1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
/*******************************************************/
/* nash is driver for computing all nash equilibria */
/* for two person games given by payoff matrices A,B */
/* Usage: nash game1 game2 [gameout] */
/* (use setupnash.c to create game1 game2 from A,B */
/* Options available to limit the search based on */
/* objective function value (see USERGUIDE.html */
/* June 1, 2005 */
/*******************************************************/
#include <stdio.h>
#include <string.h>
#include "lrslib.h"
long nash2_main (int argc, char *argv[], lrs_dic *P1, lrs_dat *Q1, lrs_dic *P2orig,
lrs_dat *Q2, long *numequilib, lrs_mp_vector output);
/* lrs driver, argv[2]= 2nd input file for nash equilibria */
long lrs_getfirstbasis2 (lrs_dic ** D_p, lrs_dat * Q, lrs_dic *P2orig,
lrs_mp_matrix * Lin, long no_output);
long getabasis2 (lrs_dic * P, lrs_dat * Q, lrs_dic * P2orig, long order[]);
long lrs_nashoutput (lrs_dat * Q, lrs_mp_vector output, long player);
/* returns TRUE and prints output if not the origin */
int
main (int argc, char *argv[])
{
lrs_dic *P1,*P2; /* structure for holding current dictionary and indices */
lrs_dat *Q1,*Q2; /* structure for holding static problem data */
lrs_mp_vector output1; /* holds one line of output; ray,vertex,facet,linearity */
lrs_mp_vector output2; /* holds one line of output; ray,vertex,facet,linearity */
lrs_mp_matrix Lin; /* holds input linearities if any are found */
lrs_dic *P2orig; /* we will save player 2's dictionary in getabasis */
long col; /* output column index for dictionary */
long startcol = 0;
long prune = FALSE; /* if TRUE, getnextbasis will prune tree and backtrack */
long numequilib=0; /* number of nash equilibria found */
long oldnum=0;
/* global variables lrs_ifp and lrs_ofp are file pointers for input and output */
/* they default to stdin and stdout, but may be overidden by command line parms. */
if(argc <= 2 )
{ printf("Usage: nash input1 input2 [outputfile] \n");
return 1;
}
/***************************************************
Step 0:
Do some global initialization that should only be done once,
no matter how many lrs_dat records are allocated. db
***************************************************/
if ( !lrs_init ("\n*nash:"))
return 1;
printf(AUTHOR);
/*********************************************************************************/
/* Step 1: Allocate lrs_dat, lrs_dic and set up the problem */
/*********************************************************************************/
Q1 = lrs_alloc_dat ("LRS globals"); /* allocate and init structure for static problem data */
if (Q1 == NULL)
return 1;
Q1->nash=TRUE;
if (!lrs_read_dat (Q1, argc, argv)) /* read first part of problem data to get dimensions */
return 1; /* and problem type: H- or V- input representation */
P1 = lrs_alloc_dic (Q1); /* allocate and initialize lrs_dic */
if (P1 == NULL)
return 1;
if (!lrs_read_dic (P1, Q1)) /* read remainder of input to setup P1 and Q1 */
return 1;
output1 = lrs_alloc_mp_vector (Q1->n + Q1->m); /* output holds one line of output from dictionary */
fclose(lrs_ifp);
/* allocate and init structure for player 2's problem data */
printf ("\n*Second input taken from file %s\n", argv[2]);
Q2 = lrs_alloc_dat ("LRS globals");
if (Q2 == NULL)
return 1;
Q2->nash=TRUE;
