File: z15.c

package info (click to toggle)
lout 3.25-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 9,252 kB
  • ctags: 3,152
  • sloc: ansic: 31,182; makefile: 254; awk: 83
file content (846 lines) | stat: -rw-r--r-- 31,964 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/*@z15.c:Size Constraints:MinConstraint(), EnlargeToConstraint()@*************/
/*                                                                           */
/*  THE LOUT DOCUMENT FORMATTING SYSTEM (VERSION 3.25)                       */
/*  COPYRIGHT (C) 1991, 2001 Jeffrey H. Kingston                             */
/*                                                                           */
/*  Jeffrey H. Kingston (jeff@cs.usyd.edu.au)                                */
/*  Basser Department of Computer Science                                    */
/*  The University of Sydney 2006                                            */
/*  AUSTRALIA                                                                */
/*                                                                           */
/*  This program is free software; you can redistribute it and/or modify     */
/*  it under the terms of the GNU General Public License as published by     */
/*  the Free Software Foundation; either Version 2, or (at your option)      */
/*  any later version.                                                       */
/*                                                                           */
/*  This program is distributed in the hope that it will be useful,          */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of           */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            */
/*  GNU General Public License for more details.                             */
/*                                                                           */
/*  You should have received a copy of the GNU General Public License        */
/*  along with this program; if not, write to the Free Software              */
/*  Foundation, Inc., 59 Temple Place, Suite 330, Boston MA 02111-1307 USA   */
/*                                                                           */
/*  FILE:         z15.c                                                      */
/*  MODULE:       Size Constraints                                           */
/*  EXTERNS:      MinConstraint(), EnlargeToConstraint(),                    */
/*                ReflectConstraint(), SemiRotateConstraint(),               */
/*                RotateConstraint(), InvScaleConstraint(), Constrained(),   */
/*                EchoConstraint(), DebugConstrained()                       */
/*                                                                           */
/*****************************************************************************/
#include <math.h>
#ifndef M_PI
#define M_PI       3.1415926535897931160E0
#endif
#include "externs.h"


/*****************************************************************************/
/*                                                                           */
/*  MinConstraint(xc, yc)                                                    */
/*                                                                           */
/*  Replace *xc by the minimum of the two constraints *xc and *yc.           */
/*                                                                           */
/*****************************************************************************/

void MinConstraint(CONSTRAINT *xc, CONSTRAINT *yc)
{ bc(*xc)  = find_min(bc(*xc),  bc(*yc));
  bfc(*xc) = find_min(bfc(*xc), bfc(*yc));
  fc(*xc)  = find_min(fc(*xc),  fc(*yc));
} /* end MinConstraint */


/*****************************************************************************/
/*                                                                           */
/*  SetSizeToMaxForwardConstraint(b, f, c)                                   */
/*                                                                           */
/*  Set *b, *f to their largest possible value within constraint *c, such    */
/*  that *f is as large as possible.                                         */
/*                                                                           */
/*****************************************************************************/

void SetSizeToMaxForwardConstraint(FULL_LENGTH *b, FULL_LENGTH *f, CONSTRAINT *c)
{
  *f = find_min(bfc(*c), fc(*c));
  *b = find_min(bc(*c), bfc(*c) - *f);
} /* end EnlargeToConstraint */


/*****************************************************************************/
/*                                                                           */
/*  EnlargeToConstraint(b, f, c)                                             */
/*                                                                           */
/*  Enlarge *b,*f to its largest possible value within constraint *c.        */
/*                                                                           */
/*****************************************************************************/

void EnlargeToConstraint(FULL_LENGTH *b, FULL_LENGTH *f, CONSTRAINT *c)
{
  *f = find_min(bfc(*c) - *b, fc(*c));
} /* end EnlargeToConstraint */


/*****************************************************************************/
/*                                                                           */
/*  ReflectConstraint(xc, yc)                                                */
/*                                                                           */
/*  Set xc to the constraint which is yc with its back and forward reversed. */
/*                                                                           */
/*****************************************************************************/

#define ReflectConstraint(xc, yc)  SetConstraint(xc, fc(yc), bfc(yc), bc(yc))


