File: lrcalc.maple.src

package info (click to toggle)
lrcalc 1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,680 kB
  • ctags: 449
  • sloc: sh: 11,110; ansic: 3,092; makefile: 27
file content (298 lines) | stat: -rw-r--r-- 5,824 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#  Littlewood-Richardson Calculator
#  Copyright (C) 1999- Anders S. Buch (asbuch at math rutgers edu)
#  See the file LICENSE for license information.

tos := proc(expr)
  local i, res, term, base, expo;

  if _iss(expr) then
    i := _partlen(expr);
    if i = 0 then
      RETURN(1);
    else
      RETURN(s[op(1..i, expr)]);
    fi;

  elif type(expr, `+`) then
    res := 0;
    for term in expr do
      res := res + tos(term);
    od;
    RETURN(res);

  elif type(expr, `*`) then
    res := tos(op(1, expr));

    for i from 2 to nops(expr) do
      res := _mults2(res * tos(op(i, expr)));
    od;
    RETURN(res);

  elif type(expr, `^`) then
    base := tos(op(1, expr));
    expo := expand(op(2, expr));

    if type(expo, integer) then
      if expo > 1 then
        while expo mod 2 = 0 do
          base := _mults2(base^2);
          expo := expo / 2;
        od;

	res := base;
        expo := expo - 1;

        # return  res * base ^ expo
        while expo > 0 do
          base := _mults2(base^2);
          expo := expo / 2;
          if expo mod 2 = 1 then
            res := _mults2(res * base);
            expo := expo - 1;
          fi;
        od;

        RETURN(res);
      fi;
    fi;
    RETURN(base^expo);

  elif type(expr, list) then
    RETURN([seq(tos(expr[i]), i=1..nops(expr))]);

  elif type(expr, set) then
    RETURN({seq(tos(expr[i]), i=1..nops(expr))});

  else
    RETURN(expr);
  fi;

  0$0;
end:


skew := proc(expr, shape)
  local ee, sh, res, term, tt, s_part, c_part, fac;

  if not (type(shape, list) or _iss(shape)) then
    ERROR(`second argument must be a partition`, shape);
  fi;
  ee := tos(expr);
  
  sh := _partlen(shape);
  if sh = 0 then
    RETURN(ee);
  fi;
  sh := s[op(1..sh, shape)];

  if not type(ee, `+`) then
    ee := [ee];
  fi;

  res := 0;
  for term in ee do
    if type(term, `*`) then
      tt := term;
    else
      tt := [term];
    fi;

    s_part := 1;
    c_part := 1;
    for fac in tt do
      if _iss(fac) then
        s_part := s_part * fac;
      else
        c_part := c_part * fac;
      fi;
    od;

    if _iss(s_part) then
      if sh = s_part then
        res := res + c_part;
      elif _subpart(sh, s_part) then
        res := res + expand(c_part * _call_lrskew(s_part, sh));
      fi;
    fi;
  od;

  RETURN(res);
end:


lrcoef := proc(outer, inner1, inner2)
  local cmd, fd, res, i;

  cmd := cat(LRCALC_BIN_PATH, ` coef `,
             seq(cat(` `, op(i,outer)), i=1..nops(outer)), ` -`,
             seq(cat(` `, op(i,inner1)), i=1..nops(inner1)), ` -`,
             seq(cat(` `, op(i,inner2)), i=1..nops(inner2)));

  fd := process[popen](cmd, READ);
  res := readline(fd);
  process[pclose](fd);

  RETURN(parse(res));
end:


_iss := proc(expr)
  if not type(expr, indexed) then
    RETURN(false);
  fi;
  RETURN(evalb(op(0, expr) = `s`));
end:


_mults2 := proc(expr)
  local ee, res, term, tt, s_part, c_part, fac, base, expo;

  ee := expand(expr);
  if not type(ee, `+`) then
    ee := [ee];
  fi;

  res := 0;
  for term in ee do
    if type(term, `*`) then
      tt := term;
    else
      tt := [term];
    fi;

    s_part := 1;
    c_part := 1;
    for fac in tt do
      if _iss(fac) then
        if type(s_part, integer) then
          s_part := fac;
        elif _cmppart(s_part, fac) <= 0 then
          s_part := _call_lrmult(s_part, fac);
        else
          s_part := _call_lrmult(fac, s_part);
        fi;

      elif type(fac, `^`) then
        base := op(1, fac);
        expo := op(2, fac);
        if _iss(base) and expo = 2 then
          s_part := s_part * _call_lrmult(base, base);
        else
          c_part := c_part * fac;
        fi;

      else
        c_part := c_part * fac;
      fi;
    od;

    res := res + expand(c_part * s_part);
  od;

  RETURN(res);
end:


# quantum(rows, cols) and QUANTUM_OPTS are for doing calculations in 
# the quantum cohomology ring of Gr(d,n) where d=rows and n=rows+cols, 
# rather than the ring of symmetric functions.

quantum := proc(rows, cols)
  global QUANTUM_OPTS;
  if rows <= 0 or cols <= 0 then
    QUANTUM_OPTS := ``;
  else
    QUANTUM_OPTS := cat(` -q`, rows, `,`, cols);
  fi;
  readlib(forget);
  forget(_call_lrmult);
  0$0;
end:

fusion := proc(rows, cols)
  global QUANTUM_OPTS;
  if rows <= 0 or cols <= 0 then
    QUANTUM_OPTS := ``;
  else
    QUANTUM_OPTS := cat(` -f`, rows, `,`, cols);
  fi;
  readlib(forget);
  forget(_call_lrmult);
  0$0;
end:

QUANTUM_OPTS := ``:

_call_lrmult := proc(fac1, fac2)
  option remember;
  local cmd, fd, res, i;
  global QUANTUM_OPTS;

  cmd := cat(LRCALC_BIN_PATH, ` mult -m`, QUANTUM_OPTS,
             seq(cat(` `, op(i,fac1)), i=1..nops(fac1)), ` -`, 
             seq(cat(` `, op(i,fac2)), i=1..nops(fac2)));

  fd := process[popen](cmd, READ);
  res := readline(fd);
  process[pclose](fd);

  RETURN(parse(res));
end:


_call_lrskew := proc(outer, inner)
  option remember;
  local cmd, fd, res, i;

  cmd := cat(LRCALC_BIN_PATH, ` skew -m`,
             seq(cat(` `, op(i,outer)), i=1..nops(outer)), ` /`,
             seq(cat(` `, op(i,inner)), i=1..nops(inner)));

  fd := process[popen](cmd, READ);
  res := readline(fd);
  process[pclose](fd);

  RETURN(parse(res));
end:


_partlen := proc(lambda)
  local n;
  n := nops(lambda);
  while n > 0 and op(n,lambda) = 0 do n := n - 1; od;
  RETURN(n);
end:


_cmppart := proc(p1, p2)
  local n;
  n := nops(p1);
  if n <> nops(p2) then
    RETURN(n - nops(p2));
  fi;
  while n > 0 do
    if op(n, p1) <> op(n, p2) then
      RETURN(op(n, p1) - op(n, p2));
    fi;
    n := n - 1;
  od;
  RETURN(0);
end:


_subpart := proc(p1, p2)
  local n;
  n := _partlen(p1);
  if n > nops(p2) then
    RETURN(false);
  fi;
  while n > 0 do
    if op(n, p1) > op(n, p2) then
      RETURN(false);
    fi;
    n := n - 1;
  od;
  RETURN(true);
end: