1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/*
* Constructor of class Mag_NS (magnetized neutron star exportation)
* which depends explicitely on Lorene objects.
*
* (see file mag_ns.h for documentation).
*/
/*
* Copyright (c) 2002 Eric Gourgoulhon
* Copyright (c) 2009 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char mag_ns_aux_C[] = "$Header: /cvsroot/Lorene/Export/C++/Source/mag_ns_aux.C,v 1.4 2016/02/17 09:46:35 j_novak Exp $" ;
/*
* $Id: mag_ns_aux.C,v 1.4 2016/02/17 09:46:35 j_novak Exp $
* $Log: mag_ns_aux.C,v $
* Revision 1.4 2016/02/17 09:46:35 j_novak
* u_euler output in units of c.
*
* Revision 1.3 2014/10/13 08:54:06 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.2 2014/05/13 10:06:45 j_novak
* Update to take unto account the change in Lorene magnetic units.
*
* Revision 1.1 2009/11/19 16:15:21 j_novak
* Export class for magnetized neutron stars.
*
*
* $Header: /cvsroot/Lorene/Export/C++/Source/mag_ns_aux.C,v 1.4 2016/02/17 09:46:35 j_novak Exp $
*
*/
#include "../Include/mag_ns.h"
// C headers
#include <cstring>
#include <cmath>
// Lorene headers
#include "tenseur.h"
#include "et_rot_mag.h"
#include "eos.h"
#include "unites.h"
#include "metric.h"
#include "utilitaires.h"
//----------------------------------------//
// Constructor from LORENE data //
//----------------------------------------//
namespace Lorene {
Mag_NS::Mag_NS(int nbpoints, const double* xi, const double* yi,
const double* zi, const char* filename)
: np(nbpoints) {
using namespace Unites ;
using namespace Unites_mag ;
// Reading of data
// ---------------
FILE* fich = fopen(filename, "r") ;
Mg3d spectral_grid(fich) ;
int nphi = spectral_grid.get_np(0) ;
if (nphi < 4) {
cout << "Contructor of Mag_NS: " << endl ;
cout << "Fatal problem with initial data, "<< endl ;
cout << "the number of points in the phi direction is lower than 4."
<< endl ;
cout << "Impossible to rotate tensors to Cartesian triad. Please give as"
<< endl ;
cout << "an input a result file from magstar with nphi >=4." << endl ;
abort() ;
}
Map_et mapping(spectral_grid, fich) ;
Eos* p_eos = Eos::eos_from_file(fich) ;
Et_rot_mag star(mapping, *p_eos, fich) ;
star.equation_of_state() ;
star.update_metric() ;
star.extrinsic_curvature() ;
star.hydro_euler() ;
const Map& mp = star.get_mp();
const Base_vect_spher& bspher = mp.get_bvect_spher() ;
Sym_tensor gij(mp, COV, bspher) ;
gij.set_etat_zero() ;
gij.set(1,1) = star.get_a_car()() ;
gij.set(2,2) = star.get_a_car()() ;
gij.set(3,3) = star.get_b_car()() ;
Metric gam(gij) ; //the 3-metric in quasi-isotropic coordinates
// Initialisation of member data
// -----------------------------
const Eos_poly* p_eos_poly = dynamic_cast<const Eos_poly*>( p_eos ) ;
double m_0 = 1. ;
if ( p_eos_poly != 0x0 ) {
strcpy(eos_name, "Polytropic EOS") ;
gamma_poly = p_eos_poly->get_gam() ;
kappa_poly = p_eos_poly->get_kap() ;
m_0 = p_eos_poly->get_m_0() ;
}
else {
strncpy(eos_name, (star.get_eos()).get_name(), 100) ;
gamma_poly = 0 ;
kappa_poly = 0 ;
cout << "Mag_NS::Mag_NS : not a ploytropic EOS" << endl ;
cout << "WARNING!!" << endl ;
cout << "exporting the baryon density instead of the mass density!" << endl ;
arrete() ;
}
Scalar sp_density = m_0 * star.get_nbar()()*rho_unit ;
Scalar sp_energy = star.get_ener()() * rho_unit;
omega = star.get_omega_c() * f_unit ;
rho_c = m_0*sp_density.val_grid_point(0,0,0,0) ;
eps_c = sp_energy.val_grid_point(0,0,0,0) / rho_c - 1. ;
mass_b = star.mass_b() / msol ;
mass_g = star.mass_g() / msol ;
r_eq = star.ray_eq() / km ;
r_p = star.ray_pole() / km ;
angu_mom = star.angu_mom() / ( ggrav * msol*msol) ;
T_over_W = star.tsw() ;
magn_mom = star.MagMom() ;
b_z_pole =
star.Magn()(0).va.val_point(star.l_surf()(0,0), star.xi_surf()(0,0),0.,0.)