/*@::ScaleToConstraint(), InvScaleConstraint(), etc@**************************/
/*                                                                           */
/*  int ScaleToConstraint(b, f, c)                                           */
/*                                                                           */
/*  Return the scale factor needed to scale object of size b, f down so it   */
/*  has a size which fits tightly into constraint c.                         */
/*                                                                           */
/*****************************************************************************/

int ScaleToConstraint(FULL_LENGTH b, FULL_LENGTH f, CONSTRAINT *c)
{ float scale_factor;  int res;
  debug3(DSC, DD, "ScaleToConstraint(%s, %s, %s)", EchoLength(b),
    EchoLength(f), EchoConstraint(c));
  scale_factor = 1.0;
  if( b     > 0 )  scale_factor = find_min(scale_factor, (float) bc(*c)/b       );
  if( b + f > 0 )  scale_factor = find_min(scale_factor, (float) bfc(*c)/(b + f));
  if(     f > 0 )  scale_factor = find_min(scale_factor, (float) fc(*c)/f       );
  res = scale_factor * SF;
  debug2(DSC, DD, "ScaleToConstraint returning %.2f (%d)", scale_factor, res);
  return res;
} /* end ScaleToConstraint */


/*****************************************************************************/
/*                                                                           */
/*  InvScaleConstraint(yc, sf, xc)                                           */
/*                                                                           */
/*  Scale constraint xc to the inverse of the scale factor sf.               */
/*                                                                           */
/*****************************************************************************/

void InvScaleConstraint(CONSTRAINT *yc, FULL_LENGTH sf, CONSTRAINT *xc)
{
#if DEBUG_ON
  char buff[10];
#endif
  ifdebug(DSC, DD, sprintf(buff, "%.3f", (float) sf / SF));
  debug2(DSC, DD, "InvScaleConstraint(yc, %s, %s)", buff, EchoConstraint(xc));
  assert( sf > 0, "InvScaleConstraint: sf <= 0!" );
  bc(*yc)  = bc(*xc)  == MAX_FULL_LENGTH ? MAX_FULL_LENGTH :
    find_min(MAX_FULL_LENGTH, bc(*xc) * SF / sf);
  bfc(*yc) = bfc(*xc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH :
    find_min(MAX_FULL_LENGTH, bfc(*xc)* SF / sf);
  fc(*yc)  = fc(*xc)  == MAX_FULL_LENGTH ? MAX_FULL_LENGTH :
    find_min(MAX_FULL_LENGTH, fc(*xc) * SF / sf);
  debug1(DSC, DD, "InvScaleConstraint returning %s", EchoConstraint(yc));
} /* end InvScaleConstraint */


/*****************************************************************************/
/*                                                                           */
/*  static SemiRotateConstraint(xc, u, v, angle, yc)                         */
/*                                                                           */
/*  Used by RotateConstraint to calculate one rotated constraint.            */
/*                                                                           */
/*****************************************************************************/

static void SemiRotateConstraint(CONSTRAINT *xc, FULL_LENGTH u, FULL_LENGTH v,
float angle, CONSTRAINT *yc)
{ float cs, sn;
#if DEBUG_ON
  char buff[20];
#endif
  ifdebug(DSC, DD, sprintf(buff, "%.1f", angle * 360.0 / (2 * M_PI)));
  debug4(DSC, DD, "SemiRotateConstraint(xc, %s, %s, %sd, %s",
    EchoLength(u), EchoLength(v), buff, EchoConstraint(yc));
  cs = cos(angle);  sn = sin(angle);
  if( fabs(cs) < 1e-6 )
    SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
  else
    SetConstraint(*xc,
      find_min(MAX_FULL_LENGTH, (bc(*yc) - u * sn) / cs),
      find_min(MAX_FULL_LENGTH, (bfc(*yc) - u * sn - v * sn) / cs),
      find_min(MAX_FULL_LENGTH, (fc(*yc) - v * sn) / cs ));
  debug1(DSC, DD, "SemiRotateConstraint returning %s", EchoConstraint(xc));
} /* end SemiRotateConstraint */


/*@::RotateConstraint()@******************************************************/
/*                                                                           */
/*  RotateConstraint(c, y, angle, hc, vc, dim)                               */
/*                                                                           */
/*  Take the object angle @Rotate y, which is supposed to be constrained     */
/*  horizontally by hc and vertically by vc, and determine a constraint      */
/*  (either horizontal or vertical, depending on dim) for y.                 */
/*                                                                           */
/*  The constraint returned is a trigonometric function of all these         */
/*  parameters, including the present size of y in dimension 1-dim.          */
/*                                                                           */
/*****************************************************************************/

void RotateConstraint(CONSTRAINT *c, OBJECT y, FULL_LENGTH angle,
CONSTRAINT *hc, CONSTRAINT *vc, int dim)
{ CONSTRAINT c1, c2, c3, dc;  float theta, psi;
#if DEBUG_ON
  char buff[20];
#endif
  ifdebug(DSC, DD, sprintf(buff, "%.1f", (float) angle / DG ));
  debug4(DSC, DD, "RotateConstraint(c, y, %sd, %s, %s, %s)",
	buff, EchoConstraint(hc), EchoConstraint(vc), dimen(dim));

  /* work out angle in radians between 0 and 2*PI */
  theta = (float) angle * 2 * M_PI / (float) (DG * 360);
  while( theta < 0 ) theta += 2 * M_PI;
  while( theta >= 2 * M_PI ) theta -= 2 * M_PI;
  assert( 0 <= theta && theta <= 2 * M_PI, "RotateConstraint: theta!" );

  /* determine theta, c1, and c2 depending on which quadrant we are in */
  if( theta <= M_PI / 2.0 )   /* first quadrant */
  { theta = theta;
    CopyConstraint(c1, *hc);
    CopyConstraint(c2, *vc);
  }
  else if ( theta <= M_PI )   /* second quadrant */
  { theta -= M_PI / 2.0;
    ReflectConstraint(c1, *vc);
    CopyConstraint(c2, *hc);
  }
  else if ( theta <= 3.0 * M_PI / 2.0 )   /* third quadrant */
  { theta -= M_PI;
    ReflectConstraint(c1, *hc);
    ReflectConstraint(c2, *vc);
  }
  else /* fourth quadrant */
  { theta -= 3.0 * M_PI / 2.0;
    CopyConstraint(c1, *vc);
    ReflectConstraint(c2, *hc);
  }
  psi = M_PI / 2.0 - theta;
  debug2(DSC, DD, "  c1: %s;  c2: %s", EchoConstraint(&c1), EchoConstraint(&c2));

  /* return the minimum of the two constraints, rotated */
  if( dim == COLM )
  { SemiRotateConstraint(c, back(y, ROWM), fwd(y, ROWM), theta, &c1);
    ReflectConstraint(c3, c2);
    SemiRotateConstraint(&dc, fwd(y, ROWM), back(y, ROWM), psi, &c3);
    MinConstraint(c, &dc);
  }
  else
  { SemiRotateConstraint(c, back(y, COLM), fwd(y, COLM), psi, &c1);
    SemiRotateConstraint(&dc, fwd(y, COLM), back(y, COLM), theta, &c2);
    MinConstraint(c, &dc);
  }

  debug1(DSC, DD, "RotateConstraint returning %s", EchoConstraint(c));
} /* end RotateConstraint */

/*@::InsertScale()@***********************************************************/
/*                                                                           */
/*  BOOLEAN InsertScale(x, c)                                                */
/*                                                                           */
/*  Insert a @Scale object above x so that x is scaled horizontally to fit   */
/*  constraint c.  If this is not possible, owing to the necessary scale     */
/*  factor being too small, then don't do it; return FALSE instead.          */
/*                                                                           */
/*****************************************************************************/

BOOLEAN InsertScale(OBJECT x, CONSTRAINT *c)
{ int scale_factor; OBJECT prnt;
  scale_factor = ScaleToConstraint(back(x, COLM), fwd(x, COLM), c);
  if( scale_factor >= 0.2 * SF )
  {
    New(prnt, SCALE);
    underline(prnt) = underline(x);
    FposCopy(fpos(prnt), fpos(x));

    /* set horizontal size and scale factor */
    bc(constraint(prnt)) = scale_factor;
    back(prnt, COLM) = ( back(x, COLM) * scale_factor ) / SF;

    /* *** slightly too small?
    fwd(prnt,  COLM) = ( fwd(x,  COLM) * scale_factor ) / SF;
    *** */
    fwd(prnt,  COLM) = find_min(bfc(*c) - back(prnt, COLM), fc(*c));

    /* set vertical size and scale factor */
    fc(constraint(prnt)) = 1 * SF;
    back(prnt, ROWM) = back(x, ROWM);
    fwd(prnt, ROWM) = fwd(x, ROWM);

    /* link prnt above x and return */
    ReplaceNode(prnt, x);
    Link(prnt, x);
    return TRUE;
  }
  else return FALSE;
} /* end InsertScale */


/*@::CatConstrained()@********************************************************/
/*                                                                           */
/*  static CatConstrained(x, xc, ratm, y, dim, OBJECT *why)                  */
/*                                                                           */
/*  Calculate the size constraint of object x, as for Constrained below.     */
/*  y is the enclosing VCAT etc. object;  ratm is TRUE if a ^ lies after     */
/*  x anywhere.  dim is COLM or ROWM.                                        */
/*                                                                           */
/*  The meaning of the key variables is as follows:                          */
/*                                                                           */
/*  be       The amount by which back(x, dim) can increase from zero         */
/*           without having any impact on size(y, dim).  Thereafter,         */
/*           any increase causes an equal increase in size(y, dim).          */
/*                                                                           */
/*  fe       The amount by which fwd(x, dim) can increase from zero          */
/*           without having any impact on size(y, dim).  Thereafter,         */
/*           any increase causes an equal increase in size(y, dim).          */
/*                                                                           */
/*  backy,   The value that back(y, dim) and fwd(y, dim) would have if x     */
/*  fwdy     was definite with size 0,0.  They will in general be larger     */
/*           than the present values if x is indefinite, and smaller         */
/*           if x is definite, although it depends on marks and gaps.        */
/*                                                                           */
/*****************************************************************************/

static void CatConstrained(OBJECT x, CONSTRAINT *xc, BOOLEAN ratm,
OBJECT y, int dim, OBJECT *why)
{ int side;			/* the size of y that x is on: BACK, ON, FWD */
  CONSTRAINT yc;		/* constraints on y                          */
  FULL_LENGTH backy, fwdy;	/* back(y), fwd(y) would be if x was (0, 0)  */
  FULL_LENGTH be, fe;		/* amount back(x), fwd(x) can be for free    */
  FULL_LENGTH beffect, feffect;	/* scratch variables for calculations        */
  FULL_LENGTH seffect;		/* scratch variables for calculations        */
  OBJECT link, sg, pg;	/* link to x, its successor and predecessor  */
  OBJECT prec_def, sd;	/* definite object preceding (succeeding) x  */
  int tb, tbf, tf, tbc, tbfc, tfc, mxy, myz;

  Constrained(y, &yc, dim, why);
  if( constrained(yc) )
  {
    /* find the link of x, and its neighbours and their links */
    link = UpDim(x, dim);
    SetNeighbours(link, ratm, &pg, &prec_def, &sg, &sd, &side);

    /* amount of space available at x without changing the size of y */
    be = pg == nilobj ? 0 : ExtraGap(fwd(prec_def, dim), 0, &gap(pg), BACK);
    fe = sg == nilobj ? 0 : ExtraGap(0, back(sd, dim),      &gap(sg), FWD);

    if( is_indefinite(type(x)) )
    {
      /* insert two lengths and delete one */
      beffect = pg==nilobj ? 0 : MinGap(fwd(prec_def, dim), 0, 0, &gap(pg));
      feffect = sg==nilobj ? 0 : MinGap(0, back(sd,dim), fwd(sd,dim), &gap(sg));
      seffect = pg==nilobj ?
	  sg == nilobj ? 0 : back(sd, dim) :
	  sg == nilobj ? fwd(prec_def, dim) :
	    MinGap(fwd(prec_def, dim), back(sd, dim), fwd(sd, dim), &gap(sg));

      switch( side )
      {
	case BACK:	backy = back(y, dim) + beffect + feffect - seffect;
			fwdy  = fwd(y, dim);
			break;

	case ON:	/* must be first, other cases prohibited */
			backy = 0;
			fwdy = fwd(y, dim) + feffect;
			break;

	case FWD:	backy = back(y, dim);
			fwdy  = fwd(y, dim) + beffect + feffect - seffect;
			break;
      }
    }

    else /* x is definite */

    { beffect = pg == nilobj ? back(x, dim) :
	MinGap(fwd(prec_def, dim), back(x,dim), fwd(x,dim), &gap(pg)) -
	MinGap(fwd(prec_def, dim), 0,           0,          &gap(pg));

      feffect = sg == nilobj ? fwd(x, dim) :
	MinGap(fwd(x, dim), back(sd, dim), fwd(sd, dim), &gap(sg)) -
	MinGap(0,           back(sd, dim), fwd(sd, dim), &gap(sg));

      switch( side )
      {
	case BACK:	backy = back(y, dim) - beffect - feffect;
			fwdy  = fwd(y, dim);
			break;

	case ON:	backy = back(y, dim) - beffect;
			fwdy  = fwd(y, dim)  - feffect;
			break;

	case FWD:	backy = back(y, dim);
			fwdy  = fwd(y, dim) - beffect - feffect;
			break;
      }
    }

    debug5(DSC, DD, "  side: %s, backy: %s, fwdy: %s, be: %s, fe: %s",
		Image(side), EchoLength(backy), EchoLength(fwdy),
		EchoLength(be), EchoLength(fe) );

    if( !FitsConstraint(backy, fwdy, yc) )
      SetConstraint(*xc, -1, -1, -1);
    else switch( side )
    {

      case BACK:
	
	tbc = bc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bc(yc) - backy;
	tbfc = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - backy - fwdy;
	mxy = find_min(tbc, tbfc);
	tb  = find_min(MAX_FULL_LENGTH, be + mxy);
	tbf = find_min(MAX_FULL_LENGTH, be + fe + mxy);
	tf  = find_min(MAX_FULL_LENGTH, fe + mxy);
	SetConstraint(*xc, tb, tbf, tf);
	break;


      case ON:
	
	tbc = bc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bc(yc) - backy;
	tbfc = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - backy - fwdy;
	tfc = fc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : fc(yc) - fwdy;
	mxy = find_min(tbc, tbfc);
	myz = find_min(tfc, tbfc);
	tb  = find_min(MAX_FULL_LENGTH, be + mxy);
	tbf = find_min(MAX_FULL_LENGTH, be + fe + tbfc);
	tf  = find_min(MAX_FULL_LENGTH, fe + myz);
	SetConstraint(*xc, tb, tbf, tf);
	break;
	

      case FWD:

	tfc = fc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : fc(yc) - fwdy;
	tbfc = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - backy - fwdy;
	mxy = find_min(tfc, tbfc);
	tb  = find_min(MAX_FULL_LENGTH, be + mxy);
	tbf = find_min(MAX_FULL_LENGTH, be + fe + mxy);
	tf  = find_min(MAX_FULL_LENGTH, fe + mxy);
	SetConstraint(*xc, tb, tbf, tf);
	break;
	
    }
  } /* end if( constrained ) */
  else SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
} /* end CatConstrained */


