1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
|
/* lrsmp.c library code for lrs extended precision arithmetic */
/* Version 4.0c, August 26, 2009 */
/* minor change to check result of fscanf */
/* Copyright: David Avis 1999, avis@cs.mcgill.ca */
/* This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/******************************************************************/
/* digit overflow is caught by digits_overflow at the end of this */
/* file, make sure it is either user supplied or uncomment */
/* the define below */
/******************************************************************/
#define digits_overflow() lrs_default_digits_overflow()
#include <stdio.h>
#include <string.h>
#include "lrsmp.h"
/*********************************************************/
/* Initialization and allocation procedures - must use! */
/******************************************************* */
long
lrs_mp_init (long dec_digits, FILE * fpin, FILE * fpout)
/* max number of decimal digits for the computation */
{
/* global variables lrs_ifp and lrs_ofp are file pointers for input and output */
lrs_ifp = fpin;
lrs_ofp = fpout;
lrs_record_digits = 0;
if (dec_digits <= 0)
dec_digits = DEFAULT_DIGITS;
lrs_digits = DEC2DIG (dec_digits); /* max permitted no. of digits */
if (lrs_digits > MAX_DIGITS)
{
fprintf (lrs_ofp, "\nDigits must be at most %ld\nChange MAX_DIGITS and recompile\n",
DIG2DEC (MAX_DIGITS));
lrs_digits = MAX_DIGITS;
return FALSE;
}
return TRUE;
}
lrs_mp_t
lrs_alloc_mp_t ()
/* dynamic allocation of lrs_mp number */
{
lrs_mp_t p;
p=(long *)calloc (lrs_digits+1, sizeof (long));
return p;
}
lrs_mp_vector
lrs_alloc_mp_vector (long n)
/* allocate lrs_mp_vector for n+1 lrs_mp numbers */
{
lrs_mp_vector p;
long i;
p = CALLOC ((n + 1), sizeof (lrs_mp *));
for (i = 0; i <= n; i++)
p[i] = CALLOC (1, sizeof (lrs_mp));
return p;
}
void
lrs_clear_mp_vector (lrs_mp_vector p, long n)
/* free space allocated to p */
{
long i;
for (i=0; i<=n; i++)
free (p[i] );
free (p);
}
lrs_mp_matrix
lrs_alloc_mp_matrix (long m, long n)
/* allocate lrs_mp_matrix for m+1 x n+1 lrs_mp numbers */
{
lrs_mp_matrix a;
long *araw;
int mp_width, row_width;
int i, j;
mp_width = lrs_digits + 1;
row_width = (n + 1) * mp_width;
araw = calloc ((m + 1) * row_width, sizeof (long));
a = calloc ((m + 1), sizeof (lrs_mp_vector));
for (i = 0; i < m + 1; i++)
{
a[i] = calloc ((n + 1), sizeof (lrs_mp *));
for (j = 0; j < n + 1; j++)
a[i][j] = (araw + i * row_width + j * mp_width);
}
return a;
}
void
lrs_clear_mp_matrix (lrs_mp_matrix p, long m, long n)
/* free space allocated to lrs_mp_matrix p */
{
long i;
/* p[0][0] is araw, the actual matrix storage address */
free(p[0][0]);
for (i = 0; i < m + 1; i++)
free (p[i]);
free(p);
}
/*********************************************************/
/* Core library functions - depend on mp implementation */
/******************************************************* */
void
copy (lrs_mp a, lrs_mp b) /* assigns a=b */
{
long i;
for (i = 0; i <= length (b); i++)
a[i] = b[i];
}
/********************************************************/
/* Divide two multiple precision integers (c=a/b). */
