File: formulate.htm

package info (click to toggle)
lp-solve 5.5.2.5-2
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye
  • size: 9,468 kB
  • sloc: ansic: 49,352; javascript: 2,025; yacc: 672; sh: 93; makefile: 84
file content (1696 lines) | stat: -rw-r--r-- 50,320 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
	<HEAD>
		<TITLE>Formulation of an lp problem in lpsolve</TITLE>
		<style TYPE="text/css"> BODY { font-family:verdana,arial,helvetica; margin:15; }
	</style>
	</HEAD>
	<BODY>
					<h1 align="left"><u>Formulation of an lp problem in lpsolve</u></h1>

<p>We shall illustrate the method of linear programming by means of a simple example,
giving a combination graphical/numerical solution, and then solve the problem in lpsolve in different ways.
This via ASCII files and from different programming languages.</p>

<p>Suppose a farmer has 75 acres on which to plant two crops: wheat and barley.
To produce these crops, it costs the farmer (for seed, fertilizer, etc.) $120 per acre for the
wheat and $210 per acre for the barley.The farmer has $15000 available for expenses.
But after the harvest, the farmer must store the crops while awaiting favourable market conditions.
The farmer has storage space for 4000 bushels.Each acre yields an average of 110 bushels of wheat
or 30 bushels of barley. If the net profit per bushel of wheat (after all expenses have been subtracted)
is $1.30 and for barley is $2.00, how should the farmer plant the 75 acres to maximize profit?</p>

<p>We begin by formulating the problem mathematically.
First we express the objective, that is the profit, and the constraints
algebraically, then we graph them, and lastly we arrive at the solution
by graphical inspection and a minor arithmetic calculation.</p>

<p>Let x denote the number of acres allotted to wheat and y the number of acres allotted to barley.
Then the expression to be maximized, that is the profit, is clearly</p>

<p align="center">P = (110)(1.30)x + (30)(2.00)y = 143x + 60y.</p>

<p>There are three constraint inequalities, specified by the limits on expenses, storage and acreage.
They are respectively:</p>

<p align="center">
120x + 210y &lt;= 15000<br>
110x + 30y &lt;= 4000<br>
x + y &lt;= 75
</p>

<p>Strictly speaking there are two more constraint inequalities forced by the fact that the farmer cannot plant
a negative number of acres, namely:</p>

<p align="center">x &gt;= 0,y &gt;= 0.</p>

<p>Next we graph the regions specified by the constraints. The last two say that we only need to consider
the first quadrant in the x-y plane. Here's a graph delineating the triangular region in the first quadrant determined
by the first inequality.</p>

<p><IMG alt="Source" src="O-Matrix1.jpg" border="0"></p>

<p>Now let's put in the other two constraint inequalities.</p>

<p><IMG alt="Source" src="O-Matrix2.jpg" border="0"></p>

<p>The black area is the solution space that holds valid solutions. This means that any point in this area fulfils the
constraints.
</p>

<p>Now let's superimpose on top of this picture a contour plot of the objective function P.</p>

<p><IMG alt="Source" src="O-Matrix3.jpg" border="0"></p>

<p>The lines give a picture of the objective function.
All solutions that intersect with the black area are valid solutions, meaning that this result also fulfils
the set constraints. The more the lines go to the right, the higher the objective value is. The optimal solution
or best objective is a line that is still in the black area, but with an as large as possible value.
</p>

<p>It seems apparent that the maximum value of P will occur on the level curve (that is, level
line) that passes through the vertex of the polygon that lies near (22,53).<br>
It is the intersection of x + y = 75 and 110*x + 30*y = 4000<br>
This is a corner point of the diagram. This is not a coincidence. The simplex algorithm, which is used
by lpsolve, starts from a theorem that the optimal solution is such a corner point.<br>
In fact we can compute the result:</p>

<pre>
x + y = 75          (1)
110*x + 30*y = 4000 (2)
</pre>

<p>From (1), y can be expressed in function of x:</p>

<pre>
y = 75 - x (3)
</pre>

<p>This equation can be substituted in (2):</p>

<pre>
110*x + 30*(75 - x) = 4000
</pre>

<p>Or:</p>

<pre>
80*x = 1750
</pre>

<p>Or:</p>

<pre>
x = 21.875
</pre>

<p>From (3), y can be derived:</p>

<pre>
y = 75 - 21.875 = 53.125
</pre>

<p>The acreage that results in the maximum profit is 21.875 for wheat and 53.125 for barley.
In that case the profit is:</p>

<pre>
P = 143*x + 60*y
</pre>

<p>Or:</p>

P = 143*21.875 + 60*53.125 = 6326.625

<p>That is, $6315.625.</p>

<p>Now, lpsolve comes into the picture to solve this linear programming problem more generally.</p>

<p>First let us show this problem in its mathematical format:</p>

<pre>
max(143x + 60y)
s.t.
120x + 210y &lt;= 15000
110x + 30y &lt;= 4000
x + y &lt;= 75
x &gt;= 0
y &gt;= 0
</pre>

<h3><u>Formulate an lp problem with lpsolve</u></h3>

<p>There are several ways to model a linear problem via lpsolve:</p>

<ul>
  <li><a href="#Read the model from an ASCII file">Read the model from an ASCII file</a></li>
  <li><a href="#Construct the model from a Mathematical Programming Language">Construct the model from a Mathematical Programming Language</a></li>
  <li><a href="#Construct the model from a Programming Language">Construct the model from a Programming Language</a></li>
</ul>

<a name="Read the model from an ASCII file"></a>
<h4><u>Read the model from an ASCII file.</u></h4>

<p>There exist a lot of formats to model an lp problem into. Almost each solver has its format on its own.</p>

<ul>
  <li><a href="#MPS file format">MPS file format</a></li>
  <li><a href="#lp file format">lp file format</a></li>
  <li><a href="#CPLEX lp file format">CPLEX lp file format</a></li>
  <li><a href="#LINDO lp file format">LINDO lp file format</a></li>
  <li><a href="#GNU MathProg file format">GNU MathProg file format</a></li>
  <li><a href="#LPFML XML file format">LPFML XML file format</a></li>
</ul>

