1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<HEAD>
<TITLE>Formulation of an lp problem in lpsolve</TITLE>
<style TYPE="text/css"> BODY { font-family:verdana,arial,helvetica; margin:15; }
</style>
</HEAD>
<BODY>
<h1 align="left"><u>Formulation of an lp problem in lpsolve</u></h1>
<p>We shall illustrate the method of linear programming by means of a simple example,
giving a combination graphical/numerical solution, and then solve the problem in lpsolve in different ways.
This via ASCII files and from different programming languages.</p>
<p>Suppose a farmer has 75 acres on which to plant two crops: wheat and barley.
To produce these crops, it costs the farmer (for seed, fertilizer, etc.) $120 per acre for the
wheat and $210 per acre for the barley.The farmer has $15000 available for expenses.
But after the harvest, the farmer must store the crops while awaiting favourable market conditions.
The farmer has storage space for 4000 bushels.Each acre yields an average of 110 bushels of wheat
or 30 bushels of barley. If the net profit per bushel of wheat (after all expenses have been subtracted)
is $1.30 and for barley is $2.00, how should the farmer plant the 75 acres to maximize profit?</p>
<p>We begin by formulating the problem mathematically.
First we express the objective, that is the profit, and the constraints
algebraically, then we graph them, and lastly we arrive at the solution
by graphical inspection and a minor arithmetic calculation.</p>
<p>Let x denote the number of acres allotted to wheat and y the number of acres allotted to barley.
Then the expression to be maximized, that is the profit, is clearly</p>
<p align="center">P = (110)(1.30)x + (30)(2.00)y = 143x + 60y.</p>
<p>There are three constraint inequalities, specified by the limits on expenses, storage and acreage.
They are respectively:</p>
<p align="center">
120x + 210y <= 15000<br>
110x + 30y <= 4000<br>
x + y <= 75
</p>
<p>Strictly speaking there are two more constraint inequalities forced by the fact that the farmer cannot plant
a negative number of acres, namely:</p>
<p align="center">x >= 0,y >= 0.</p>
<p>Next we graph the regions specified by the constraints. The last two say that we only need to consider
the first quadrant in the x-y plane. Here's a graph delineating the triangular region in the first quadrant determined
by the first inequality.</p>
<p><IMG alt="Source" src="O-Matrix1.jpg" border="0"></p>
<p>Now let's put in the other two constraint inequalities.</p>
<p><IMG alt="Source" src="O-Matrix2.jpg" border="0"></p>
<p>The black area is the solution space that holds valid solutions. This means that any point in this area fulfils the
constraints.
</p>
<p>Now let's superimpose on top of this picture a contour plot of the objective function P.</p>
<p><IMG alt="Source" src="O-Matrix3.jpg" border="0"></p>
<p>The lines give a picture of the objective function.
All solutions that intersect with the black area are valid solutions, meaning that this result also fulfils
the set constraints. The more the lines go to the right, the higher the objective value is. The optimal solution
or best objective is a line that is still in the black area, but with an as large as possible value.
</p>
<p>It seems apparent that the maximum value of P will occur on the level curve (that is, level
line) that passes through the vertex of the polygon that lies near (22,53).<br>
It is the intersection of x + y = 75 and 110*x + 30*y = 4000<br>
This is a corner point of the diagram. This is not a coincidence. The simplex algorithm, which is used
by lpsolve, starts from a theorem that the optimal solution is such a corner point.<br>
In fact we can compute the result:</p>
<pre>
x + y = 75 (1)
110*x + 30*y = 4000 (2)
</pre>
<p>From (1), y can be expressed in function of x:</p>
<pre>
y = 75 - x (3)
</pre>
<p>This equation can be substituted in (2):</p>
<pre>
110*x + 30*(75 - x) = 4000
</pre>
<p>Or:</p>
<pre>
80*x = 1750
</pre>
<p>Or:</p>
<pre>
x = 21.875
</pre>
<p>From (3), y can be derived:</p>
<pre>
y = 75 - 21.875 = 53.125
</pre>
<p>The acreage that results in the maximum profit is 21.875 for wheat and 53.125 for barley.
In that case the profit is:</p>
<pre>
P = 143*x + 60*y
</pre>
<p>Or:</p>
P = 143*21.875 + 60*53.125 = 6326.625
<p>That is, $6315.625.</p>
<p>Now, lpsolve comes into the picture to solve this linear programming problem more generally.</p>
<p>First let us show this problem in its mathematical format:</p>
<pre>
max(143x + 60y)
s.t.
120x + 210y <= 15000
110x + 30y <= 4000
x + y <= 75
x >= 0
y >= 0
</pre>
<h3><u>Formulate an lp problem with lpsolve</u></h3>
<p>There are several ways to model a linear problem via lpsolve:</p>
<ul>
<li><a href="#Read the model from an ASCII file">Read the model from an ASCII file</a></li>
<li><a href="#Construct the model from a Mathematical Programming Language">Construct the model from a Mathematical Programming Language</a></li>
<li><a href="#Construct the model from a Programming Language">Construct the model from a Programming Language</a></li>
</ul>
<a name="Read the model from an ASCII file"></a>
<h4><u>Read the model from an ASCII file.</u></h4>
<p>There exist a lot of formats to model an lp problem into. Almost each solver has its format on its own.</p>
<ul>
<li><a href="#MPS file format">MPS file format</a></li>
<li><a href="#lp file format">lp file format</a></li>
<li><a href="#CPLEX lp file format">CPLEX lp file format</a></li>
<li><a href="#LINDO lp file format">LINDO lp file format</a></li>
<li><a href="#GNU MathProg file format">GNU MathProg file format</a></li>
<li><a href="#LPFML XML file format">LPFML XML file format</a></li>
</ul>
<a name="MPS file format"></a>
<h4><u>MPS file format</u></h4>
<p>The MPS format is supported by most lp solvers and thus very universal. The model is provided to the solver
via an ASCII file.
This format is very old and difficult to read by humans.
See <a href="mps-format.htm">MPS file format</a> for a complete description about the format. This problem
is formulated as follows in MPS format:</p>
<pre>
* model.mps
NAME
ROWS
N R0
L R1
L R2
L R3
COLUMNS
x R0 143.00000000 R1 120.00000000
x R2 110.00000000 R3 1.0000000000
y R0 60.00000000 R1 210.00000000
y R2 30.000000000 R3 1.0000000000
RHS
RHS R1 15000.000000 R2 4000.0000000
RHS R3 75.000000000
ENDATA
</pre>
<p>Save this as ASCII file with name model.mps</p>
<p>To read this format in lpsolve, the API functions <a href="read_mps.htm">read_mps, read_freemps, read_MPS, read_freeMPS</a> can be used.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>
<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>
<p>To read this MPS model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>
<pre>lp_solve -max -mps model.mps</pre>
<p>This gives:</p>
<pre>
Value of objective function: 6315.63
Actual values of the variables:
x 21.875
y 53.125
</pre>
<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>
<h5>IDE</h5>
<p>Under Windows, there is also a graphical IDE that can read an MPS file.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>
<a name="lp file format"></a>
<h4><u>lp file format</u></h4>
<p>The lp format is the native lpsolve format to provide LP models via an ASCII file to the solver.
It is very readable and its syntax is very similar to the Mathematical formulation.
See <a href="lp-format.htm">LP file format</a> for a complete description about the format. This model
is formulated as follows in lp-format:</p>
<pre>
/* model.lp */
max: 143 x + 60 y;
120 x + 210 y <= 15000;
110 x + 30 y <= 4000;
x + y <= 75;
</pre>
<p>Save this as ASCII file with name model.lp</p>
<p>To read this format in lpsolve, the API functions <a href="read_lp.htm">read_lp, read_LP</a> can be used.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>
<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>
<p>To read this lp model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>
<pre>lp_solve model.lp</pre>
<p>This gives:</p>
<pre>
Value of objective function: 6315.63
Actual values of the variables:
x 21.875
y 53.125
</pre>
<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>
<h5>IDE</h5>
<p>Under Windows, there is also a graphical IDE that can read an lp-file.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>
<a name="CPLEX lp file format"></a>
<h4><u>CPLEX lp file format</u></h4>
<p>The CPLEX lp format is another format to provide LP models via an ASCII file to the solver.
It is very readable and its syntax is very similar to the Mathematical formulation. It is a format used
by the CPLEX solver. See <a href="CPLEX-format.htm">CPLEX lp files</a> for a complete description about the format. This model
is formulated as follows in CPLEX lp format:</p>
<pre>
\* model.lpt *\
Maximize
+143 x +60 y
Subject To
+120 x +210 y <= 15000
+110 x +30 y <= 4000
+x +y <= 75
End
</pre>
<p>Save this as ASCII file with name model.lpt</p>
<p>lpsolve doesn't has an API call to read/write this format. However, the lpsolve distribution
has an XLI that can do this. See <a href="XLI.htm">External Language Interfaces</a> for a description about XLIs.
This uses the API call <a href="read_XLI.htm">read_XLI</a>. The xli to read/write this format is xli_CPLEX.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>
<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>
<p>To read this CPLEX lp model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>
<pre>lp_solve -rxli xli_CPLEX model.lpt</pre>
<p>This gives:</p>
<pre>
Value of objective function: 6315.63
Actual values of the variables:
x 21.875
y 53.125
</pre>
<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>
<h5>IDE</h5>
<p>Under Windows, there is also a graphical IDE that can read a CPLEX lp file via an XLI.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>
<a name="LINDO lp file format"></a>
<h4><u>LINDO lp file format</u></h4>
<p>The LINDO FILE format is another format to provide LP models via an ASCII file to the solver.
It is very readable and its syntax is very similar to the Mathematical formulation. It is a format used
by the LINDO solver. See <a href="LINDO-format.htm">LINDO lp files</a> for a complete description about the format. This model
is formulated as follows in LINDO FILE format:</p>
<pre>
! model.lnd
MAXIMIZE
+143 x +60 y
SUBJECT TO
+120 x +210 y <= 15000
+110 x +30 y <= 4000
+x +y <= 75
END
</pre>
<p>Save this as ASCII file with name model.lpt</p>
<p>lpsolve doesn't has an API call to read/write this format. However, the lpsolve distribution
has an XLI that can do this. See <a href="XLI.htm">External Language Interfaces</a> for a description about XLIs.