/* a is destroyed and contains the remainder on return. */
/* From Knuth Vol.2 SemiNumerical Algorithms */
/* coded by J. Quinn */
/********************************************************/
void
divint (lrs_mp a, lrs_mp b, lrs_mp c) /* c=a/b, a contains remainder on return */
{
long cy, la, lb, lc, d1, s, t, sig;
long i, j, qh;
/* figure out and save sign, do everything with positive numbers */
sig = sign (a) * sign (b);
la = length (a);
lb = length (b);
lc = la - lb + 2;
if (la < lb)
{
storelength (c, TWO);
storesign (c, POS);
c[1] = 0;
normalize (c);
return;
}
for (i = 1; i < lc; i++)
c[i] = 0;
storelength (c, lc);
storesign (c, (sign (a) == sign (b)) ? POS : NEG);
/******************************/
/* division by a single word: */
/* do it directly */
/******************************/
if (lb == 2)
{
cy = 0;
t = b[1];
for (i = la - 1; i > 0; i--)
{
cy = cy * BASE + a[i];
a[i] = 0;
cy -= (c[i] = cy / t) * t;
}
a[1] = cy;
storesign (a, (cy == 0) ? POS : sign (a));
storelength (a, TWO);
/* set sign of c to sig (**mod**) */
storesign (c, sig);
normalize (c);
return;
}
else
{
/* mp's are actually DIGITS+1 in length, so if length of a or b = */
/* DIGITS, there will still be room after normalization. */
/****************************************************/
/* Step D1 - normalize numbers so b > floor(BASE/2) */
d1 = BASE / (b[lb - 1] + 1);
if (d1 > 1)
{
cy = 0;
for (i = 1; i < la; i++)
{
cy = (a[i] = a[i] * d1 + cy) / BASE;
a[i] %= BASE;
}
a[i] = cy;
cy = 0;
for (i = 1; i < lb; i++)
{
cy = (b[i] = b[i] * d1 + cy) / BASE;
b[i] %= BASE;
}
b[i] = cy;
}
else
{
a[la] = 0; /* if la or lb = DIGITS this won't work */
b[lb] = 0;
}
/*********************************************/
/* Steps D2 & D7 - start and end of the loop */
for (j = 0; j <= la - lb; j++)
{
/*************************************/
/* Step D3 - determine trial divisor */
if (a[la - j] == b[lb - 1])
qh = BASE - 1;
else
{
s = (a[la - j] * BASE + a[la - j - 1]);
qh = s / b[lb - 1];
while (qh * b[lb - 2] > (s - qh * b[lb - 1]) * BASE + a[la - j - 2])
qh--;
}
/*******************************************************/
/* Step D4 - divide through using qh as quotient digit */
cy = 0;
for (i = 1; i <= lb; i++)
{
s = qh * b[i] + cy;
a[la - j - lb + i] -= s % BASE;
cy = s / BASE;
if (a[la - j - lb + i] < 0)
{
a[la - j - lb + i] += BASE;
cy++;
}
}
/*****************************************************/
/* Step D6 - adjust previous step if qh is 1 too big */
if (cy)
{
qh--;
cy = 0;
for (i = 1; i <= lb; i++) /* add a back in */
{
a[la - j - lb + i] += b[i] + cy;
cy = a[la - j - lb + i] / BASE;
a[la - j - lb + i] %= BASE;
}
}
/***********************************************************************/
/* Step D5 - write final value of qh. Saves calculating array indices */
/* to do it here instead of before D6 */
c[la - lb - j + 1] = qh;
}
/**********************************************************************/
/* Step D8 - unnormalize a and b to get correct remainder and divisor */
for (i = lc; c[i - 1] == 0 && i > 2; i--); /* strip excess 0's from quotient */
storelength (c, i);
if (i == 2 && c[1] == 0)