<a name="MPS file format"></a>
<h4><u>MPS file format</u></h4>

<p>The MPS format is supported by most lp solvers and thus very universal. The model is provided to the solver
via an ASCII file.
This format is very old and difficult to read by humans.
See <a href="mps-format.htm">MPS file format</a> for a complete description about the format. This problem
is formulated as follows in MPS format:</p>

<pre>
* model.mps
NAME
ROWS
 N  R0
 L  R1
 L  R2
 L  R3
COLUMNS
    x         R0        143.00000000   R1        120.00000000
    x         R2        110.00000000   R3        1.0000000000
    y         R0        60.00000000    R1        210.00000000
    y         R2        30.000000000   R3        1.0000000000
RHS
    RHS       R1        15000.000000   R2        4000.0000000
    RHS       R3        75.000000000
ENDATA
</pre>

<p>Save this as ASCII file with name model.mps</p>

<p>To read this format in lpsolve, the API functions <a href="read_mps.htm">read_mps, read_freemps, read_MPS, read_freeMPS</a> can be used.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>

<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>

<p>To read this MPS model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>

<pre>lp_solve -max -mps model.mps</pre>

<p>This gives:</p>

<pre>
Value of objective function: 6315.63

Actual values of the variables:
x                          21.875
y                          53.125
</pre>

<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>

<h5>IDE</h5>

<p>Under Windows, there is also a graphical IDE that can read an MPS file.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>

<a name="lp file format"></a>
<h4><u>lp file format</u></h4>

<p>The lp format is the native lpsolve format to provide LP models via an ASCII file to the solver.
It is very readable and its syntax is very similar to the Mathematical formulation.
See <a href="lp-format.htm">LP file format</a> for a complete description about the format. This model
is formulated as follows in lp-format:</p>

<pre>
/* model.lp */

max: 143 x + 60 y;

120 x + 210 y &lt;= 15000;
110 x + 30 y &lt;= 4000;
x + y &lt;= 75;
</pre>

<p>Save this as ASCII file with name model.lp</p>

<p>To read this format in lpsolve, the API functions <a href="read_lp.htm">read_lp, read_LP</a> can be used.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>

<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>

<p>To read this lp model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>

<pre>lp_solve model.lp</pre>

<p>This gives:</p>

<pre>
Value of objective function: 6315.63

Actual values of the variables:
x                          21.875
y                          53.125
</pre>

<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>

<h5>IDE</h5>

<p>Under Windows, there is also a graphical IDE that can read an lp-file.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>

<a name="CPLEX lp file format"></a>
<h4><u>CPLEX lp file format</u></h4>

<p>The CPLEX lp format is another format to provide LP models via an ASCII file to the solver.
It is very readable and its syntax is very similar to the Mathematical formulation. It is a format used
by the CPLEX solver. See <a href="CPLEX-format.htm">CPLEX lp files</a> for a complete description about the format. This model
is formulated as follows in CPLEX lp format:</p>

<pre>
\* model.lpt *\

Maximize
 +143 x +60 y

Subject To
 +120 x +210 y &lt;= 15000
 +110 x +30 y &lt;= 4000
 +x +y &lt;= 75

End
</pre>

<p>Save this as ASCII file with name model.lpt</p>

<p>lpsolve doesn't has an API call to read/write this format. However, the lpsolve distribution
has an XLI that can do this. See <a href="XLI.htm">External Language Interfaces</a> for a description about XLIs.
This uses the API call <a href="read_XLI.htm">read_XLI</a>. The xli to read/write this format is xli_CPLEX.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>

<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>

<p>To read this CPLEX lp model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>

<pre>lp_solve -rxli xli_CPLEX model.lpt</pre>

<p>This gives:</p>

<pre>
Value of objective function: 6315.63

Actual values of the variables:
x                          21.875
y                          53.125
</pre>

<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>

<h5>IDE</h5>

<p>Under Windows, there is also a graphical IDE that can read a CPLEX lp file via an XLI.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>

<a name="LINDO lp file format"></a>
<h4><u>LINDO lp file format</u></h4>

<p>The LINDO FILE format is another format to provide LP models via an ASCII file to the solver.
It is very readable and its syntax is very similar to the Mathematical formulation. It is a format used
by the LINDO solver. See <a href="LINDO-format.htm">LINDO lp files</a> for a complete description about the format. This model
is formulated as follows in LINDO FILE format:</p>

<pre>
! model.lnd

MAXIMIZE
 +143 x +60 y

SUBJECT TO
 +120 x +210 y &lt;= 15000
 +110 x +30 y &lt;= 4000
 +x +y &lt;= 75

END
</pre>

<p>Save this as ASCII file with name model.lpt</p>

<p>lpsolve doesn't has an API call to read/write this format. However, the lpsolve distribution
has an XLI that can do this. See <a href="XLI.htm">External Language Interfaces</a> for a description about XLIs.
This uses the API call <a href="read_XLI.htm">read_XLI</a>. The xli to read/write this format is xli_LINDO.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>

<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>

<p>To read this LINDO lp model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>

<pre>lp_solve -rxli xli_LINDO model.lnd</pre>

<p>This gives:</p>

<pre>
Value of objective function: 6315.63

Actual values of the variables:
x                          21.875
y                          53.125
</pre>

<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>

<h5>IDE</h5>

<p>Under Windows, there is also a graphical IDE that can read a LINDO lp file via an XLI.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>

<a name="GNU MathProg file format"></a>
<h4><u>GNU MathProg file format</u></h4>

<p>The GNU MathProg format is another format to provide LP models via an ASCII file to the solver.
It is very readable and its syntax is very similar to the Mathematical formulation. It is a format used
by the GLPK solver and a subset of AMPL. It has also the possibility to use loops.
See <a href="http://plato.asu.edu/gnu_mp.pdf">Modeling Language GNU MathProg</a>
This model is formulated as follows in GNU MathProg format:</p>

<pre>
/* model.mod */

var x >= 0;
var y >= 0;

maximize obj: +143*x +60*y;

R1: +120*x +210*y &lt;= 15000;
R2: +110*x +30*y &lt;= 4000;
R3: +x +y &lt;= 75;
</pre>

<p>Save this as ASCII file with name model.mod</p>

<p>lpsolve doesn't has an API call to read/write this format. However, the lp_solve distribution
has an XLI that can do this. See <a href="XLI.htm">External Language Interfaces</a> for a description about XLIs.
This uses the API call <a href="read_XLI.htm">read_XLI</a>. The xli to read/write this format is xli_MathProg.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>

<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>

<p>To read this GNU MathProg model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>

<pre>lp_solve -rxli xli_MathProg model.mod</pre>

<p>This gives:</p>

<pre>
Value of objective function: 6315.63

Actual values of the variables:
x                          21.875
y                          53.125
</pre>

<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>

<h5>IDE</h5>

<p>Under Windows, there is also a graphical IDE that can read a GNU MathProg file via an XLI.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>

<a name="LPFML XML file format"></a>
<h4><u>LPFML XML file format</u></h4>

<p>The LPFML XML format is another format to provide LP models via an ASCII file to the solver. This format
is very recent and uses XML layout. It is not very readable by us, but because of the XML structure very flexible.
See <a href="http://gsbkip.chicagogsb.edu/fml/fml.html">LPFML: A W3C XML Schema for Linear Programming</a> for more information.
This model is formulated as follows in LPFML XML format:</p>

<pre>
&lt;?xml version="1.0" encoding="UTF-8" standalone="no" ?&gt;
&lt;mathProgram xmlns="http://FML/lpfml.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://FML/lpfml.xsd lpfml.xsd"&gt;

  &lt;linearProgramDescription&gt;
    &lt;source&gt;&lt;/source&gt;
    &lt;maxOrMin&gt;max&lt;/maxOrMin&gt;
    &lt;numberRows&gt;3&lt;/numberRows&gt;
    &lt;numberVars&gt;2&lt;/numberVars&gt;
  &lt;/linearProgramDescription&gt;

  &lt;linearProgramData&gt;
    &lt;rows&gt;
      &lt;row rowName="R1" rowUB="15000"/&gt;
      &lt;row rowName="R2" rowUB="4000"/&gt;
      &lt;row rowName="R3" rowUB="75"/&gt;
    &lt;/rows&gt;
    &lt;columns&gt;
      &lt;col colName="x" colType="C" objVal="143"/&gt;
      &lt;col colName="y" colType="C" objVal="60"/&gt;
    &lt;/columns&gt;
    &lt;amatrix&gt;
      &lt;sparseMatrix&gt;
        &lt;pntANonz&gt;
          &lt;el&gt;3&lt;/el&gt;
          &lt;el&gt;6&lt;/el&gt;
        &lt;/pntANonz&gt;
        &lt;rowIdx&gt;
          &lt;el&gt;0&lt;/el&gt;
          &lt;el&gt;1&lt;/el&gt;
          &lt;el&gt;2&lt;/el&gt;
          &lt;el&gt;0&lt;/el&gt;
          &lt;el&gt;1&lt;/el&gt;
          &lt;el&gt;2&lt;/el&gt;
        &lt;/rowIdx&gt;
        &lt;nonz&gt;
          &lt;el&gt;120&lt;/el&gt;
          &lt;el&gt;110&lt;/el&gt;
          &lt;el&gt;1&lt;/el&gt;
          &lt;el&gt;210&lt;/el&gt;
          &lt;el&gt;30&lt;/el&gt;
          &lt;el&gt;1&lt;/el&gt;
        &lt;/nonz&gt;
      &lt;/sparseMatrix&gt;
    &lt;/amatrix&gt;
  &lt;/linearProgramData&gt;

&lt;/mathProgram&gt;
</pre>

<p>Save this as ASCII file with name model.xml</p>

<p>lpsolve doesn't has an API call to read/write this format. However, the lp_solve distribution
has an XLI that can do this. See <a href="XLI.htm">External Language Interfaces</a> for a description about XLIs.
This uses the API call <a href="read_XLI.htm">read_XLI</a>. The xli to read/write this format is xli_LPFML.
The lpsolve distribution comes with two applications that use this API call to read a model:</p>

<h5><a href="lp_solve.htm">lp_solve command</a> line program</h5>

<p>To read this LPFML XML model via the <a href="lp_solve.htm">lp_solve command</a> line program and calculate the solution, enter the following command:</p>

<pre>lp_solve -rxli xli_LPFML model.xml</pre>

<p>This gives:</p>

<pre>
Value of objective function: 6315.63

Actual values of the variables:
x                          21.875
y                          53.125
</pre>

<p>The lp_solve program has a lot of options that can be set. See <a href="lp_solve.htm">lp_solve command</a></p>

<h5>IDE</h5>

<p>Under Windows, there is also a graphical IDE that can read a LPFML XML file via an XLI.
See <a href="IDE.htm">LPSolve IDE</a> for more information.</p>

<a name="Construct the model from a Mathematical Programming Language"></a>
<h4><u>Construct the model from a Mathematical Programming Language.</u></h4>

<p>There are several commercial and free Mathematical programming applications out there which can be
used to solve lp problems. An lpsolve driver is made for several of them:</p>

<ul>
  <li><a href="AMPL.htm">AMPL</a></li>
  <li><a href="MATLAB.htm">MATLAB</a></li>
  <li><a href="O-Matrix.htm">O-Matrix</a></li>
  <li><a href="Sysquake.htm">Sysquake</a></li>
  <li><a href="Scilab.htm">Scilab</a></li>
  <li><a href="Octave.htm">Octave</a></li>
  <li><a href="FreeMat.htm">FreeMat</a></li>
  <li><a href="Euler.htm">Euler</a></li>
  <li><a href="Python.htm">Python</a></li>
  <li><a href="Sage.htm">Sage</a></li>
  <li><a href="PHP.htm">PHP</a></li>
  <li><a href="R.htm">R</a></li>
  <li><a href="MSF.htm">Microsoft Solver Foundation</a></li>
</ul>

<a name="Construct the model from a Programming Language"></a>
<h4><u>Construct the model from a Programming Language.</u></h4>

<p>In several cases it is required that the solver is called from within the programming language
in which an application is build. All the data is in memory and no files are created to provide data
to the solver. lpsolve has a very rich, yet easy, API to do this.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API.
lpsolve is a library of API routines. This library is called from the programming language.
See <a href="Build.htm">Calling the lpsolve API from your application</a> for more information.