if (!lrs_read_dat (Q2, 2, argv)) /* read first part of problem data to get dimensions */
return 1; /* and problem type: H- or V- input representation */
if (Q2->nlinearity > 0)
free(Q2->linearity); /* we will start again */
Q2->linearity = CALLOC ((Q2->m + 2), sizeof (long));
P2 = lrs_alloc_dic (Q2); /* allocate and initialize lrs_dic */
if (P2 == NULL)
return 1;
if (!lrs_read_dic (P2, Q2)) /* read remainder of input to setup P2 and Q2 */
return 1;
output2 = lrs_alloc_mp_vector (Q1->n + Q1->m); /* output holds one line of output from dictionary */
P2orig = lrs_getdic(Q2); /* allocate and initialize lrs_dic */
if (P2orig == NULL)
return 1;
copy_dict(Q2,P2orig,P2);
fprintf (lrs_ofp, "\n***** %ld %ld rational", Q1->n, Q2->n);
/*********************************************************************************/
/* Step 2: Find a starting cobasis from default of specified order */
/* P1 is created to hold active dictionary data and may be cached */
/* Lin is created if necessary to hold linearity space */
/* Print linearity space if any, and retrieve output from first dict. */
/*********************************************************************************/
if (!lrs_getfirstbasis (&P1, Q1, &Lin, TRUE))
return 1;
if (Q1->dualdeg)
{
printf("\n*Warning! Dual degenerate, ouput may be incomplete");
printf("\n*Recommendation: Add dualperturb option before maximize in first input file\n");
}
if (Q1->unbounded)
{
printf("\n*Warning! Unbounded starting dictionary for p1, output may be incomplete");
printf("\n*Recommendation: Change/remove maximize option, or include bounds \n");
}
/* Pivot to a starting dictionary */
/* There may have been column redundancy */
/* If so the linearity space is obtained and redundant */
/* columns are removed. User can access linearity space */
/* from lrs_mp_matrix Lin dimensions nredundcol x d+1 */
if (Q1->homogeneous && Q1->hull)
startcol++; /* col zero not treated as redundant */
for (col = startcol; col < Q1->nredundcol; col++) /* print linearity space */
lrs_printoutput (Q1, Lin[col]); /* Array Lin[][] holds the coeffs. */
/*********************************************************************************/
/* Step 3: Terminate if lponly option set, otherwise initiate a reverse */
/* search from the starting dictionary. Get output for each new dict. */
/*********************************************************************************/
/* We initiate reverse search from this dictionary */
/* getting new dictionaries until the search is complete */
/* User can access each output line from output which is */
/* vertex/ray/facet from the lrs_mp_vector output */
/* prune is TRUE if tree should be pruned at current node */
do
{
prune=lrs_checkbound(P1,Q1);
if (!prune && lrs_getsolution (P1, Q1, output1, col))
{
oldnum=numequilib;
nash2_main(argc,argv,P1,Q1,P2orig,Q2,&numequilib,output2);
if (numequilib > oldnum || Q1->verbose)
{
if(Q1->verbose)
prat(" \np2's obj value: ",P1->objnum,P1->objden);
lrs_nashoutput (Q1, output1, 1L);
fprintf (lrs_ofp, "\n");
}
}
}
while (lrs_getnextbasis (&P1, Q1, prune));
fprintf(lrs_ofp,"\n*Number of equilibria found: %ld",numequilib);
fprintf (lrs_ofp,"\n*Player 1: vertices=%ld bases=%ld pivots=%ld", Q1->count[1], Q1->count[2],Q1->count[3]);
fprintf (lrs_ofp,"\n*Player 2: vertices=%ld bases=%ld pivots=%ld", Q2->count[1], Q2->count[2],Q2->count[3]);
lrs_clear_mp_vector(output1, Q1->m + Q1->n);