This uses the API call <a href="read_XLI.htm">read_XLI</a>. The xli to read/write this format is xli_LINDO.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>
<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>
<p>To read this LINDO lp model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>
<pre>lp_solve -rxli xli_LINDO model.lnd</pre>
<p>This gives:</p>
<pre>
Value of objective function: 6315.63
Actual values of the variables:
x 21.875
y 53.125
</pre>
<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>
<h5>IDE</h5>
<p>Under Windows, there is also a graphical IDE that can read a LINDO lp file via an XLI.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>
<a name="GNU MathProg file format"></a>
<h4><u>GNU MathProg file format</u></h4>
<p>The GNU MathProg format is another format to provide LP models via an ASCII file to the solver.
It is very readable and its syntax is very similar to the Mathematical formulation. It is a format used
by the GLPK solver and a subset of AMPL. It has also the possibility to use loops.
See <a href="http://plato.asu.edu/gnu_mp.pdf">Modeling Language GNU MathProg</a>
This model is formulated as follows in GNU MathProg format:</p>
<pre>
/* model.mod */
var x >= 0;
var y >= 0;
maximize obj: +143*x +60*y;
R1: +120*x +210*y <= 15000;
R2: +110*x +30*y <= 4000;
R3: +x +y <= 75;
</pre>
<p>Save this as ASCII file with name model.mod</p>
<p>lpsolve doesn't has an API call to read/write this format. However, the lp_solve distribution
has an XLI that can do this. See <a href="XLI.htm">External Language Interfaces</a> for a description about XLIs.
This uses the API call <a href="read_XLI.htm">read_XLI</a>. The xli to read/write this format is xli_MathProg.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>
<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>
<p>To read this GNU MathProg model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>
<pre>lp_solve -rxli xli_MathProg model.mod</pre>
<p>This gives:</p>
<pre>
Value of objective function: 6315.63
Actual values of the variables:
x 21.875
y 53.125
</pre>
<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>
<h5>IDE</h5>
<p>Under Windows, there is also a graphical IDE that can read a GNU MathProg file via an XLI.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>
<a name="LPFML XML file format"></a>
<h4><u>LPFML XML file format</u></h4>
<p>The LPFML XML format is another format to provide LP models via an ASCII file to the solver. This format
is very recent and uses XML layout. It is not very readable by us, but because of the XML structure very flexible.
See <a href="http://gsbkip.chicagogsb.edu/fml/fml.html">LPFML: A W3C XML Schema for Linear Programming</a> for more information.
This model is formulated as follows in LPFML XML format:</p>
<pre>
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<mathProgram xmlns="http://FML/lpfml.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://FML/lpfml.xsd lpfml.xsd">
<linearProgramDescription>
<source></source>
<maxOrMin>max</maxOrMin>
<numberRows>3</numberRows>
<numberVars>2</numberVars>
</linearProgramDescription>
<linearProgramData>
<rows>
<row rowName="R1" rowUB="15000"/>
<row rowName="R2" rowUB="4000"/>
<row rowName="R3" rowUB="75"/>
</rows>
<columns>
<col colName="x" colType="C" objVal="143"/>
<col colName="y" colType="C" objVal="60"/>
</columns>
<amatrix>
<sparseMatrix>
<pntANonz>
<el>3</el>
<el>6</el>
</pntANonz>
<rowIdx>
<el>0</el>
<el>1</el>
<el>2</el>
<el>0</el>
<el>1</el>
<el>2</el>
</rowIdx>
<nonz>
<el>120</el>
<el>110</el>
<el>1</el>
<el>210</el>
<el>30</el>
<el>1</el>
</nonz>
</sparseMatrix>
</amatrix>
</linearProgramData>
</mathProgram>
</pre>
<p>Save this as ASCII file with name model.xml</p>
<p>lpsolve doesn't has an API call to read/write this format. However, the lp_solve distribution
has an XLI that can do this. See <a href="XLI.htm">External Language Interfaces</a> for a description about XLIs.
This uses the API call <a href="read_XLI.htm">read_XLI</a>. The xli to read/write this format is xli_LPFML.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>
<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>
<p>To read this LPFML XML model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>
<pre>lp_solve -rxli xli_LPFML model.xml</pre>
<p>This gives:</p>
<pre>
Value of objective function: 6315.63
Actual values of the variables:
x 21.875
y 53.125
</pre>
<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>
<h5>IDE</h5>
<p>Under Windows, there is also a graphical IDE that can read a LPFML XML file via an XLI.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>
<a name="Construct the model from a Mathematical Programming Language"></a>
<h4><u>Construct the model from a Mathematical Programming Language.</u></h4>
<p>There are several commercial and free Mathematical programming applications out there which can be
used to solve lp problems. An lpsolve driver is made for several of them:</p>
<ul>
<li><a href="AMPL.htm">AMPL</a></li>
<li><a href="MATLAB.htm">MATLAB</a></li>
<li><a href="O-Matrix.htm">O-Matrix</a></li>
<li><a href="Sysquake.htm">Sysquake</a></li>
<li><a href="Scilab.htm">Scilab</a></li>
<li><a href="Octave.htm">Octave</a></li>
<li><a href="FreeMat.htm">FreeMat</a></li>
<li><a href="Euler.htm">Euler</a></li>
<li><a href="Python.htm">Python</a></li>
<li><a href="Sage.htm">Sage</a></li>
<li><a href="PHP.htm">PHP</a></li>
<li><a href="R.htm">R</a></li>
<li><a href="MSF.htm">Microsoft Solver Foundation</a></li>
</ul>
<a name="Construct the model from a Programming Language"></a>
<h4><u>Construct the model from a Programming Language.</u></h4>
<p>In several cases it is required that the solver is called from within the programming language
in which an application is build. All the data is in memory and no files are created to provide data
to the solver. lpsolve has a very rich, yet easy, API to do this.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API.
lpsolve is a library of API routines. This library is called from the programming language.