Above example is now formulated in several programming languages:</p>

<ul>
  <li><a href="#C/C++">C/C++</a></li>
  <li><a href="#Java">Java</a></li>
  <li><a href="#Delphi, Free Pascal">Delphi, Free Pascal</a></li>
  <li><a href="#VB, VBScript">VB, VBScript</a></li>
  <li><a href="#VB.NET">VB.NET</a></li>
  <li><a href="#CS.NET">C#.NET</a></li>
</ul>

<a name="C/C++"></a>
<h4><u>C/C++</u></h4>

<p>The example model can be formulated as follows in C:</p>

<pre>
/* demo.c */

#include "lp_lib.h"

int demo()
{
  lprec *lp;
  int Ncol, *colno = NULL, j, ret = 0;
  REAL *row = NULL;

  /* We will build the model row by row
     So we start with creating a model with 0 rows and 2 columns */
  Ncol = 2; /* there are two variables in the model */
  lp = make_lp(0, Ncol);
  if(lp == NULL)
    ret = 1; /* couldn't construct a new model... */

  if(ret == 0) {
    /* let us name our variables. Not required, but can be useful for debugging */
    set_col_name(lp, 1, "x");
    set_col_name(lp, 2, "y");

    /* create space large enough for one row */
    colno = (int *) malloc(Ncol * sizeof(*colno));
    row = (REAL *) malloc(Ncol * sizeof(*row));
    if((colno == NULL) || (row == NULL))
      ret = 2;
  }

  if(ret == 0) {
    set_add_rowmode(lp, TRUE);  /* makes building the model faster if it is done rows by row */

    /* construct first row (120 x + 210 y &lt;= 15000) */
    j = 0;

    colno[j] = 1; /* first column */
    row[j++] = 120;

    colno[j] = 2; /* second column */
    row[j++] = 210;

    /* add the row to lpsolve */
    if(!add_constraintex(lp, j, row, colno, LE, 15000))
      ret = 3;
  }

  if(ret == 0) {
    /* construct second row (110 x + 30 y &lt;= 4000) */
    j = 0;

    colno[j] = 1; /* first column */
    row[j++] = 110;

    colno[j] = 2; /* second column */
    row[j++] = 30;

    /* add the row to lpsolve */
    if(!add_constraintex(lp, j, row, colno, LE, 4000))
      ret = 3;
  }

  if(ret == 0) {
    /* construct third row (x + y &lt;= 75) */
    j = 0;

    colno[j] = 1; /* first column */
    row[j++] = 1;

    colno[j] = 2; /* second column */
    row[j++] = 1;

    /* add the row to lpsolve */
    if(!add_constraintex(lp, j, row, colno, LE, 75))
      ret = 3;
  }

  if(ret == 0) {
    set_add_rowmode(lp, FALSE); /* rowmode should be turned off again when done building the model */

    /* set the objective function (143 x + 60 y) */
    j = 0;

    colno[j] = 1; /* first column */
    row[j++] = 143;

    colno[j] = 2; /* second column */
    row[j++] = 60;

    /* set the objective in lpsolve */
    if(!set_obj_fnex(lp, j, row, colno))
      ret = 4;
  }

  if(ret == 0) {
    /* set the object direction to maximize */
    set_maxim(lp);

    /* just out of curioucity, now show the model in lp format on screen */
    /* this only works if this is a console application. If not, use write_lp and a filename */
    write_LP(lp, stdout);
    /* write_lp(lp, "model.lp"); */

    /* I only want to see important messages on screen while solving */
    set_verbose(lp, IMPORTANT);

    /* Now let lpsolve calculate a solution */
    ret = solve(lp);
    if(ret == OPTIMAL)
      ret = 0;
    else
      ret = 5;
  }

  if(ret == 0) {
    /* a solution is calculated, now lets get some results */

    /* objective value */
    printf("Objective value: %f\n", get_objective(lp));

    /* variable values */
    get_variables(lp, row);
    for(j = 0; j &lt; Ncol; j++)
      printf("%s: %f\n", get_col_name(lp, j + 1), row[j]);

    /* we are done now */
  }

  /* free allocated memory */
  if(row != NULL)
    free(row);
  if(colno != NULL)
    free(colno);

  if(lp != NULL) {
    /* clean up such that all used memory by lpsolve is freed */
    delete_lp(lp);
  }

  return(ret);
}

int main()
{
  demo();
}
</pre>

<p>When this is run, the following is shown on screen:</p>

<pre>
/* Objective function */
max: +143 x +60 y;

/* Constraints */
+120 x +210 y &lt;= 15000;
+110 x +30 y &lt;= 4000;
+x +y &lt;= 75;
Objective value: 6315.625000
x: 21.875000
y: 53.125000
</pre>

<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>

<a name="Java"></a>
<h4><u>Java</u></h4>

<p>The example model can be formulated as follows in Java:</p>

<pre>
/* demo.java */

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

import lpsolve.*;

public class Demo {

	public Demo() {
	}

	public int execute() throws LpSolveException {
          LpSolve lp;
          int Ncol, j, ret = 0;