storesign (c, POS);
cy = 0;
for (i = lb - 1; i >= 1; i--)
{
cy = (a[i] += cy * BASE) % d1;
a[i] /= d1;
}
for (i = la; a[i - 1] == 0 && i > 2; i--); /* strip excess 0's from quotient */
storelength (a, i);
if (i == 2 && a[1] == 0)
storesign (a, POS);
if (cy)
fprintf (lrs_ofp, "divide error");
for (i = lb - 1; i >= 1; i--)
{
cy = (b[i] += cy * BASE) % d1;
b[i] /= d1;
}
}
}
/* end of divint */
void
gcd (lrs_mp u, lrs_mp v) /*returns u=gcd(u,v) destroying v */
/*Euclid's algorithm. Knuth, II, p.320
modified to avoid copies r=u,u=v,v=r
Switches to single precision when possible for greater speed */
{
lrs_mp r;
unsigned long ul, vl;
long i;
static unsigned long maxspval = MAXD; /* Max value for the last digit to guarantee */
/* fitting into a single long integer. */
static long maxsplen; /* Maximum digits for a number that will fit */
/* into a single long integer. */
static long firstime = TRUE;
if (firstime) /* initialize constants */
{
for (maxsplen = 2; maxspval >= BASE; maxsplen++)
maxspval /= BASE;
firstime = FALSE;
}
if (greater (v, u))
goto bigv;
bigu:
if (zero (v))
return;
if ((i = length (u)) < maxsplen || (i == maxsplen && u[maxsplen - 1] < maxspval))
goto quickfinish;
divint (u, v, r);
normalize (u);
bigv:
if (zero (u))
{
copy (u, v);
return;
}
if ((i = length (v)) < maxsplen || (i == maxsplen && v[maxsplen - 1] < maxspval))
goto quickfinish;
divint (v, u, r);
normalize (v);
goto bigu;
/* Base 10000 only at the moment */
/* when u and v are small enough, transfer to single precision integers */
/* and finish with euclid's algorithm, then transfer back to lrs_mp */
quickfinish:
ul = vl = 0;
for (i = length (u) - 1; i > 0; i--)
ul = BASE * ul + u[i];
for (i = length (v) - 1; i > 0; i--)
vl = BASE * vl + v[i];
if (ul > vl)
goto qv;
qu:
if (!vl)
{
for (i = 1; ul; i++)
{
u[i] = ul % BASE;
ul = ul / BASE;
}
storelength (u, i);
return;
}
ul %= vl;
qv:
if (!ul)
{
for (i = 1; vl; i++)
{
u[i] = vl % BASE;
vl = vl / BASE;
}
storelength (u, i);
return;
}
vl %= ul;
goto qu;
}
long
compare (lrs_mp a, lrs_mp b) /* a ? b and returns -1,0,1 for <,=,> */
{
long i;
if (a[0] > b[0])
return 1L;
if (a[0] < b[0])
return -1L;
for (i = length (a) - 1; i >= 1; i--)
{
if (a[i] < b[i])
{
if (sign (a) == POS)
return -1L;
else
return 1L;
}
if (a[i] > b[i])
{
if (sign (a) == NEG)
return -1L;
else
return 1L;
}
}
return 0L;
}
long
greater (lrs_mp a, lrs_mp b) /* tests if a > b and returns (TRUE=POS) */
{
long i;
if (a[0] > b[0])
return (TRUE);
if (a[0] < b[0])
return (FALSE);
for (i = length (a) - 1; i >= 1; i--)
{
if (a[i] < b[i])
{
if (sign (a) == POS)
return (0);
else
return (1);
}
if (a[i] > b[i])
{
if (sign (a) == NEG)
return (0);
else
return (1);
}
}
return (0);
}
void
itomp (long in, lrs_mp a)
/* convert integer i to multiple precision with base BASE */
{
long i;
a[0] = 2; /* initialize to zero */
for (i = 1; i < lrs_digits; i++)
a[i] = 0;
if (in < 0)
{
storesign (a, NEG);
in = in * (-1);
}
i = 0;
while (in != 0)
{
i++;
a[i] = in - BASE * (in / BASE);
in = in / BASE;
storelength (a, i + 1);
}
} /* end of itomp */
void
linint (lrs_mp a, long ka, lrs_mp b, long kb) /*compute a*ka+b*kb --> a */
/***Handbook of Algorithms and Data Structures P.239 ***/
{
long i, la, lb;
la = length (a);
lb = length (b);
for (i = 1; i < la; i++)
a[i] *= ka;
if (sign (a) != sign (b))
kb = (-kb);
if (lb > la)
{
storelength (a, lb);
for (i = la; i < lb; i++)
a[i] = 0;
}
for (i = 1; i < lb; i++)
a[i] += kb * b[i];
normalize (a);
}
/***end of linint***/
void
mptodouble (lrs_mp a, double *x) /* convert lrs_mp to double */
{
long i, la;
double y = 1.0;
(*x) = 0;
la = length (a);
for (i = 1; i < la; i++)
{
(*x) = (*x) + y * a[i];
y = y * BASE;
}
if (negative (a))
(*x)= -(*x);
}
void
mulint (lrs_mp a, lrs_mp b, lrs_mp c) /* multiply two integers a*b --> c */
/***Handbook of Algorithms and Data Structures, p239 ***/
{
long nlength, i, j, la, lb;
/*** b and c may coincide ***/
la = length (a);
lb = length (b);
nlength = la + lb - 2;
if (nlength > lrs_digits)
digits_overflow ();
for (i = 0; i < la - 2; i++)
c[lb + i] = 0;
for (i = lb - 1; i > 0; i--)
{
for (j = 2; j < la; j++)
if ((c[i + j - 1] += b[i] * a[j]) >
MAXD - (BASE - 1) * (BASE - 1) - MAXD / BASE)
{
c[i + j - 1] -= (MAXD / BASE) * BASE;
c[i + j] += MAXD / BASE;
}
c[i] = b[i] * a[1];
}
storelength (c, nlength);
storesign (c, sign (a) == sign (b) ? POS : NEG);
normalize (c);
}
/***end of mulint ***/
void
normalize (lrs_mp a)
{
long cy, i, la;
la = length (a);
start:
cy = 0;
for (i = 1; i < la; i++)
{
cy = (a[i] += cy) / BASE;
a[i] -= cy * BASE;
if (a[i] < 0)
{
a[i] += BASE;
cy--;
}
}
while (cy > 0)
{
a[i++] = cy % BASE;
cy /= BASE;
}
if (cy < 0)
{
a[la - 1] += cy * BASE;
for (i = 1; i < la; i++)
a[i] = (-a[i]);
storesign (a, sign (a) == POS ? NEG : POS);
goto start;
}
while (a[i - 1] == 0 && i > 2)
i--;
if (i > lrs_record_digits)
{
if ((lrs_record_digits = i) > lrs_digits)
digits_overflow ();
};
storelength (a, i);
if (i == 2 && a[1] == 0)
storesign (a, POS);
} /* end of normalize */
long
mptoi (lrs_mp a) /* convert lrs_mp to long integer */
{
long len = length (a);
if (len == 2)
return sign (a) * a[1];
if (len == 3)
return sign (a) * (a[1] + BASE * a[2]);
notimpl ("mp to large for conversion to long");
return 0; /* never executed */
}
void
pmp (char name[], lrs_mp a) /*print the long precision integer a */
{
long i;
fprintf (lrs_ofp, "%s", name);
if (sign (a) == NEG)
fprintf (lrs_ofp, "-");
else
fprintf (lrs_ofp, " ");
fprintf (lrs_ofp, "%lu", a[length (a) - 1]);
for (i = length (a) - 2; i >= 1; i--)
fprintf (lrs_ofp, FORMAT, a[i]);
fprintf (lrs_ofp, " ");
}
void
prat (char name[], lrs_mp Nin, lrs_mp Din) /*reduce and print Nin/Din */
{
lrs_mp Nt, Dt;
long i;
fprintf (lrs_ofp, "%s", name);
/* reduce fraction */
copy (Nt, Nin);
copy (Dt, Din);
reduce (Nt, Dt);
/* print out */
if (sign (Nin) * sign (Din) == NEG)
fprintf (lrs_ofp, "-");
else
fprintf (lrs_ofp, " ");
fprintf (lrs_ofp, "%lu", Nt[length (Nt) - 1]);
for (i = length (Nt) - 2; i >= 1; i--)
fprintf (lrs_ofp, FORMAT, Nt[i]);
if (!(Dt[0] == 2 && Dt[1] == 1)) /* rational */
{
fprintf (lrs_ofp, "/");
fprintf (lrs_ofp, "%lu", Dt[length (Dt) - 1]);
for (i = length (Dt) - 2; i >= 1; i--)
fprintf (lrs_ofp, FORMAT, Dt[i]);
}
fprintf (lrs_ofp, " ");
}
void
readmp (lrs_mp a)
/* read an integer and convert to lrs_mp with base BASE */
{
char in[MAXINPUT];
if(fscanf (lrs_ifp, "%s", in)==EOF)
{
fprintf (lrs_ofp, "\nInvalid integer input");
exit(1);
}
atomp (in, a);
}
long
readrat (lrs_mp Na, lrs_mp Da)
/* read a rational or integer and convert to lrs_mp with base BASE */
/* returns true if denominator is not one */
/* returns 999 if premature end of file */
{
char in[MAXINPUT], num[MAXINPUT], den[MAXINPUT];
if(fscanf (lrs_ifp, "%s", in)==EOF)
{
fprintf (lrs_ofp, "\nInvalid rational input");
exit(1);
}
if(!strcmp(in,"end")) /*premature end of input file */
{
return (999L);
}
atoaa (in, num, den); /*convert rational to num/dem strings */
atomp (num, Na);
if (den[0] == '\0')
{
itomp (1L, Da);
return (FALSE);
}
atomp (den, Da);
return (TRUE);
}
void
addint (lrs_mp a, lrs_mp b, lrs_mp c) /* compute c=a+b */
{
copy (c, a);
linint (c, 1, b, 1);
}
void
atomp (char s[], lrs_mp a) /*convert string to lrs_mp integer */
{
lrs_mp mpone;
long diff, ten, i, sig;
itomp (1L, mpone);
ten = 10L;
for (i = 0; s[i] == ' ' || s[i] == '\n' || s[i] == '\t'; i++);
/*skip white space */
sig = POS;
if (s[i] == '+' || s[i] == '-') /* sign */
sig = (s[i++] == '+') ? POS : NEG;
itomp (0L, a);
while (s[i] >= '0' && s[i] <= '9')
{
diff = s[i] - '0';
linint (a, ten, mpone, diff);
i++;
}
storesign (a, sig);
if (s[i])
{
fprintf (stderr, "\nIllegal character in number: '%s'\n", s + i);
exit (1);
}
} /* end of atomp */
void
subint (lrs_mp a, lrs_mp b, lrs_mp c) /* compute c=a-b */
{
copy (c, a);
linint (a, 1, b, -1);
}
void
decint (lrs_mp a, lrs_mp b) /* compute a=a-b */
{
linint (a, 1, b, -1);
}
long
myrandom (long num, long nrange)
/* return a random number in range 0..nrange-1 */
{
long i;
i = (num * 401 + 673) % nrange;
return (i);
}
long
atos (char s[]) /* convert s to integer */
{
long i, j;
j = 0;
for (i = 0; s[i] >= '0' && s[i] <= '9'; ++i)
j = 10 * j + s[i] - '0';
return (j);
}
void
stringcpy (char *s, char *t) /*copy t to s pointer version */
{
while (((*s++) = (*t++)) != '\0');
}
void
rattodouble (lrs_mp a, lrs_mp b, double *x) /* convert lrs_mp rational to double */
{
double y;
mptodouble (a, &y);
mptodouble (b, x);
*x = y / (*x);
}
void
atoaa (char in[], char num[], char den[])
/* convert rational string in to num/den strings */
{
long i, j;
for (i = 0; in[i] != '\0' && in[i] != '/'; i++)
num[i] = in[i];
num[i] = '\0';
den[0] = '\0';
if (in[i] == '/')
{
for (j = 0; in[j + i + 1] != '\0'; j++)
den[j] = in[i + j + 1];
den[j] = '\0';
}
} /* end of atoaa */
void
lcm (lrs_mp a, lrs_mp b)
/* a = least common multiple of a, b; b is preserved */
{
lrs_mp u, v;
copy (u, a);
copy (v, b);
gcd (u, v);
exactdivint (a, u, v); /* v=a/u no remainder*/
mulint (v, b, a);
} /* end of lcm */
void
reducearray (lrs_mp_vector p, long n)
/* find largest gcd of p[0]..p[n-1] and divide through */
{
lrs_mp divisor;
lrs_mp Temp;
long i = 0L;
while ((i < n) && zero (p[i]))
i++;
if (i == n)
return;
copy (divisor, p[i]);
storesign (divisor, POS);
i++;
while (i < n)
{
if (!zero (p[i]))
{
copy (Temp, p[i]);
storesign (Temp, POS);
gcd (divisor, Temp);
}
i++;
}
/* reduce by divisor */