/*@::Constrained()@***********************************************************/
/*                                                                           */
/*  Constrained(x, xc, dim, why)                                             */
/*                                                                           */
/*  Calculate the size constraint of object x, and return it in *xc.         */
/*                                                                           */
/*  If the resulting constraint is a hard one caused by coming up against    */
/*  a HIGH (vertical) or WIDE (horizontal), set *why to this object; if      */
/*  not, leave *why unchanged.                                               */
/*                                                                           */
/*****************************************************************************/

void Constrained(OBJECT x, CONSTRAINT *xc, int dim, OBJECT *why)
{ OBJECT y, link, lp, rp, z, tlink, g;  CONSTRAINT yc, hc, vc;
  BOOLEAN ratm;  FULL_LENGTH xback, xfwd;  int tb, tf, tbf, tbc, tfc;
  SetLengthDim(dim);
  debug2(DSC, DD, "[ Constrained(%s, xc, %s, why), x =",
    Image(type(x)), dimen(dim));
  ifdebug(DSC, DD, DebugObject(x));
  assert( Up(x) != x, "Constrained: x has no parent!" );

  /* a CLOSURE which is external_ver is unconstrained in the ROWM direction */
  /* a CLOSURE which is external_hor is unconstrained in both directions   */
  if( type(x) == CLOSURE && ((dim==ROWM && external_ver(x)) || external_hor(x)) )
  {
    SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
    debug1(DSC, DD, "] Constrained returning %s (external)",EchoConstraint(xc));
    return;
  }

  /* find y, the parent of x */
  link = UpDim(x, dim);  ratm = FALSE;
  for( tlink = NextDown(link);  type(tlink) == LINK;  tlink = NextDown(tlink) )
  { Child(g, tlink);
    if( type(g) == GAP_OBJ && mark(gap(g)) )  ratm = TRUE;
  }
  y = tlink;
  debug1(DSC, DDD, "parent y = %s", Image(type(y)));
  ifdebug(DSC, DDD, DebugObject(y));

  switch( type(y) )
  {
    case PLAIN_GRAPHIC:
    case GRAPHIC:
    case LINK_SOURCE:
    case LINK_DEST:
    case LINK_URL:
    case KERN_SHRINK:
    case BEGIN_HEADER:
    case SET_HEADER:
    case ONE_COL:
    case ONE_ROW:
    case HCONTRACT:
    case VCONTRACT:
    case HEXPAND:
    case VEXPAND:
    case START_HVSPAN:
    case START_HSPAN:
    case START_VSPAN:
    case SPLIT:
    case BACKGROUND:

      Constrained(y, xc, dim, why);
      break;


    case HSCALE:
    case VSCALE:
    
      if( (dim == COLM) != (type(y) == HSCALE) )  Constrained(y, xc, dim, why);
      else SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      break;


    case HCOVER:
    case VCOVER:
    
      /* dubious, but not likely to arise anyway */
      if( (dim == COLM) != (type(y) == HCOVER) )  Constrained(y, xc, dim, why);
      else SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      break;


    case SCALE:

      Constrained(y, &yc, dim, why);
      if( dim == COLM && bc(constraint(y)) == 0 )
      {
	/* Lout-supplied factor required later, could be tiny */
	SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      }
      else
      { InvScaleConstraint(xc,
	  dim == COLM ? bc(constraint(y)) : fc(constraint(y)), &yc);
      }
      break;


    case ROTATE:
    
      Constrained(y, &hc, COLM, why);  Constrained(y, &vc, ROWM, why);
      RotateConstraint(xc, x, sparec(constraint(y)), &hc, &vc, dim);
      break;


    case WIDE:
    case HIGH:
    
      Constrained(y, xc, dim, why);
      if( (type(y)==WIDE) == (dim==COLM) )
      { MinConstraint(xc, &constraint(y));
	*why = y;
      }
      break;


    case HLIMITED:
    case VLIMITED:

      if( (type(y) == HLIMITED) == (dim == COLM) )
      {
	BOOLEAN still_searching = TRUE;
	z = y;
	SetConstraint(*xc, back(z, dim), size(z, dim), fwd(z, dim));
	debug2(DSC, D, "  [ %s (%s)", Image(type(z)), EchoConstraint(xc));
	while( still_searching && Up(z) != z )
	{
          Parent(z, UpDim(z, dim));
	  switch( type(z) )
	  {
	    case VLIMITED:
	    case HLIMITED:
	    case COL_THR:
	    case ROW_THR:
	    case ONE_COL:
	    case ONE_ROW:
	    case HCONTRACT:
	    case VCONTRACT:
	    case SPLIT:
	    case START_VSPAN:
	    case START_HSPAN:

	      SetConstraint(*xc, back(z, dim), size(z, dim), fwd(z, dim));
	      debug2(DSC, DD, "    let s = %s (%s)", Image(type(z)),
	        EchoConstraint(xc));
	      break;


	    case HSPANNER:
	    case VSPANNER:

	      /* SpannerAvailableSpace(z, dim, &b, &f); */
	      CopyConstraint(*xc, constraint(z));
	      debug2(DSC, D, "  ] let s = %s (%s) and stop",
		Image(type(z)), EchoConstraint(&constraint(z)));
	      still_searching = FALSE;
	      break;


	    default:

	      debug1(DSC, D, "  ] stopping at %s", Image(type(z)));
	      still_searching = FALSE;
	      break;
	  }
	}
	*why = y;
      }
      else
      {
        Constrained(y, xc, dim, why);
      }
      break;


    case VSPANNER:
    case HSPANNER:

      /* we're saying that a spanner has a fixed constraint that is */
      /* determined just once in its life                           */
      CopyConstraint(*xc, constraint(y));
      debug2(DSC, DD, "  Constrained(%s) = %s", Image(type(y)), EchoConstraint(xc));
      /* SetConstraint(*xc, back(y, dim), size(y, dim), fwd(y, dim)); */
      break;


    case HSHIFT:
    case VSHIFT:

      if( (type(y) == HSHIFT) == (dim == COLM) )
      { Constrained(y, &yc, dim, why);
	tf = FindShift(y, x, dim);
	SetConstraint(*xc,
	  find_min(bc(yc), bfc(yc)) - tf, bfc(yc), find_min(fc(yc), bfc(yc)) + tf);
      }
      else Constrained(y, xc, dim, why);
      break;


    case HEAD:
    
      if( dim == ROWM )
	SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      else
      {	CopyConstraint(yc, constraint(y));
	debug1(DSC, DD, "  head: %s; val is:", EchoConstraint(&yc));
	ifdebug(DSC, DD, DebugObject(y));
	goto REST_OF_HEAD;   /* a few lines down */
      }
      break;


    case COL_THR:
    case ROW_THR:

      assert( (type(y)==COL_THR) == (dim==COLM), "Constrained: COL_THR!" );
      Constrained(y, &yc, dim, why);
      tb = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - fwd(y, dim);
      tb = find_min(bc(yc), tb);
      tf = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - back(y, dim);
      tf = find_min(fc(yc), tf);
      SetConstraint(*xc, tb, bfc(yc), tf);
      break;


    case VCAT:
    case HCAT:
    case ACAT:
    
      if( (type(y)==VCAT) == (dim==ROWM) )
      {	CatConstrained(x, xc, ratm, y, dim, why);
	break;
      }
      Constrained(y, &yc, dim, why);
      if( !constrained(yc) )
	SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      else
      {
	REST_OF_HEAD:
	/* let lp and rp be the links of the gaps delimiting */
	/* the components joined to x (or parent if no such) */
	for( lp = PrevDown(link);  lp != y;  lp = PrevDown(lp) )
	{ Child(z, lp);
	  if( type(z) == GAP_OBJ && !join(gap(z)) )  break;
	}
	for( rp = NextDown(link);  rp != y;  rp = NextDown(rp) )
	{ Child(z, rp);
	  if( type(z) == GAP_OBJ && !join(gap(z)) )  break;
	}
	if( lp == y && rp == y && !(type(y) == HEAD && seen_nojoin(y)) )
	{
	  /* if whole object is joined, do this */
          tb = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - fwd(y, dim);
          tb = find_min(bc(yc), tb);
          tf = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - back(y, dim);
          tf = find_min(fc(yc), tf);
          SetConstraint(*xc, tb, bfc(yc), tf);
	}
	else
	{
	  /* if // or || is present, do this */
	  xback = xfwd = 0;
	  for(link = NextDown(lp); link != rp;  link = NextDown(link) )
	  { Child(z, link);
	    if( type(z) == GAP_OBJ || is_index(type(z)) )  continue;
	    xback = find_max(xback, back(z, dim));
	    xfwd = find_max(xfwd, fwd(z, dim));
	  }
	  debug2(DSC, DD, "  lp != rp; xback,xfwd = %s,%s",
			EchoLength(xback), EchoLength(xfwd));
	  tbf = find_min(bfc(yc), fc(yc));
	  tbc = tbf == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : tbf - xfwd;
	  tfc = tbf == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : tbf - xback;
	  SetConstraint(*xc, tbc, tbf, tfc);
	}
      }
      break;