          /* We will build the model row by row
             So we start with creating a model with 0 rows and 2 columns */
          Ncol = 2; /* there are two variables in the model */

          /* create space large enough for one row */
          int[] colno = new int[Ncol];
          double[] row = new double[Ncol];

          lp = LpSolve.makeLp(0, Ncol);
          if(lp.getLp() == 0)
            ret = 1; /* couldn't construct a new model... */

          if(ret == 0) {
            /* let us name our variables. Not required, but can be useful for debugging */
            lp.setColName(1, "x");
            lp.setColName(2, "y");

            lp.setAddRowmode(true);  /* makes building the model faster if it is done rows by row */

            /* construct first row (120 x + 210 y &lt;= 15000) */
            j = 0;

            colno[j] = 1; /* first column */
            row[j++] = 120;

            colno[j] = 2; /* second column */
            row[j++] = 210;

            /* add the row to lpsolve */
            lp.addConstraintex(j, row, colno, LpSolve.LE, 15000);
          }

          if(ret == 0) {
            /* construct second row (110 x + 30 y &lt;= 4000) */
            j = 0;

            colno[j] = 1; /* first column */
            row[j++] = 110;

            colno[j] = 2; /* second column */
            row[j++] = 30;

            /* add the row to lpsolve */
            lp.addConstraintex(j, row, colno, LpSolve.LE, 4000);
          }

          if(ret == 0) {
            /* construct third row (x + y &lt;= 75) */
            j = 0;

            colno[j] = 1; /* first column */
            row[j++] = 1;

            colno[j] = 2; /* second column */
            row[j++] = 1;

            /* add the row to lpsolve */
            lp.addConstraintex(j, row, colno, LpSolve.LE, 75);
          }

          if(ret == 0) {
            lp.setAddRowmode(false); /* rowmode should be turned off again when done building the model */

            /* set the objective function (143 x + 60 y) */
            j = 0;

            colno[j] = 1; /* first column */
            row[j++] = 143;

            colno[j] = 2; /* second column */
            row[j++] = 60;

            /* set the objective in lpsolve */
            lp.setObjFnex(j, row, colno);
          }

          if(ret == 0) {
            /* set the object direction to maximize */
            lp.setMaxim();

            /* just out of curioucity, now generate the model in lp format in file model.lp */
            lp.writeLp("model.lp");

            /* I only want to see important messages on screen while solving */
            lp.setVerbose(LpSolve.IMPORTANT);

            /* Now let lpsolve calculate a solution */
            ret = lp.solve();
            if(ret == LpSolve.OPTIMAL)
              ret = 0;
            else
              ret = 5;
          }

          if(ret == 0) {
            /* a solution is calculated, now lets get some results */

            /* objective value */
            System.out.println("Objective value: " + lp.getObjective());

            /* variable values */
            lp.getVariables(row);
            for(j = 0; j &lt; Ncol; j++)
              System.out.println(lp.getColName(j + 1) + ": " + row[j]);

            /* we are done now */
          }

          /* clean up such that all used memory by lpsolve is freed */
          if(lp.getLp() != 0)
            lp.deleteLp();

          return(ret);
        }

	public static void main(String[] args) {
		try {
			new Demo().execute();
		}
		catch (LpSolveException e) {
			e.printStackTrace();
		}
	}
}
</pre>

<!-- Compile & run commands:
javac -classpath ..\lib\lpsolve55j.jar Demo.java
java -cp .;..\lib\lpsolve55j.jar Demo
-->

<p>When this is run, the following is shown on screen:</p>

<pre>
Objective value: 6315.625
x: 21.875000000000007
y: 53.12499999999999
</pre>

<p>And a file model.lp is created with the following contents:</p>

<pre>
/* Objective function */
max: +143 x +60 y;

/* Constraints */
+120 x +210 y &lt;= 15000;
+110 x +30 y &lt;= 4000;
+x +y &lt;= 75;
</pre>

<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>

<p>Also note that the API names in Java are a bit different than in the native lpsolve API and the lp argument
is not there.
See the lpsolve Java wrapper documentation for more details.</p>

<a name="Delphi, Free Pascal"></a>
<h4><u>Delphi, Free Pascal</u></h4>

<p>The example model can be formulated as follows in Delphi or Free Pascal:</p>

<pre>
program demo;

{$APPTYPE CONSOLE}

uses
  SysUtils,
  lpsolve;

var
  Ncol, j, ret: integer;
  colno: PIntArray;
  row: PFloatArray;
  lp: THandle;

begin
  ret := 0;
  colno := nil;
  row := nil;

  (* We will build the model row by row
     So we start with creating a model with 0 rows and 2 columns *)
  Ncol := 2; (* there are two variables in the model *)
  lp := make_lp(0, Ncol);
  if (lp = 0) then
    ret := 1; (* couldn't construct a new model... *)
  (* let us name our variables. Not required, but can be usefull for debugging *)
  set_col_name(lp, 1, 'x');
  set_col_name(lp, 2, 'y');

  if (ret = 0) then
  begin
    (* create space large enough for one row *)
    GetMem(colno, SizeOf(integer) * Ncol);
    GetMem(row, SizeOf(double) * Ncol);
    if ((colno = nil) or (row = nil)) then
      ret := 2;
  end;

  if (ret = 0) then
  begin
    set_add_rowmode(lp, true);  (* makes building the model faster if it is done rows by row *)

    (* construct first row (120 x + 210 y &lt;= 15000) *)
    j := 0;

    colno^[j] := 1; (* first column *)
    row^[j] := 120;
    j := j + 1;

    colno^[j] := 2; (* second column *)
    row^[j] := 210;
    j := j + 1;

    (* add the row to lp_solve *)
    if (not add_constraintex(lp, j, row, colno, LE, 15000)) then
      ret := 3;
  end;

  if (ret = 0) then
  begin
    (* construct second row (110 x + 30 y &lt;= 4000) *)
    j := 0;

    colno^[j] := 1; (* first column *)
    row^[j] := 110;
    j := j + 1;

    colno^[j] := 2; (* second column *)
    row^[j] := 30;
    j := j + 1;