for (i = 0; i < n; i++)
if (!zero (p[i]))
reduceint (p[i], divisor);
} /* end of reducearray */
void
reduceint (lrs_mp Na, lrs_mp Da) /* divide Na by Da and return */
{
lrs_mp Temp;
copy (Temp, Na);
exactdivint (Temp, Da, Na);
}
void
reduce (lrs_mp Na, lrs_mp Da) /* reduces Na Da by gcd(Na,Da) */
{
lrs_mp Nb, Db, Nc, Dc;
copy (Nb, Na);
copy (Db, Da);
storesign (Nb, POS);
storesign (Db, POS);
copy (Nc, Na);
copy (Dc, Da);
gcd (Nb, Db); /* Nb is the gcd(Na,Da) */
exactdivint (Nc, Nb, Na);
exactdivint (Dc, Nb, Da);
}
long
comprod (lrs_mp Na, lrs_mp Nb, lrs_mp Nc, lrs_mp Nd) /* +1 if Na*Nb > Nc*Nd */
/* -1 if Na*Nb < Nc*Nd */
/* 0 if Na*Nb = Nc*Nd */
{
lrs_mp mc, md;
mulint (Na, Nb, mc);
mulint (Nc, Nd, md);
linint (mc, ONE, md, -ONE);
if (positive (mc))
return (1);
if (negative (mc))
return (-1);
return (0);
}
void
notimpl (char s[])
{
fflush (stdout);
fprintf (stderr, "\nAbnormal Termination %s\n", s);
exit (1);
}
void
getfactorial (lrs_mp factorial, long k) /* compute k factorial in lrs_mp */
{
lrs_mp temp;
long i;
itomp (ONE, factorial);
for (i = 2; i <= k; i++)
{
itomp (i, temp);
mulint (temp, factorial, factorial);
}
} /* end of getfactorial */
/***************************************************************/
/* Package of routines for rational arithmetic */
/***************************************************************/
void
scalerat (lrs_mp Na, lrs_mp Da, long ka) /* scales rational by ka */
{
lrs_mp Nt;
copy (Nt, Na);
itomp (ZERO, Na);
linint (Na, ZERO, Nt, ka);
reduce (Na, Da);
}
void
linrat (lrs_mp Na, lrs_mp Da, long ka, lrs_mp Nb, lrs_mp Db, long kb, lrs_mp Nc, lrs_mp Dc)
/* computes Nc/Dc = ka*Na/Da +kb* Nb/Db
and reduces answer by gcd(Nc,Dc) */
{
lrs_mp c;
mulint (Na, Db, Nc);
mulint (Da, Nb, c);
linint (Nc, ka, c, kb); /* Nc = (ka*Na*Db)+(kb*Da*Nb) */
mulint (Da, Db, Dc); /* Dc = Da*Db */
reduce (Nc, Dc);
}
void
divrat (lrs_mp Na, lrs_mp Da, lrs_mp Nb, lrs_mp Db, lrs_mp Nc, lrs_mp Dc)
/* computes Nc/Dc = (Na/Da) / ( Nb/Db )
and reduces answer by gcd(Nc,Dc) */
{
mulint (Na, Db, Nc);
mulint (Da, Nb, Dc);
reduce (Nc, Dc);
}
void
mulrat (lrs_mp Na, lrs_mp Da, lrs_mp Nb, lrs_mp Db, lrs_mp Nc, lrs_mp Dc)
/* computes Nc/Dc = Na/Da * Nb/Db and reduces by gcd(Nc,Dc) */
{
mulint (Na, Nb, Nc);
mulint (Da, Db, Dc);
reduce (Nc, Dc);
}
/* End package of routines for rational arithmetic */
/***************************************************************/
/* */
/* End of package for multiple precision arithmetic */
/* */
/***************************************************************/
void *
xcalloc (long n, long s, long l, char *f)
{
void *tmp;
tmp = calloc (n, s);
if (tmp == 0)
{
char buf[200];
sprintf (buf, "\n\nFatal error on line %ld of %s", l, f);
perror (buf);
exit (1);
}
return tmp;
}
void
lrs_getdigits (long *a, long *b)
{
/* send digit information to user */
*a = DIG2DEC (lrs_digits);
*b = DIG2DEC (lrs_record_digits);
return;
}
void
lrs_default_digits_overflow ()
{
fprintf (lrs_ofp, "\nOverflow at digits=%ld", DIG2DEC (lrs_digits));
fprintf (lrs_ofp, "\nInitialize lrs_mp_init with n > %ldL\n", DIG2DEC (lrs_digits));
exit (1);
}
/* end of lrsmp.c */
|