lrs_clear_mp_vector(output2, Q1->m + Q1->n);
lrs_free_dic (P1,Q1); /* deallocate lrs_dic */
lrs_free_dat (Q1); /* deallocate lrs_dat */
/* 2006.10.10 not sure what is going on with three lines below - sometimes crashes */
/* Q2->Qhead = P2; */ /* reset this or you crash free_dic */
/* lrs_free_dic (P2,Q2); */ /* deallocate lrs_dic */
/* lrs_free_dat (Q2); */ /* deallocate lrs_dat */
lrs_close ("nash:");
return 0;
}
/*********************************************/
/* end of nash driver */
/*********************************************/
/**********************************************************/
/* nash2_main is a second driver used in computing nash */
/* equilibria on a second polytope interleaved with first */
/**********************************************************/
long nash2_main (int argc, char *argv[], lrs_dic *P1, lrs_dat *Q1, lrs_dic *P2orig,
lrs_dat *Q2, long *numequilib, lrs_mp_vector output)
{
lrs_dic *P2; /* This can get resized, cached etc. Loaded from P2orig */
lrs_mp_matrix Lin; /* holds input linearities if any are found */
long col; /* output column index for dictionary */
long startcol = 0;
long prune = FALSE; /* if TRUE, getnextbasis will prune tree and backtrack */
long nlinearity;
long *linearity;
static long firstwarning=TRUE; /* FALSE if dual deg warning for Q2 already given */
static long firstunbounded=TRUE; /* FALSE if dual deg warning for Q2 already given */
long i,j;
/* global variables lrs_ifp and lrs_ofp are file pointers for input and output */
/* they default to stdin and stdout, but may be overidden by command line parms. */
/*********************************************************************************/
/* Step 1: Allocate lrs_dat, lrs_dic and set up the problem */
/*********************************************************************************/
P2=lrs_getdic(Q2);
copy_dict(Q2,P2,P2orig);
/* Here we take the linearities generated by the current vertex of player 1*/
/* and append them to the linearity in player 2's input matrix */
/* next is the key magic linking player 1 and 2 */
/* be careful if you mess with this! */
linearity=Q2->linearity;
nlinearity=0;
for(i=Q1->lastdv+1;i <= P1->m; i++)
{
if (!zero(P1->A[P1->Row[i]][0]))
{
j = Q1->inequality[P1->B[i]-Q1->lastdv];
if (Q1->nlinearity ==0 || j < Q1->linearity[0])
linearity[nlinearity++]= j;
}
}
/* add back in the linearity for probs summing to one */
if (Q1->nlinearity > 0)
linearity[nlinearity++]= Q1->linearity[0];
/*sort linearities */
for (i = 1; i < nlinearity; i++)
reorder (linearity, nlinearity);
if(Q2->verbose)
{
fprintf(lrs_ofp,"\np2: linearities %ld",nlinearity);
for (i=0;i < nlinearity; i++)
fprintf(lrs_ofp," %ld",linearity[i]);
}
Q2->nlinearity = nlinearity;
Q2->polytope = FALSE;
/*********************************************************************************/
/* Step 2: Find a starting cobasis from default of specified order */
/* P2 is created to hold active dictionary data and may be cached */
/* Lin is created if necessary to hold linearity space */
/* Print linearity space if any, and retrieve output from first dict. */
/*********************************************************************************/
if (!lrs_getfirstbasis2 (&P2, Q2, P2orig, &Lin, TRUE))
goto sayonara;
if (firstwarning && Q2->dualdeg)
{
firstwarning=FALSE;
printf("\n*Warning! Dual degenerate, ouput may be incomplete");