See <a href="Build.htm">Calling the lpsolve API from your application</a> for more information.
Above example is now formulated in several programming languages:</p>
<ul>
<li><a href="#C/C++">C/C++</a></li>
<li><a href="#Java">Java</a></li>
<li><a href="#Delphi, Free Pascal">Delphi, Free Pascal</a></li>
<li><a href="#VB, VBScript">VB, VBScript</a></li>
<li><a href="#VB.NET">VB.NET</a></li>
<li><a href="#CS.NET">C#.NET</a></li>
</ul>
<a name="C/C++"></a>
<h4><u>C/C++</u></h4>
<p>The example model can be formulated as follows in C:</p>
<pre>
/* demo.c */
#include "lp_lib.h"
int demo()
{
lprec *lp;
int Ncol, *colno = NULL, j, ret = 0;
REAL *row = NULL;
/* We will build the model row by row
So we start with creating a model with 0 rows and 2 columns */
Ncol = 2; /* there are two variables in the model */
lp = make_lp(0, Ncol);
if(lp == NULL)
ret = 1; /* couldn't construct a new model... */
if(ret == 0) {
/* let us name our variables. Not required, but can be useful for debugging */
set_col_name(lp, 1, "x");
set_col_name(lp, 2, "y");
/* create space large enough for one row */
colno = (int *) malloc(Ncol * sizeof(*colno));
row = (REAL *) malloc(Ncol * sizeof(*row));
if((colno == NULL) || (row == NULL))
ret = 2;
}
if(ret == 0) {
set_add_rowmode(lp, TRUE); /* makes building the model faster if it is done rows by row */
/* construct first row (120 x + 210 y <= 15000) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 120;
colno[j] = 2; /* second column */
row[j++] = 210;
/* add the row to lpsolve */
if(!add_constraintex(lp, j, row, colno, LE, 15000))
ret = 3;
}
if(ret == 0) {
/* construct second row (110 x + 30 y <= 4000) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 110;
colno[j] = 2; /* second column */
row[j++] = 30;
/* add the row to lpsolve */
if(!add_constraintex(lp, j, row, colno, LE, 4000))
ret = 3;
}
if(ret == 0) {
/* construct third row (x + y <= 75) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 1;
colno[j] = 2; /* second column */
row[j++] = 1;
/* add the row to lpsolve */
if(!add_constraintex(lp, j, row, colno, LE, 75))
ret = 3;
}
if(ret == 0) {
set_add_rowmode(lp, FALSE); /* rowmode should be turned off again when done building the model */
/* set the objective function (143 x + 60 y) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 143;
colno[j] = 2; /* second column */
row[j++] = 60;
/* set the objective in lpsolve */
if(!set_obj_fnex(lp, j, row, colno))
ret = 4;
}
if(ret == 0) {
/* set the object direction to maximize */
set_maxim(lp);
/* just out of curioucity, now show the model in lp format on screen */
/* this only works if this is a console application. If not, use write_lp and a filename */
write_LP(lp, stdout);
/* write_lp(lp, "model.lp"); */
/* I only want to see important messages on screen while solving */
set_verbose(lp, IMPORTANT);
/* Now let lpsolve calculate a solution */
ret = solve(lp);
if(ret == OPTIMAL)
ret = 0;
else
ret = 5;
}
if(ret == 0) {
/* a solution is calculated, now lets get some results */
/* objective value */
printf("Objective value: %f\n", get_objective(lp));
/* variable values */
get_variables(lp, row);
for(j = 0; j < Ncol; j++)
printf("%s: %f\n", get_col_name(lp, j + 1), row[j]);
/* we are done now */
}
/* free allocated memory */
if(row != NULL)
free(row);
if(colno != NULL)
free(colno);
if(lp != NULL) {
/* clean up such that all used memory by lpsolve is freed */
delete_lp(lp);
}
return(ret);
}
int main()
{
demo();
}
</pre>
<p>When this is run, the following is shown on screen:</p>
<pre>
/* Objective function */
max: +143 x +60 y;
/* Constraints */
+120 x +210 y <= 15000;
+110 x +30 y <= 4000;
+x +y <= 75;
Objective value: 6315.625000
x: 21.875000
y: 53.125000
</pre>
<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>
<a name="Java"></a>
<h4><u>Java</u></h4>
<p>The example model can be formulated as follows in Java:</p>
<pre>
/* demo.java */
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import lpsolve.*;
public class Demo {
public Demo() {
}
public int execute() throws LpSolveException {
LpSolve lp;
int Ncol, j, ret = 0;
/* We will build the model row by row
So we start with creating a model with 0 rows and 2 columns */
Ncol = 2; /* there are two variables in the model */
/* create space large enough for one row */
int[] colno = new int[Ncol];
double[] row = new double[Ncol];
lp = LpSolve.makeLp(0, Ncol);
if(lp.getLp() == 0)
ret = 1; /* couldn't construct a new model... */
if(ret == 0) {
/* let us name our variables. Not required, but can be useful for debugging */
lp.setColName(1, "x");
lp.setColName(2, "y");
lp.setAddRowmode(true); /* makes building the model faster if it is done rows by row */
/* construct first row (120 x + 210 y <= 15000) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 120;
colno[j] = 2; /* second column */
row[j++] = 210;
/* add the row to lpsolve */
lp.addConstraintex(j, row, colno, LpSolve.LE, 15000);
}
if(ret == 0) {
/* construct second row (110 x + 30 y <= 4000) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 110;
colno[j] = 2; /* second column */
row[j++] = 30;
/* add the row to lpsolve */
lp.addConstraintex(j, row, colno, LpSolve.LE, 4000);
}
if(ret == 0) {
/* construct third row (x + y <= 75) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 1;
colno[j] = 2; /* second column */
row[j++] = 1;
/* add the row to lpsolve */
lp.addConstraintex(j, row, colno, LpSolve.LE, 75);
}
if(ret == 0) {
lp.setAddRowmode(false); /* rowmode should be turned off again when done building the model */
/* set the objective function (143 x + 60 y) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 143;
colno[j] = 2; /* second column */
row[j++] = 60;
/* set the objective in lpsolve */
lp.setObjFnex(j, row, colno);
}
if(ret == 0) {
/* set the object direction to maximize */
lp.setMaxim();
/* just out of curioucity, now generate the model in lp format in file model.lp */
lp.writeLp("model.lp");
/* I only want to see important messages on screen while solving */
lp.setVerbose(LpSolve.IMPORTANT);
/* Now let lpsolve calculate a solution */
ret = lp.solve();
if(ret == LpSolve.OPTIMAL)
ret = 0;
else
ret = 5;
}
if(ret == 0) {
/* a solution is calculated, now lets get some results */
/* objective value */
System.out.println("Objective value: " + lp.getObjective());
/* variable values */
lp.getVariables(row);
for(j = 0; j < Ncol; j++)
System.out.println(lp.getColName(j + 1) + ": " + row[j]);
/* we are done now */
}
/* clean up such that all used memory by lpsolve is freed */
if(lp.getLp() != 0)
lp.deleteLp();
return(ret);
}
public static void main(String[] args) {
try {
new Demo().execute();
}
catch (LpSolveException e) {
e.printStackTrace();
}
}
}
</pre>
<!-- Compile & run commands:
javac -classpath ..\lib\lpsolve55j.jar Demo.java
java -cp .;..\lib\lpsolve55j.jar Demo
-->
<p>When this is run, the following is shown on screen:</p>
<pre>
Objective value: 6315.625
x: 21.875000000000007
y: 53.12499999999999
</pre>
<p>And a file model.lp is created with the following contents:</p>
<pre>
/* Objective function */
max: +143 x +60 y;
/* Constraints */
+120 x +210 y <= 15000;
+110 x +30 y <= 4000;
+x +y <= 75;
</pre>
<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>
<p>Also note that the API names in Java are a bit different than in the native lpsolve API and the lp argument
is not there.
See the lpsolve Java wrapper documentation for more details.</p>
<a name="Delphi, Free Pascal"></a>
<h4><u>Delphi, Free Pascal</u></h4>
<p>The example model can be formulated as follows in Delphi or Free Pascal:</p>
<pre>
program demo;
{$APPTYPE CONSOLE}
uses
SysUtils,
lpsolve;
var
Ncol, j, ret: integer;
colno: PIntArray;
row: PFloatArray;
lp: THandle;
begin
ret := 0;
colno := nil;
row := nil;
(* We will build the model row by row
So we start with creating a model with 0 rows and 2 columns *)
Ncol := 2; (* there are two variables in the model *)
lp := make_lp(0, Ncol);
if (lp = 0) then
ret := 1; (* couldn't construct a new model... *)
(* let us name our variables. Not required, but can be usefull for debugging *)
set_col_name(lp, 1, 'x');
set_col_name(lp, 2, 'y');
if (ret = 0) then
begin
(* create space large enough for one row *)
GetMem(colno, SizeOf(integer) * Ncol);
GetMem(row, SizeOf(double) * Ncol);
if ((colno = nil) or (row = nil)) then
ret := 2;
end;
if (ret = 0) then
begin
set_add_rowmode(lp, true); (* makes building the model faster if it is done rows by row *)
(* construct first row (120 x + 210 y <= 15000) *)
j := 0;
colno^[j] := 1; (* first column *)
row^[j] := 120;
j := j + 1;
colno^[j] := 2; (* second column *)
row^[j] := 210;
j := j + 1;
(* add the row to lp_solve *)
if (not add_constraintex(lp, j, row, colno, LE, 15000)) then
ret := 3;
end;
if (ret = 0) then
begin
(* construct second row (110 x + 30 y <= 4000) *)
j := 0;
colno^[j] := 1; (* first column *)
row^[j] := 110;
j := j + 1;
colno^[j] := 2; (* second column *)
row^[j] := 30;
j := j + 1;
(* add the row to lp_solve *)
if (not add_constraintex(lp, j, row, colno, LE, 4000)) then
ret := 3;
end;
if (ret = 0) then
begin
(* construct third row (x + y <= 75) *)
j := 0;
colno^[j] := 1; (* first column *)
row^[j] := 1;
j := j + 1;
colno^[j] := 2; (* second column *)
row^[j] := 1;
j := j + 1;
(* add the row to lp_solve *)
if (not add_constraintex(lp, j, row, colno, LE, 75)) then
ret := 3;
end;
if (ret = 0) then
begin
set_add_rowmode(lp, false); (* rowmode should be turned off again when done building the model *)
(* set the objective function (143 x + 60 y) *)
j := 0;
colno^[j] := 1; (* first column *)
row^[j] := 143;
j := j + 1;
colno^[j] := 2; (* second column *)
row^[j] := 60;
j := j + 1;
(* set the objective in lp_solve *)
if (not set_obj_fnex(lp, j, row, colno)) then
ret := 4;
end;
if (ret = 0) then
begin
(* set the object direction to maximize *)
set_maxim(lp);
(* just out of curioucity, now show the model in lp format *)
write_lp(lp, 'model.lp');
(* I only want to see importand messages on screen while solving *)
set_verbose(lp, IMPORTANT);
(* Now let lp_solve calculate a solution *)
ret := solve(lp);
if (ret = OPTIMAL) then
ret := 0
else
ret := 5;
end;
if (ret = 0) then
begin
(* a solution is calculated, now lets get some results *)
(* objective value *)
writeln(format('Objective value: %f', [get_objective(lp)]));
(* variable values *)
get_variables(lp, row);
for j := 0 to Ncol-1 do
writeln(format('%s: %f', [get_col_name(lp, j + 1), row^[j]]));
(* we are done now *)
end;
(* free allocated memory *)
if (row <> nil) then
FreeMem(row);
if (colno <> nil) then
FreeMem(colno);
if(lp <> 0) then
begin
(* clean up such that all used memory by lp_solve is freeed *)
delete_lp(lp);
end;
end.
</pre>
<p>When this is run, the following is shown:</p>
<pre>
Objective value: 6315.63
x: 21.88
y: 53.12
</pre>
<p>And a file model.lp is created with the following contents:</p>
<pre>
/* Objective function */
max: +143 x +60 y;
/* Constraints */
+120 x +210 y <= 15000;
+110 x +30 y <= 4000;
+x +y <= 75;
</pre>
<p>Note that a unit lpsolve.pas+lpsolve.inc is needed for this to work.
This is available via the Delphi example.</p>
<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>
<a name="VB, VBScript"></a>
<h4><u>VB, VBScript</u></h4>
<p>The example model can be formulated as follows in VB or VBScript:</p>
<pre>
Option Explicit
'demo
Private lpsolve As lpsolve55
Sub Main()
Set lpsolve = New lpsolve55
lpsolve.Init "."
Demo
Set lpsolve = Nothing
End Sub
Private Function Demo() As Integer
Dim lp As Long
Dim Ncol As Long, colno() As Long
Dim j As Integer, ret As Integer
Dim row() As Double
With lpsolve
' We will build the model row by row
' So we start with creating a model with 0 rows and 2 columns
Ncol = 2 ' there are two variables in the model
lp = .make_lp(0, Ncol)
If lp = 0 Then
ret = 1 ' couldn't construct a new model...
End If
If ret = 0 Then
' let us name our variables. Not required, but can be useful for debugging
.set_col_name lp, 1, "x"
.set_col_name lp, 2, "y"
' create space large enough for one row
ReDim colno(0 To Ncol - 1)
ReDim row(0 To Ncol - 1)
End If
If ret = 0 Then
.set_add_rowmode lp, True ' makes building the model faster if it is done rows by row
' construct first row (120 x + 210 y <= 15000)
j = 0
colno(j) = 1 ' first column
row(j) = 120
j = j + 1
colno(j) = 2 ' second column
row(j) = 210
j = j + 1
' add the row to lpsolve
If .add_constraintex(lp, j, row(0), colno(0), LE, 15000) = False Then
ret = 3
End If
End If
If ret = 0 Then
' construct second row (110 x + 30 y <= 4000)
j = 0
colno(j) = 1 ' first column
row(j) = 110
j = j + 1
colno(j) = 2 ' second column
row(j) = 30
j = j + 1
' add the row to lpsolve
If .add_constraintex(lp, j, row(0), colno(0), LE, 4000) = False Then
ret = 3
End If
End If
If ret = 0 Then
' construct third row (x + y <= 75)
j = 0
colno(j) = 1 ' first column
row(j) = 1
j = j + 1
colno(j) = 2 ' second column
row(j) = 1
j = j + 1
' add the row to lpsolve
If .add_constraintex(lp, j, row(0), colno(0), LE, 75) = False Then
ret = 3
End If
End If
If ret = 0 Then
.set_add_rowmode lp, False ' rowmode should be turned off again when done building the model
' set the objective function (143 x + 60 y)
j = 0
colno(j) = 1 ' first column
row(j) = 143
j = j + 1
colno(j) = 2 ' second column
row(j) = 60
j = j + 1
' set the objective in lpsolve
If .set_obj_fnex(lp, j, row(0), colno(0)) = False Then
ret = 4
End If
End If
If ret = 0 Then
' set the object direction to maximize
.set_maxim lp
' just out of curioucity, now show the model in lp format on screen
' this only works if this is a console application. If not, use write_lp and a filename
.write_lp lp, "model.lp"
' I only want to see important messages on screen while solving
.set_verbose lp, 3
' Now let lpsolve calculate a solution
ret = .solve(lp)
If ret = OPTIMAL Then
ret = 0
Else
ret = 5
End If
End If
If ret = 0 Then
' a solution is calculated, now lets get some results
' objective value
Debug.Print "Objective value: " & .get_objective(lp)
' variable values
.get_variables lp, row(0)
For j = 1 To Ncol
Debug.Print .get_col_name(lp, j) & ": " & row(j - 1)
Next
' we are done now
End If
' free allocated memory
Erase row
Erase colno
If lp <> 0 Then
' clean up such that all used memory by lpsolve is freed
.delete_lp lp
End If
Demo = ret
End With
End Function
</pre>
<p>When this is run, the following is shown in the debug window:</p>
<pre>
Objective value: 6315.625
x: 21.875
y: 53.125
</pre>
<p>And a file model.lp is created with the following contents:</p>
<pre>
/* Objective function */
max: +143 x +60 y;
/* Constraints */
+120 x +210 y <= 15000;
+110 x +30 y <= 4000;
+x +y <= 75;
</pre>
<p>Note that a class lpsolve55.cls or the lpsolve55 COM object is needed for this to work.