* mag_unit / 1.e9 ;
int theta_eq = mapping.get_mg()->get_nt(star.get_nzet() - 1) - 1 ;
b_z_eq = star.Magn()(1).va.val_point(star.l_surf()(0,theta_eq),
star.xi_surf()(0,theta_eq),M_PI_2,0.)
* mag_unit / 1.e9 ;
cout.precision(13) ;
cout << endl << "Magnetized star read in file : " << endl ;
cout << "------------------------------ " << endl ;
cout << star << endl ;
cout << endl << "Summary : " << endl ;
cout << "-------" << endl ;
cout << " Omega : " << omega << " rad/s" << endl ;
cout << " Baryon mass : " << mass_b
<< " M_sol" << endl ;
cout << " Gravitational mass : " << mass_g
<< " M_sol" << endl ;
cout << " Equatorial radius : " << r_eq
<< " km" << endl ;
cout << " Polar radius : " << r_p
<< " km" << endl ;
cout << " Total angular momentum : " << angu_mom
<< " G M_sol^2 / c" << endl ;
cout << " T/W : " << T_over_W << endl ;
cout << " Magnetic momentum : " << magn_mom
<< " A/m^2" << endl ;
cout << " Radial magnetic field polar value : " << b_z_pole
<< " GT" << endl ;
cout << " Tangent magnetic field equatorial value : " << b_z_eq
<< " GT" << endl ;
// Creation of the various arrays on the Cartesian grid
// ----------------------------------------------------
alloc_memory() ;
// Initialisation of the Cartesian grid
// ------------------------------------
for (int i=0; i<np; i++) {
xx[i] = xi[i] ;
}
for (int i=0; i<np; i++) {
yy[i] = yi[i] ;
}
for (int i=0; i<np; i++) {
zz[i] = zi[i] ;
}
// Computation of the values at the points of the Cartesian grid
// -------------------------------------------------------------
assert(star.is_relativistic()) ;
Scalar sp_lapse = star.get_nnn()() ;
Vector sp_shift(mapping, CON, mapping.get_bvect_cart()) ;
sp_shift.set(1) = star.get_shift()(0) ; //contravariant representation!!
sp_shift.set(2) = star.get_shift()(1) ;
sp_shift.set(3) = star.get_shift()(2) ;
Sym_tensor sp_gamma(mapping, COV, mapping.get_bvect_spher()) ;
sp_gamma.set_etat_qcq() ;
for (int i=1; i<=3; i++) {
for (int j=1; j<=i; j++)
sp_gamma.set(i,j) = 0 ;
if (i != 3) sp_gamma.set(i,i) = star.get_a_car()() ;
else sp_gamma.set(3,3) = star.get_bbb()()*star.get_bbb()() ;
}
sp_gamma.change_triad(mapping.get_bvect_cart()) ;
Sym_tensor sp_kij(mapping, COV, mapping.get_bvect_cart()) ;
sp_kij.set_etat_qcq() ;
for (int i=0; i<3; i++)
for (int j=i; j<3; j++) {
sp_kij.set(i+1, j+1) =
star.get_bbb()()*star.get_bbb()()*star.get_tkij()(i,j) / r_unit ;
sp_kij.set(i+1, j+1).dec_dzpuis(2) ;
}
Vector sp_u_euler(mapping, CON, mapping.get_bvect_cart()) ;
sp_u_euler.set(1) = star.get_u_euler()(0) ;
sp_u_euler.set(2) = star.get_u_euler()(1) ;
sp_u_euler.set(3) = star.get_u_euler()(2) ;
Vector sp_current(mp, CON, mapping.get_bvect_spher()) ;
sp_current.set(1) = 0 ;
sp_current.set(2) = 0 ;
sp_current.set(3) = Scalar(star.get_jphi()*j_unit) ;
sp_current.set(3).mult_rsint() ;
sp_current.change_triad(mapping.get_bvect_cart()) ;
Scalar sp_jt = star.get_jt() * j_unit ;
Scalar fac = 1.e9*sqrt(star.get_a_car()())/mag_unit ;//to transform B^(i) into B^i
fac.std_spectral_base() ;
Vector sp_Bmag(mp, CON, bspher) ;
sp_Bmag.set(1) = Scalar(star.Magn()(0)) / fac ;
sp_Bmag.set(1).dec_dzpuis(2) ;
sp_Bmag.set(2) = Scalar(star.Magn()(1)) / fac ;
sp_Bmag.set(2).dec_dzpuis(2) ;
sp_Bmag.set(3) = 0 ;
sp_Bmag.change_triad(mapping.get_bvect_cart()) ;
for (int i=0; i<np; i++) {
double x0 = xx[i] * km ; // x, y, z in Lorene's unit
double y0 = yy[i] * km ;
double z0 = zz[i] * km ;
// Values of (l, xi, theta, phi) corresponding to (x,y,z):
// -------------------------------------------------------
double r, theta, phi ; // polar coordinates centered on the star
mapping.convert_absolute(x0, y0, z0, r, theta, phi) ;
// Lapse function
// --------------
nnn[i] = sp_lapse.val_point(r, theta, phi) ;
// Shift vector
// ------------
beta_x[i] = sp_shift(1).val_point(r, theta, phi) ;
beta_y[i] = sp_shift(2).val_point(r, theta, phi) ;
beta_z[i] = sp_shift(3).val_point(r, theta, phi) ;
// 3-metric
// ---------
g_xx[i] = sp_gamma(1,1).val_point(r, theta, phi) ;
g_yy[i] = sp_gamma(2,2).val_point(r, theta, phi) ;
g_zz[i] = sp_gamma(3,3).val_point(r, theta, phi) ;
g_xy[i] = sp_gamma(1,2).val_point(r, theta, phi) ;
g_xz[i] = sp_gamma(1,3).val_point(r, theta, phi) ;
g_yz[i] = sp_gamma(2,3).val_point(r, theta, phi) ;
// Extrinsic curvature
// -------------------
k_xx[i] = sp_kij(1,1).val_point(r, theta, phi) ;
k_xy[i] = sp_kij(1,1).val_point(r, theta, phi) ;
k_xz[i] = sp_kij(1,1).val_point(r, theta, phi) ;
k_yy[i] = sp_kij(1,1).val_point(r, theta, phi) ;
k_yz[i] = sp_kij(1,1).val_point(r, theta, phi) ;
k_zz[i] = sp_kij(1,1).val_point(r, theta, phi) ;
// Baryon density [kg/m^3]
// --------------
nbar[i] = sp_density.val_point(r, theta, phi) ;
// Energy density
// --------------
double ener = sp_energy.val_point(r, theta, phi) ;
if ( nbar[i] == double(0) ) {
ener_spec[i] = 0 ;
}
else {
ener_spec[i] = ener / nbar[i] - double(1) ;
}
// 3-velocity with respect to the Eulerian observer
// ------------------------------------------------
u_euler_x[i] = sp_u_euler(1).val_point(r, theta, phi) ;
u_euler_y[i] = sp_u_euler(2).val_point(r, theta, phi) ;
u_euler_z[i] = sp_u_euler(3).val_point(r, theta, phi) ;
// Magnetic field
//---------------
bb_x[i] = sp_Bmag(1).val_point(r, theta, phi) ;
bb_y[i] = sp_Bmag(2).val_point(r, theta, phi) ;
bb_z[i] = sp_Bmag(3).val_point(r, theta, phi) ;
// 4-current
//----------
jj_t[i] = sp_jt.val_point(r, theta, phi) ;
jj_x[i] = sp_current(1).val_point(r, theta, phi) ;
jj_y[i] = sp_current(2).val_point(r, theta, phi) ;
jj_z[i] = sp_current(3).val_point(r, theta, phi) ;
} // End of loop on the points
delete p_eos ;
}
}
|