printf("\n*Recommendation: Add dualperturb option before maximize in second input file\n");
}
if (firstunbounded && Q2->unbounded)
{
firstunbounded=FALSE;
printf("\n*Warning! Unbounded starting dictionary for p2, output may be incomplete");
printf("\n*Recommendation: Change/remove maximize option, or include bounds \n");
}
/* Pivot to a starting dictionary */
/* There may have been column redundancy */
/* If so the linearity space is obtained and redundant */
/* columns are removed. User can access linearity space */
/* from lrs_mp_matrix Lin dimensions nredundcol x d+1 */
if (Q2->homogeneous && Q2->hull)
startcol++; /* col zero not treated as redundant */
/* for (col = startcol; col < Q2->nredundcol; col++)*/ /* print linearity space */
/*lrs_printoutput (Q2, Lin[col]);*/ /* Array Lin[][] holds the coeffs. */
/*********************************************************************************/
/* Step 3: Terminate if lponly option set, otherwise initiate a reverse */
/* search from the starting dictionary. Get output for each new dict. */
/*********************************************************************************/
/* We initiate reverse search from this dictionary */
/* getting new dictionaries until the search is complete */
/* User can access each output line from output which is */
/* vertex/ray/facet from the lrs_mp_vector output */
/* prune is TRUE if tree should be pruned at current node */
do
{
prune=lrs_checkbound(P2,Q2);
col=0;
if (!prune && lrs_getsolution (P2, Q2, output, col))
{
if (Q2->verbose)
prat(" \np1's obj value: ",P2->objnum,P2->objden);
if (lrs_nashoutput (Q2, output, 2L))
(*numequilib)++;
}
}
while (lrs_getnextbasis (&P2, Q2, prune));
sayonara:
lrs_free_dic(P2,Q2);
return 0;
}
/*********************************************/
/* end of nash2_main */
/*********************************************/
/* In lrs_getfirstbasis and lrs_getnextbasis we use D instead of P */
/* since the dictionary P may change, ie. &P in calling routine */
#define D (*D_p)
long
lrs_getfirstbasis2 (lrs_dic ** D_p, lrs_dat * Q, lrs_dic * P2orig, lrs_mp_matrix * Lin, long no_output)
/* gets first basis, FALSE if none */
/* P may get changed if lin. space Lin found */
/* no_output is TRUE supresses output headers */
{
long i, j, k;
/* assign local variables to structures */
lrs_mp_matrix A;
long *B, *C, *Row, *Col;
long *inequality;
long *linearity;
long hull = Q->hull;
long m, d, lastdv, nlinearity, nredundcol;
static long ocount=0;
m = D->m;
d = D->d;
lastdv = Q->lastdv;
nredundcol = 0L; /* will be set after getabasis */
nlinearity = Q->nlinearity; /* may be reset if new linearity read */
linearity = Q->linearity;
A = D->A;
B = D->B;
C = D->C;
Row = D->Row;
Col = D->Col;
inequality = Q->inequality;
/* default is to look for starting cobasis using linearies first, then */
/* filling in from last rows of input as necessary */
/* linearity array is assumed sorted here */
/* note if restart/given start inequality indices already in place */
/* from nlinearity..d-1 */
for (i = 0; i < nlinearity; i++) /* put linearities first in the order */
inequality[i] = linearity[i];
k = 0; /* index for linearity array */
if (Q->givenstart)
k = d;
else
k = nlinearity;
for (i = m; i >= 1; i--)
{
j = 0;
while (j < k && inequality[j] != i)
j++; /* see if i is in inequality */