The class is available via the VB example and the COM object is also available.</p>
<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>
<a name="VB.NET"></a>
<h4><u>VB.NET</u></h4>
<p>The example model can be formulated as follows in VB.NET:</p>
<pre>
Option Strict Off
Option Explicit On
Module Module1
'demo
Private lpsolve As lpsolve55
Public Sub Main()
lpsolve = New lpsolve55
lpsolve.Init(".")
Demo()
lpsolve = Nothing
End Sub
Private Function Demo() As Integer
Dim lp As Integer
Dim Ncol As Integer
Dim colno() As Integer
Dim j, ret As Short
Dim row() As Double
With lpsolve
' We will build the model row by row
' So we start with creating a model with 0 rows and 2 columns
Ncol = 2 ' there are two variables in the model
lp = .make_lp(0, Ncol)
If lp = 0 Then
ret = 1 ' couldn't construct a new model...
End If
If ret = 0 Then
' let us name our variables. Not required, but can be useful for debugging
.set_col_name(lp, 1, "x")
.set_col_name(lp, 2, "y")
' create space large enough for one row
ReDim colno(Ncol - 1)
ReDim row(Ncol - 1)
End If
If ret = 0 Then
.set_add_rowmode(lp, True) ' makes building the model faster if it is done rows by row
' construct first row (120 x + 210 y <= 15000)
j = 0
colno(j) = 1 ' first column
row(j) = 120
j = j + 1
colno(j) = 2 ' second column
row(j) = 210
j = j + 1
' add the row to lpsolve
If .add_constraintex(lp, j, row(0), colno(0), lpsolve55.lpsolve_constr_types.LE, 15000) = False Then
ret = 3
End If
End If
If ret = 0 Then
' construct second row (110 x + 30 y <= 4000)
j = 0
colno(j) = 1 ' first column
row(j) = 110
j = j + 1
colno(j) = 2 ' second column
row(j) = 30
j = j + 1
' add the row to lpsolve
If .add_constraintex(lp, j, row(0), colno(0), lpsolve55.lpsolve_constr_types.LE, 4000) = False Then
ret = 3
End If
End If
If ret = 0 Then
' construct third row (x + y <= 75)
j = 0
colno(j) = 1 ' first column
row(j) = 1
j = j + 1
colno(j) = 2 ' second column
row(j) = 1
j = j + 1
' add the row to lpsolve
If .add_constraintex(lp, j, row(0), colno(0), lpsolve55.lpsolve_constr_types.LE, 75) = False Then
ret = 3
End If
End If
If ret = 0 Then
.set_add_rowmode(lp, False) ' rowmode should be turned off again when done building the model
' set the objective function (143 x + 60 y)
j = 0
colno(j) = 1 ' first column
row(j) = 143
j = j + 1
colno(j) = 2 ' second column
row(j) = 60
j = j + 1
' set the objective in lpsolve
If .set_obj_fnex(lp, j, row(0), colno(0)) = False Then
ret = 4
End If
End If
If ret = 0 Then
' set the object direction to maximize
.set_maxim(lp)
' just out of curioucity, now show the model in lp format on screen
' this only works if this is a console application. If not, use write_lp and a filename
.write_lp(lp, "model.lp")
' I only want to see important messages on screen while solving
.set_verbose(lp, 3)
' Now let lpsolve calculate a solution
ret = .solve(lp)
If ret = lpsolve55.lpsolve_return.OPTIMAL Then
ret = 0
Else
ret = 5
End If
End If
If ret = 0 Then
' a solution is calculated, now lets get some results
' objective value
System.Diagnostics.Debug.WriteLine("Objective value: " & .get_objective(lp))
' variable values
.get_variables(lp, row(0))
For j = 1 To Ncol
System.Diagnostics.Debug.WriteLine(.get_col_name(lp, j) & ": " & row(j - 1))
Next
' we are done now
End If
' free allocated memory
Erase row
Erase colno
If lp <> 0 Then
' clean up such that all used memory by lpsolve is freed
.delete_lp(lp)
End If
Demo = ret
End With
End Function
End Module
</pre>
<p>When this is run, the following is shown in the debug window:</p>
<pre>
Objective value: 6315.625
x: 21.875
y: 53.125
</pre>
<p>And a file model.lp is created with the following contents:</p>
<pre>
/* Objective function */
max: +143 x +60 y;
/* Constraints */
+120 x +210 y <= 15000;
+110 x +30 y <= 4000;
+x +y <= 75;
</pre>
<p>Note that a class lpsolve55.vb is needed for this to work.
The class is available via the VB.NET example.</p>
<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>
<a name="CS.NET"></a>
<h4><u>C#.NET</u></h4>
<p>The example model can be formulated as follows in C#.NET:</p>
<pre>
using System.Windows.Forms;
using lpsolve55;
/* demo.cs */
namespace demo
{
public class demo
{
public static void Main()
{
lpsolve.Init(".");
Demo();
}
private static int Demo()
{
int lp;
int Ncol;
int[] colno;
int j, ret = 0;
double[] row;
/* We will build the model row by row */
/* So we start with creating a model with 0 rows and 2 columns */
Ncol = 2; /* there are two variables in the model */
lp = lpsolve.make_lp(0, Ncol);
if (lp == 0)
ret = 1; /* couldn't construct a new model... */
if (ret == 0) {
/* let us name our variables. Not required, but can be useful for debugging */
lpsolve.set_col_name(lp, 1, "x");
lpsolve.set_col_name(lp, 2, "y");
}
/* create space large enough for one row */
colno = new int[Ncol];
row = new double[Ncol];
if (ret == 0) {
lpsolve.set_add_rowmode(lp, true); /* makes building the model faster if it is done rows by row */
/* construct first row (120 x + 210 y <= 15000) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 120;
colno[j] = 2; /* second column */
row[j++] = 210;
/* add the row to lpsolve */
if (lpsolve.add_constraintex(lp, j, ref row[0], ref colno[0], lpsolve.lpsolve_constr_types.LE, 15000) == false)
ret = 3;
}
if (ret == 0) {
/* construct second row (110 x + 30 y <= 4000) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 110;
colno[j] = 2; /* second column */
row[j++] = 30;
/* add the row to lpsolve */
if (lpsolve.add_constraintex(lp, j, ref row[0], ref colno[0], lpsolve.lpsolve_constr_types.LE, 4000) == false)
ret = 3;
}
if (ret == 0) {
/* construct third row (x + y <= 75) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 1;
colno[j] = 2; /* second column */
row[j++] = 1;
/* add the row to lpsolve */
if (lpsolve.add_constraintex(lp, j, ref row[0], ref colno[0], lpsolve.lpsolve_constr_types.LE, 75) == false)
ret = 3;
}
if (ret == 0) {
lpsolve.set_add_rowmode(lp, false); /* rowmode should be turned off again when done building the model */
/* set the objective function (143 x + 60 y) */
j = 0;
colno[j] = 1; /* first column */
row[j++] = 143;
colno[j] = 2; /* second column */
row[j++] = 60;
/* set the objective in lpsolve */
if (lpsolve.set_obj_fnex(lp, j, ref row[0], ref colno[0]) == false)
ret = 4;
}
if (ret == 0) {
lpsolve.lpsolve_return s;
/* set the object direction to maximize */
lpsolve.set_maxim(lp);
/* just out of curioucity, now show the model in lp format on screen */
/* this only works if this is a console application. If not, use write_lp and a filename */
lpsolve.write_lp(lp, "model.lp");
/* I only want to see important messages on screen while solving */
lpsolve.set_verbose(lp, 3);
/* Now let lpsolve calculate a solution */
s = lpsolve.solve(lp);
if (s == lpsolve.lpsolve_return.OPTIMAL)
ret = 0;
else
ret = 5;
}
if (ret == 0) {
/* a solution is calculated, now lets get some results */
/* objective value */
System.Diagnostics.Debug.WriteLine("Objective value: " + lpsolve.get_objective(lp));
/* variable values */
lpsolve.get_variables(lp, ref row[0]);
for(j = 0; j < Ncol; j++)
System.Diagnostics.Debug.WriteLine(lpsolve.get_col_name(lp, j + 1) + ": " + row[j]);
/* we are done now */
}
/* free allocated memory */
if (lp != 0) {
/* clean up such that all used memory by lpsolve is freed */
lpsolve.delete_lp(lp);
}
return(ret);
} //Demo
}
}
</pre>
<p>When this is run, the following is shown in the debug window:</p>
<pre>
Objective value: 6315.625
x: 21.875
y: 53.125
</pre>
<p>And a file model.lp is created with the following contents:</p>
<pre>
/* Objective function */
max: +143 x +60 y;
/* Constraints */
+120 x +210 y <= 15000;
+110 x +30 y <= 4000;
+x +y <= 75;
</pre>
<p>Note that a class lpsolve55.cs is needed for this to work.
The class is available via the CS.NET example.</p>
<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>
</BODY>
</html>
|