate xi in [0,1] or [-1,1]
	mp1.val_lx(r1, theta1, phi1, l1, xi1) ;

	// Values of (l2, xi2, theta2, phi2) (grid 2) 
	// corresponding to (x,y,z):
	// ------------------------------------------
	double r2, theta2, phi2 ;   // polar coordinates centered on b.h. 2
	mp2.convert_absolute(x0, y0, z0, r2, theta2, phi2) ; 
	
	int l2 ;	    // domain index
	double xi2 ;	    // radial coordinate xi in [0,1] or [-1,1]
	mp2.val_lx(r2, theta2, phi2, l2, xi2) ;
	
	// Lapse function
	// --------------
	
	nnn[i] = vnn1.c_cf->val_point_symy(l1, xi1, theta1, phi1) 
		 * vnn2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ;
	
	// Shift vector
	// ------------
	
	beta_x[i] = vshiftx1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
		 +  vshiftx2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ;

	beta_y[i] = vshifty1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
		 +  vshifty2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ;
	//		 + omega * xx[i] ;

	beta_z[i] = vshiftz1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
		 +  vshiftz2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ;

	// Conformal factor
	// ----------------

	double psi4 = vacar1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
	           * vacar2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ;

	g_xx[i] = psi4 ;
	g_yy[i] = psi4 ;
	g_zz[i] = psi4 ;
	g_xy[i] = 0 ;
	g_xz[i] = 0 ;
	g_yz[i] = 0 ;

	// Extrinsic curvature
	// -------------------

	double pre = km * psi4 ;

	k_xx[i] = pre*(  vkxx1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
		       +vkxx2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ) ;

	k_xy[i] = pre*(  vkxy1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
		       +vkxy2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ) ;

	k_xz[i] = pre*(  vkxz1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
		       +vkxz2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ) ;

	k_yy[i] = pre*(  vkyy1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
		       +vkyy2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ) ;

	k_yz[i] = pre*(  vkyz1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
		       +vkyz2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ) ;

	k_zz[i] = pre*(  vkzz1.c_cf->val_point_asymy(l1, xi1, theta1, phi1)
		       +vkzz2.c_cf->val_point_asymy(l2, xi2, theta2, phi2) ) ;

	// Baryon density [kg/m^3]
	// --------------
	
	nbar[i] = rho_unit*(
			  vnbar1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
			+ vnbar2.c_cf->val_point_symy(l2, xi2, theta2, phi2)
			) ;

	// Energy density
	// --------------

	double ener = vener1.c_cf->val_point_symy(l1, xi1, theta1, phi1)
		 + vener2.c_cf->val_point_symy(l2, xi2, theta2, phi2) ;

        if ( nbar[i] == double(0) ) {
                ener_spec[i] = 0 ;
        }
        else {
                ener_spec[i] = ener / (nbar[i]/rho_unit) - double(1) ;
        }
        

        // 3-velocity with respect to the Eulerian observer
        // ------------------------------------------------
	u_euler_x[i] = vueulerx1.c_cf->val_point(l1, xi1, theta1, phi1)
	            +  vueulerx2.c_cf->val_point(l2, xi2, theta2, phi2) ;

	u_euler_y[i] = vueulery1.c_cf->val_point(l1, xi1, theta1, phi1)
	            +  vueulery2.c_cf->val_point(l2, xi2, theta2, phi2) ;
	//		 + omega * xx[i] ;

	u_euler_z[i] = vueulerz1.c_cf->val_point(l1, xi1, theta1, phi1)
	            +  vueulerz2.c_cf->val_point(l2, xi2, theta2, phi2) ;



    }	// End of loop on the points


     delete peos1 ;
     delete peos2 ;
}

}