if (j == k)
inequality[k++] = i;
}
if (Q->debug)
{
fprintf (lrs_ofp, "\n*Starting cobasis uses input row order");
for (i = 0; i < m; i++)
fprintf (lrs_ofp, " %ld", inequality[i]);
}
if (!Q->maximize && !Q->minimize)
for (j = 0; j <= d; j++)
itomp (ZERO, A[0][j]);
/* Now we pivot to standard form, and then find a primal feasible basis */
/* Note these steps MUST be done, even if restarting, in order to get */
/* the same index/inequality correspondance we had for the original prob. */
/* The inequality array is used to give the insertion order */
/* and is defaulted to the last d rows when givenstart=FALSE */
if (!getabasis2 (D, Q,P2orig, inequality))
return FALSE;
if(Q->debug)
{
fprintf(lrs_ofp,"\nafter getabasis2");
printA(D, Q);
}
nredundcol = Q->nredundcol;
lastdv = Q->lastdv;
d = D->d;
/********************************************************************/
/* now we start printing the output file unless no output requested */
/********************************************************************/
if (!no_output || Q->debug)
{
fprintf (lrs_ofp, "\nV-representation");
/* Print linearity space */
/* Don't print linearity if first column zero in hull computation */
k = 0;
if (nredundcol > k)
{
fprintf (lrs_ofp, "\nlinearity %ld ", nredundcol - k); /*adjust nredundcol for homog. */
for (i = 1; i <= nredundcol - k; i++)
fprintf (lrs_ofp, " %ld", i);
} /* end print of linearity space */
fprintf (lrs_ofp, "\nbegin");
fprintf (lrs_ofp, "\n***** %ld rational", Q->n);
} /* end of if !no_output ....... */
/* Reset up the inequality array to remember which index is which input inequality */
/* inequality[B[i]-lastdv] is row number of the inequality with index B[i] */
/* inequality[C[i]-lastdv] is row number of the inequality with index C[i] */
for (i = 1; i <= m; i++)
inequality[i] = i;
if (nlinearity > 0) /* some cobasic indices will be removed */
{
for (i = 0; i < nlinearity; i++) /* remove input linearity indices */
inequality[linearity[i]] = 0;
k = 1; /* counter for linearities */
for (i = 1; i <= m - nlinearity; i++)
{
while (k <= m && inequality[k] == 0)
k++; /* skip zeroes in corr. to linearity */
inequality[i] = inequality[k++];
}
} /* end if linearity */
if (Q->debug)
{
fprintf (lrs_ofp, "\ninequality array initialization:");
for (i = 1; i <= m - nlinearity; i++)
fprintf (lrs_ofp, " %ld", inequality[i]);
}
if (nredundcol > 0)
{
*Lin = lrs_alloc_mp_matrix (nredundcol, Q->n);
for (i = 0; i < nredundcol; i++)
{
if (!(Q->homogeneous && Q->hull && i == 0)) /* skip redund col 1 for homog. hull */
{
lrs_getray (D, Q, Col[0], D->C[0] + i - hull, (*Lin)[i]); /* adjust index for deletions */
}
if (!removecobasicindex (D, Q, 0L))
return FALSE;
}
} /* end if nredundcol > 0 */
if (Q->verbose)
{
fprintf (lrs_ofp, "\nNumber of pivots for starting dictionary: %ld",Q->count[3]);
ocount=Q->count[3];
}
/* Do dual pivots to get primal feasibility */
if (!primalfeasible (D, Q))
{
if ( Q->verbose )
{
fprintf (lrs_ofp, "\nNumber of pivots for feasible solution: %ld",Q->count[3]);
fprintf (lrs_ofp, " - No feasible solution");
ocount=Q->count[3];
}
return FALSE;
}
if (Q->verbose)
{
fprintf (lrs_ofp, "\nNumber of pivots for feasible solution: %ld",Q->count[3]);
ocount=Q->count[3];
}
/* Now solve LP if objective function was given */
if (Q->maximize || Q->minimize)
{
Q->unbounded = !lrs_solvelp (D, Q, Q->maximize);
/* check to see if objective is dual degenerate */
j = 1;
while (j <= d && !zero (A[0][j]))
j++;
if (j <= d)
Q->dualdeg = TRUE;
}
else
/* re-initialize cost row to -det */
{
for (j = 1; j <= d; j++)
{
copy (A[0][j], D->det);
storesign (A[0][j], NEG);
}
itomp (ZERO, A[0][0]); /* zero optimum objective value */
}
/* reindex basis to 0..m if necessary */
/* we use the fact that cobases are sorted by index value */
if (Q->debug)
printA (D, Q);
while (C[0] <= m)
{
i = C[0];
j = inequality[B[i] - lastdv];
inequality[B[i] - lastdv] = inequality[C[0] - lastdv];
inequality[C[0] - lastdv] = j;
C[0] = B[i];
B[i] = i;
reorder1 (C, Col, ZERO, d);
}
if (Q->debug)
{
fprintf (lrs_ofp, "\n*Inequality numbers for indices %ld .. %ld : ", lastdv + 1, m + d);
for (i = 1; i <= m - nlinearity; i++)
fprintf (lrs_ofp, " %ld ", inequality[i]);
printA (D, Q);
}
if (Q->restart)
{
if (Q->debug)
fprintf (lrs_ofp, "\nPivoting to restart co-basis");
if (!restartpivots (D, Q))
return FALSE;
D->lexflag = lexmin (D, Q, ZERO); /* see if lexmin basis */
if (Q->debug)
printA (D, Q);
}
/* Check to see if necessary to resize */
if (Q->inputd > D->d)
*D_p = resize (D, Q);
return TRUE;
}
/********* end of lrs_getfirstbasis ***************/
long
getabasis2 (lrs_dic * P, lrs_dat * Q, lrs_dic * P2orig, long order[])
/* Pivot Ax<=b to standard form */
/*Try to find a starting basis by pivoting in the variables x[1]..x[d] */
/*If there are any input linearities, these appear first in order[] */
/* Steps: (a) Try to pivot out basic variables using order */
/* Stop if some linearity cannot be made to leave basis */
/* (b) Permanently remove the cobasic indices of linearities */
/* (c) If some decision variable cobasic, it is a linearity, */
/* and will be removed. */
{
long i, j, k;
/* assign local variables to structures */
lrs_mp_matrix A = P->A;
long *B = P->B;
long *C = P->C;
long *Row = P->Row;
long *Col = P->Col;
long *linearity = Q->linearity;
long *redundcol = Q->redundcol;
long m, d, nlinearity;
long nredundcol = 0L; /* will be calculated here */
static long firsttime=TRUE;
static long *linindex;
m = P->m;
d = P->d;
nlinearity = Q->nlinearity;
if(firsttime)
{
firsttime = FALSE;
linindex = calloc ((m + d + 2), sizeof (long));
}
else /* after first time we update the change in linearities from the last time, saving many pivots */
{
for(i=1;i<=m+d;i++)
linindex[i]=FALSE;
if(Q->debug)
fprintf(lrs_ofp,"\nlindex =");
for(i=0;i<nlinearity;i++)
{
linindex[d+linearity[i]]=TRUE;
if(Q->debug)
fprintf(lrs_ofp," %ld",d+linearity[i]);
}
for(i=1;i<=m;i++)
{
if(linindex[B[i]]) /* pivot out unwanted linearities */
{
k=0;
while(k<d && (linindex[C[k]] || zero (A[Row[i]][Col[k]])))
k++;
if (k < d)
{
j=i; /* note this index changes in update, cannot use i!)*/
if(C[k] > B[j]) /* decrease i or we may skip a linearity */
i--;
pivot (P, Q, j, k);
update (P, Q, &j, &k);
}
else
{
/* this is not necessarily an error, eg. two identical rows/cols in payoff matrix */
if(! zero(A[Row[i]][0])) /* error condition */
{
if(Q->debug || Q->verbose)
{
fprintf(lrs_ofp,"\n*Infeasible linearity i=%ld B[i]=%ld",i,B[i]);
if (Q->debug)
printA(P,Q);
}
return(FALSE);
}
if(Q->debug || Q->verbose)
{
fprintf(lrs_ofp,"\n*Couldn't remove linearity i=%ld B[i]=%ld",i,B[i]);
}
}
} /* if linindex */
} /* for i ..*/
goto hotstart;
}
/* standard lrs processing is done on only the first call to getabasis2 */