    (* add the row to lp_solve *)
    if (not add_constraintex(lp, j, row, colno, LE, 4000)) then
      ret := 3;
  end;

  if (ret = 0) then
  begin
    (* construct third row (x + y &lt;= 75) *)
    j := 0;

    colno^[j] := 1; (* first column *)
    row^[j] := 1;
    j := j + 1;

    colno^[j] := 2; (* second column *)
    row^[j] := 1;
    j := j + 1;

    (* add the row to lp_solve *)
    if (not add_constraintex(lp, j, row, colno, LE, 75)) then
      ret := 3;
  end;

  if (ret = 0) then
  begin
    set_add_rowmode(lp, false); (* rowmode should be turned off again when done building the model *)

    (* set the objective function (143 x + 60 y) *)
    j := 0;

    colno^[j] := 1; (* first column *)
    row^[j] := 143;
    j := j + 1;

    colno^[j] := 2; (* second column *)
    row^[j] := 60;
    j := j + 1;

    (* set the objective in lp_solve *)
    if (not set_obj_fnex(lp, j, row, colno)) then
      ret := 4;
  end;

  if (ret = 0) then
  begin
    (* set the object direction to maximize *)
    set_maxim(lp);

    (* just out of curioucity, now show the model in lp format *)
    write_lp(lp, 'model.lp');

    (* I only want to see importand messages on screen while solving *)
    set_verbose(lp, IMPORTANT);

    (* Now let lp_solve calculate a solution *)
    ret := solve(lp);
    if (ret = OPTIMAL) then
      ret := 0
    else
      ret := 5;
  end;

  if (ret = 0) then
  begin
    (* a solution is calculated, now lets get some results *)

    (* objective value *)
    writeln(format('Objective value: %f', [get_objective(lp)]));

    (* variable values *)
    get_variables(lp, row);
    for j := 0 to Ncol-1 do
      writeln(format('%s: %f', [get_col_name(lp, j + 1), row^[j]]));

    (* we are done now *)
  end;

  (* free allocated memory *)
  if (row &lt;&gt; nil) then
    FreeMem(row);
  if (colno &lt;&gt; nil) then
    FreeMem(colno);

  if(lp &lt;&gt; 0) then
  begin
    (* clean up such that all used memory by lp_solve is freeed *)
    delete_lp(lp);
  end;
end.
</pre>

<p>When this is run, the following is shown:</p>

<pre>
Objective value: 6315.63
x: 21.88
y: 53.12
</pre>

<p>And a file model.lp is created with the following contents:</p>

<pre>
/* Objective function */
max: +143 x +60 y;

/* Constraints */
+120 x +210 y &lt;= 15000;
+110 x +30 y &lt;= 4000;
+x +y &lt;= 75;
</pre>

<p>Note that a unit lpsolve.pas+lpsolve.inc is needed for this to work.
This is available via the Delphi example.</p>

<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>

<a name="VB, VBScript"></a>
<h4><u>VB, VBScript</u></h4>

<p>The example model can be formulated as follows in VB or VBScript:</p>

<pre>
Option Explicit

'demo

Private lpsolve As lpsolve55

Sub Main()

    Set lpsolve = New lpsolve55

    lpsolve.Init "."

    Demo

    Set lpsolve = Nothing

End Sub

Private Function Demo() As Integer
    Dim lp As Long
    Dim Ncol As Long, colno() As Long
    Dim j As Integer, ret As Integer
    Dim row() As Double

    With lpsolve
        ' We will build the model row by row
        ' So we start with creating a model with 0 rows and 2 columns
        Ncol = 2 ' there are two variables in the model
        lp = .make_lp(0, Ncol)
        If lp = 0 Then
            ret = 1 ' couldn't construct a new model...
        End If

        If ret = 0 Then
            ' let us name our variables. Not required, but can be useful for debugging
            .set_col_name lp, 1, "x"
            .set_col_name lp, 2, "y"
            ' create space large enough for one row
            ReDim colno(0 To Ncol - 1)
            ReDim row(0 To Ncol - 1)
        End If

        If ret = 0 Then
            .set_add_rowmode lp, True  ' makes building the model faster if it is done rows by row

            ' construct first row (120 x + 210 y &lt;= 15000)
            j = 0

            colno(j) = 1  ' first column
            row(j) = 120
            j = j + 1

            colno(j) = 2 ' second column
            row(j) = 210
            j = j + 1

            ' add the row to lpsolve
            If .add_constraintex(lp, j, row(0), colno(0), LE, 15000) = False Then
                ret = 3
            End If
        End If

        If ret = 0 Then
            ' construct second row (110 x + 30 y &lt;= 4000)
            j = 0

            colno(j) = 1 ' first column
            row(j) = 110
            j = j + 1

            colno(j) = 2 ' second column
            row(j) = 30
            j = j + 1

            ' add the row to lpsolve
            If .add_constraintex(lp, j, row(0), colno(0), LE, 4000) = False Then
                ret = 3
            End If
        End If

        If ret = 0 Then
            ' construct third row (x + y &lt;= 75)
            j = 0

            colno(j) = 1 ' first column
            row(j) = 1
            j = j + 1

            colno(j) = 2 ' second column
            row(j) = 1
            j = j + 1

            ' add the row to lpsolve
            If .add_constraintex(lp, j, row(0), colno(0), LE, 75) = False Then
                ret = 3
            End If
        End If

        If ret = 0 Then
            .set_add_rowmode lp, False ' rowmode should be turned off again when done building the model

            ' set the objective function (143 x + 60 y)
            j = 0

            colno(j) = 1 ' first column
            row(j) = 143
            j = j + 1

            colno(j) = 2 ' second column
            row(j) = 60
            j = j + 1

            ' set the objective in lpsolve
            If .set_obj_fnex(lp, j, row(0), colno(0)) = False Then
                ret = 4
            End If
        End If