    default:
    
      assert1(FALSE, "Constrained:", Image(type(y)));
      break;

  }
  debug2(DSC, DD, "] Constrained %s returning %s", Image(type(x)),
    EchoConstraint(xc));
} /* end Constrained */


/*@::EchoConstraint(), DebugConstrained()@************************************/
/*                                                                           */
/*  FULL_CHAR *EchoConstraint(c)                                             */
/*                                                                           */
/*  Returns a string showing constraint *c, in centimetres.                  */
/*                                                                           */
/*****************************************************************************/
#if DEBUG_ON

FULL_CHAR *EchoConstraint(CONSTRAINT *c)
{ static char str[2][40];
  static int i = 0;
  i = (i+1) % 2;
  sprintf(str[i], "<%s, %s, %s>", EchoLength(bc(*c)), EchoLength(bfc(*c)),
    EchoLength(fc(*c)));
  return AsciiToFull(str[i]);
} /* end EchoConstraint */


/*****************************************************************************/
/*                                                                           */
/*  DebugConstrained(x)                                                      */
/*                                                                           */
/*  Calculate and print the constraints of all closures lying within         */
/*  sized object x.                                                          */
/*                                                                           */
/*****************************************************************************/

void DebugConstrained(OBJECT x)
{ OBJECT y, link, why;
  CONSTRAINT c;
  debug1(DSC, DDD, "DebugConstrained( %s )", EchoObject(x) );
  switch( type(x) )
  {

    case CROSS:
    case FORCE_CROSS:
    case ROTATE:
    case BACKGROUND:
    case INCGRAPHIC:
    case SINCGRAPHIC:
    case PLAIN_GRAPHIC:
    case GRAPHIC:
    case LINK_SOURCE:
    case LINK_DEST:
    case LINK_URL:
    case KERN_SHRINK:
    case WORD:
    case QWORD:
    case START_HVSPAN:
    case START_HSPAN:
    case START_VSPAN:
    case HSPAN:
    case VSPAN:
    
      break;


    case CLOSURE:
    
      Constrained(x, &c, COLM, &why);
      debug2(DSC, DD, "Constrained( %s, &c, COLM ) = %s",
	EchoObject(x), EchoConstraint(&c));
      Constrained(x, &c, ROWM, &why);
      debug2(DSC, DD, "Constrained( %s, &c, ROWM ) = %s",
	EchoObject(x), EchoConstraint(&c));
      break;


    case SPLIT:
    
      link = DownDim(x, COLM);  Child(y, link);
      DebugConstrained(y);
      break;


    case HEAD:
    case ONE_COL:
    case ONE_ROW:
    case HCONTRACT:
    case VCONTRACT:
    case HLIMITED:
    case VLIMITED:
    case HEXPAND:
    case VEXPAND:
    case HSCALE:
    case VSCALE:
    case HCOVER:
    case VCOVER:
    case SCALE:
    case WIDE:
    case HIGH:
    
      link = Down(x);  Child(y, link);
      DebugConstrained(y);
      break;


    case COL_THR:
    case VCAT:
    case HCAT:
    case ACAT:
    
      for( link = Down(x);  link != x;  link =NextDown(link) )
      {	Child(y, link);
	if( type(y) != GAP_OBJ && !is_index(type(y)) )  DebugConstrained(y);
      }
      break;


    default:
    
      assert1(FALSE, "DebugConstrained:", Image(type(x)));
      break;

  }
  debug0(DSC, DDD, "DebugConstrained returning.");
} /* end DebugConstrained */
#endif