if (Q->debug)
{
fprintf (lrs_ofp, "\ngetabasis from inequalities given in order");
for (i = 0; i < m; i++)
fprintf (lrs_ofp, " %ld", order[i]);
}
for (j = 0; j < m; j++)
{
i = 0;
while (i <= m && B[i] != d + order[j])
i++; /* find leaving basis index i */
if (j < nlinearity && i > m) /* cannot pivot linearity to cobasis */
{
if (Q->debug)
printA (P, Q);
#ifndef LRS_QUIET
fprintf (lrs_ofp, "\nCannot find linearity in the basis");
#endif
return FALSE;
}
if (i <= m)
{ /* try to do a pivot */
k = 0;
while (C[k] <= d && zero (A[Row[i]][Col[k]]))
k++;
if (C[k] <= d)
{
pivot (P, Q, i, k);
update (P, Q, &i, &k);
}
else if (j < nlinearity)
{ /* cannot pivot linearity to cobasis */
if (zero (A[Row[i]][0]))
{
#ifndef LRS_QUIET
fprintf (lrs_ofp, "\n*Input linearity in row %ld is redundant--skipped", order[j]);
#endif
linearity[j] = 0;
}
else
{
if (Q->debug)
printA (P, Q);
if (Q->verbose)
fprintf (lrs_ofp, "\nInconsistent linearities");
return FALSE;
}
} /* end if j < nlinearity */
} /* end of if i <= m .... */
} /* end of for */
/* update linearity array to get rid of redundancies */
i = 0;
k = 0; /* counters for linearities */
while (k < nlinearity)
{
while (k < nlinearity && linearity[k] == 0)
k++;
if (k < nlinearity)
linearity[i++] = linearity[k++];
}
nlinearity = i;
/* column dependencies now can be recorded */
/* redundcol contains input column number 0..n-1 where redundancy is */
k = 0;
while (k < d && C[k] <= d)
{
if (C[k] <= d) /* decision variable still in cobasis */
redundcol[nredundcol++] = C[k] - Q->hull; /* adjust for hull indices */
k++;
}
/* now we know how many decision variables remain in problem */
Q->nredundcol = nredundcol;
Q->lastdv = d - nredundcol;
/* if not first time we continue from here after loading dictionary */
hotstart:
if (Q->debug)
{
fprintf (lrs_ofp, "\nend of first phase of getabasis2: ");
fprintf (lrs_ofp, "lastdv=%ld nredundcol=%ld", Q->lastdv, Q->nredundcol);
fprintf (lrs_ofp, "\nredundant cobases:");
for (i = 0; i < nredundcol; i++)
fprintf (lrs_ofp, " %ld", redundcol[i]);
printA (P, Q);
}
/* here we save dictionary for use next time, *before* we resize */
copy_dict(Q,P2orig,P);
/* Remove linearities from cobasis for rest of computation */
/* This is done in order so indexing is not screwed up */
for (i = 0; i < nlinearity; i++)
{ /* find cobasic index */
k = 0;
while (k < d && C[k] != linearity[i] + d)
k++;
if (k >= d)
{
if(Q->debug || Q->verbose)
{
fprintf (lrs_ofp, "\nCould not remove cobasic index");
}
/* not neccesarily an error as eg., could be repeated row/col in payoff */
}
else
{
removecobasicindex (P, Q, k);
d = P->d;
}
}
if (Q->debug && nlinearity > 0)
printA (P, Q);
/* set index value for first slack variable */
/* Check feasability */
if (Q->givenstart)
{
i = Q->lastdv + 1;
while (i <= m && !negative (A[Row[i]][0]))
i++;
if (i <= m)
fprintf (lrs_ofp, "\n*Infeasible startingcobasis - will be modified");
}
return TRUE;
} /* end of getabasis2 */
long
lrs_nashoutput (lrs_dat * Q, lrs_mp_vector output, long player)
{
long i;
long origin=TRUE;
/* do not print the origin for either player */
for (i = 1; i < Q->n; i++)
if(!zero(output[i]))
origin=FALSE;
if (origin)
return FALSE;
fprintf (lrs_ofp, "\n%ld ",player);
for (i = 1; i < Q->n; i++)
prat ("", output[i], output[0]);
fflush(lrs_ofp);
return TRUE;
} /* end lrs_nashoutput */
|