        If ret = 0 Then
            ' set the object direction to maximize
            .set_maxim lp

            ' just out of curioucity, now show the model in lp format on screen
            ' this only works if this is a console application. If not, use write_lp and a filename
            .write_lp lp, "model.lp"

            ' I only want to see important messages on screen while solving
            .set_verbose lp, 3

            ' Now let lpsolve calculate a solution
            ret = .solve(lp)
            If ret = OPTIMAL Then
                ret = 0
            Else
                ret = 5
            End If
        End If

        If ret = 0 Then
            ' a solution is calculated, now lets get some results

            ' objective value
            Debug.Print "Objective value: " & .get_objective(lp)

            ' variable values
            .get_variables lp, row(0)
            For j = 1 To Ncol
                Debug.Print .get_col_name(lp, j) & ": " & row(j - 1)
            Next

            ' we are done now
        End If

        ' free allocated memory
        Erase row
        Erase colno

        If lp &lt;&gt; 0 Then
            ' clean up such that all used memory by lpsolve is freed
            .delete_lp lp
        End If

        Demo = ret
    End With

End Function
</pre>

<p>When this is run, the following is shown in the debug window:</p>

<pre>
Objective value: 6315.625
x: 21.875
y: 53.125
</pre>

<p>And a file model.lp is created with the following contents:</p>

<pre>
/* Objective function */
max: +143 x +60 y;

/* Constraints */
+120 x +210 y &lt;= 15000;
+110 x +30 y &lt;= 4000;
+x +y &lt;= 75;
</pre>

<p>Note that a class lpsolve55.cls or the lpsolve55 COM object is needed for this to work.
The class is available via the VB example and the COM object is also available.</p>

<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>

<a name="VB.NET"></a>
<h4><u>VB.NET</u></h4>

<p>The example model can be formulated as follows in VB.NET:</p>

<pre>
Option Strict Off
Option Explicit On
Module Module1

  'demo

  Private lpsolve As lpsolve55

  Public Sub Main()

    lpsolve = New lpsolve55

    lpsolve.Init(".")

    Demo()

    lpsolve = Nothing

  End Sub

  Private Function Demo() As Integer
    Dim lp As Integer
    Dim Ncol As Integer
    Dim colno() As Integer
    Dim j, ret As Short
    Dim row() As Double

    With lpsolve
      ' We will build the model row by row
      ' So we start with creating a model with 0 rows and 2 columns
      Ncol = 2 ' there are two variables in the model
      lp = .make_lp(0, Ncol)
      If lp = 0 Then
        ret = 1 ' couldn't construct a new model...
      End If

      If ret = 0 Then
        ' let us name our variables. Not required, but can be useful for debugging
        .set_col_name(lp, 1, "x")
        .set_col_name(lp, 2, "y")
        ' create space large enough for one row
        ReDim colno(Ncol - 1)
        ReDim row(Ncol - 1)
      End If

      If ret = 0 Then
        .set_add_rowmode(lp, True) ' makes building the model faster if it is done rows by row

        ' construct first row (120 x + 210 y &lt;= 15000)
        j = 0

        colno(j) = 1 ' first column
        row(j) = 120
        j = j + 1

        colno(j) = 2 ' second column
        row(j) = 210
        j = j + 1

        ' add the row to lpsolve
        If .add_constraintex(lp, j, row(0), colno(0), lpsolve55.lpsolve_constr_types.LE, 15000) = False Then
          ret = 3
        End If
      End If

      If ret = 0 Then
        ' construct second row (110 x + 30 y &lt;= 4000)
        j = 0

        colno(j) = 1 ' first column
        row(j) = 110
        j = j + 1

        colno(j) = 2 ' second column
        row(j) = 30
        j = j + 1

        ' add the row to lpsolve
        If .add_constraintex(lp, j, row(0), colno(0), lpsolve55.lpsolve_constr_types.LE, 4000) = False Then
          ret = 3
        End If
      End If

      If ret = 0 Then
        ' construct third row (x + y &lt;= 75)
        j = 0

        colno(j) = 1 ' first column
        row(j) = 1
        j = j + 1

        colno(j) = 2 ' second column
        row(j) = 1
        j = j + 1

        ' add the row to lpsolve
        If .add_constraintex(lp, j, row(0), colno(0), lpsolve55.lpsolve_constr_types.LE, 75) = False Then
          ret = 3
        End If
      End If

      If ret = 0 Then
        .set_add_rowmode(lp, False) ' rowmode should be turned off again when done building the model

        ' set the objective function (143 x + 60 y)
        j = 0

        colno(j) = 1 ' first column
        row(j) = 143
        j = j + 1

        colno(j) = 2 ' second column
        row(j) = 60
        j = j + 1

        ' set the objective in lpsolve
        If .set_obj_fnex(lp, j, row(0), colno(0)) = False Then
          ret = 4
        End If
      End If

      If ret = 0 Then
        ' set the object direction to maximize
        .set_maxim(lp)

        ' just out of curioucity, now show the model in lp format on screen
        ' this only works if this is a console application. If not, use write_lp and a filename
        .write_lp(lp, "model.lp")

        ' I only want to see important messages on screen while solving
        .set_verbose(lp, 3)

        ' Now let lpsolve calculate a solution
        ret = .solve(lp)
        If ret = lpsolve55.lpsolve_return.OPTIMAL Then
          ret = 0
        Else
          ret = 5
        End If
      End If

      If ret = 0 Then
        ' a solution is calculated, now lets get some results

        ' objective value
        System.Diagnostics.Debug.WriteLine("Objective value: " & .get_objective(lp))

        ' variable values
        .get_variables(lp, row(0))
        For j = 1 To Ncol
          System.Diagnostics.Debug.WriteLine(.get_col_name(lp, j) & ": " & row(j - 1))
        Next

        ' we are done now
      End If

      ' free allocated memory
      Erase row
      Erase colno

      If lp &lt;&gt; 0 Then
        ' clean up such that all used memory by lpsolve is freed
        .delete_lp(lp)
      End If

      Demo = ret
    End With

  End Function
End Module
</pre>

<p>When this is run, the following is shown in the debug window:</p>

<pre>
Objective value: 6315.625
x: 21.875
y: 53.125
</pre>

<p>And a file model.lp is created with the following contents:</p>

<pre>
/* Objective function */
max: +143 x +60 y;

/* Constraints */
+120 x +210 y &lt;= 15000;
+110 x +30 y &lt;= 4000;
+x +y &lt;= 75;
</pre>

<p>Note that a class lpsolve55.vb is needed for this to work.
The class is available via the VB.NET example.</p>

<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>

<a name="CS.NET"></a>
<h4><u>C#.NET</u></h4>

<p>The example model can be formulated as follows in C#.NET:</p>

<pre>
using System.Windows.Forms;
using lpsolve55;

/* demo.cs */

namespace demo
{
  public class demo
  {
    public static void Main()
    {
      lpsolve.Init(".");

      Demo();
    }

    private static int Demo()
    {
      int lp;
      int Ncol;
      int[] colno;
      int j, ret = 0;
      double[] row;

      /* We will build the model row by row */
      /* So we start with creating a model with 0 rows and 2 columns */
      Ncol = 2; /* there are two variables in the model */
      lp = lpsolve.make_lp(0, Ncol);
      if (lp == 0)
        ret = 1; /* couldn't construct a new model... */

      if (ret == 0) {
        /* let us name our variables. Not required, but can be useful for debugging */
        lpsolve.set_col_name(lp, 1, "x");
        lpsolve.set_col_name(lp, 2, "y");
      }

      /* create space large enough for one row */
      colno = new int[Ncol];
      row = new double[Ncol];

      if (ret == 0) {
        lpsolve.set_add_rowmode(lp, true); /* makes building the model faster if it is done rows by row */

        /* construct first row (120 x + 210 y &lt;= 15000) */
        j = 0;

        colno[j] = 1; /* first column */
        row[j++] = 120;

        colno[j] = 2; /* second column */
        row[j++] = 210;

        /* add the row to lpsolve */
        if (lpsolve.add_constraintex(lp, j, ref row[0], ref colno[0], lpsolve.lpsolve_constr_types.LE, 15000) == false)
          ret = 3;
      }

      if (ret == 0) {
        /* construct second row (110 x + 30 y &lt;= 4000) */
        j = 0;

        colno[j] = 1; /* first column */
        row[j++] = 110;

        colno[j] = 2; /* second column */
        row[j++] = 30;

        /* add the row to lpsolve */
        if (lpsolve.add_constraintex(lp, j, ref row[0], ref colno[0], lpsolve.lpsolve_constr_types.LE, 4000) == false)
          ret = 3;
      }

      if (ret == 0) {
        /* construct third row (x + y &lt;= 75) */
        j = 0;

        colno[j] = 1; /* first column */
        row[j++] = 1;

        colno[j] = 2; /* second column */
        row[j++] = 1;

        /* add the row to lpsolve */
        if (lpsolve.add_constraintex(lp, j, ref row[0], ref colno[0], lpsolve.lpsolve_constr_types.LE, 75) == false)
          ret = 3;
      }

      if (ret == 0) {
        lpsolve.set_add_rowmode(lp, false); /* rowmode should be turned off again when done building the model */

        /* set the objective function (143 x + 60 y) */
        j = 0;

        colno[j] = 1; /* first column */
        row[j++] = 143;

        colno[j] = 2; /* second column */
        row[j++] = 60;

        /* set the objective in lpsolve */
        if (lpsolve.set_obj_fnex(lp, j, ref row[0], ref colno[0]) == false)
          ret = 4;
      }

      if (ret == 0) {
        lpsolve.lpsolve_return s;

        /* set the object direction to maximize */
        lpsolve.set_maxim(lp);

        /* just out of curioucity, now show the model in lp format on screen */
        /* this only works if this is a console application. If not, use write_lp and a filename */
        lpsolve.write_lp(lp, "model.lp");

        /* I only want to see important messages on screen while solving */
        lpsolve.set_verbose(lp, 3);

        /* Now let lpsolve calculate a solution */
        s = lpsolve.solve(lp);
        if (s == lpsolve.lpsolve_return.OPTIMAL)
          ret = 0;
        else
          ret = 5;
      }

      if (ret == 0) {
        /* a solution is calculated, now lets get some results */

        /* objective value */
        System.Diagnostics.Debug.WriteLine("Objective value: " + lpsolve.get_objective(lp));

        /* variable values */
        lpsolve.get_variables(lp, ref row[0]);
        for(j = 0; j &lt; Ncol; j++)
          System.Diagnostics.Debug.WriteLine(lpsolve.get_col_name(lp, j + 1) + ": " + row[j]);

        /* we are done now */
      }

      /* free allocated memory */

      if (lp != 0) {
        /* clean up such that all used memory by lpsolve is freed */
        lpsolve.delete_lp(lp);
      }

      return(ret);
    } //Demo
  }
}
</pre>

<p>When this is run, the following is shown in the debug window:</p>

<pre>
Objective value: 6315.625
x: 21.875
y: 53.125
</pre>

<p>And a file model.lp is created with the following contents:</p>

<pre>
/* Objective function */
max: +143 x +60 y;

/* Constraints */
+120 x +210 y &lt;= 15000;
+110 x +30 y &lt;= 4000;
+x +y &lt;= 75;
</pre>

<p>Note that a class lpsolve55.cs is needed for this to work.
The class is available via the CS.NET example.</p>

<p>Note that this example is very limited. It is also possible to set bounds on variables, ranges on constraints,
define variables as integer, get more result information, changing solver options and parameters and much more.
See <a href="lp_solveAPIreference.htm">lp_solve API reference</a> for an overview of the API to do this.</p>

	</BODY>
</html>