File: nash.c

package info (click to toggle)
lrslib 0.42c-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze, wheezy
  • size: 1,220 kB
  • ctags: 922
  • sloc: ansic: 7,531; xml: 555; makefile: 91
file content (855 lines) | stat: -rw-r--r-- 27,735 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
/*******************************************************/
/* nash is driver for computing all nash equilibria    */
/* for two person games given by payoff matrices A,B   */
/* Usage: nash game1 game2 [gameout]                   */
/* (use setupnash.c to create game1 game2 from A,B     */
/* Options available to limit the search based on      */
/* objective function value (see USERGUIDE.html        */
/* June 1, 2005                                        */
/*******************************************************/
#include <stdio.h>
#include <string.h>
#include "lrslib.h"

long nash2_main (int argc, char *argv[], lrs_dic *P1, lrs_dat *Q1, lrs_dic *P2orig,
       lrs_dat *Q2, long *numequilib, lrs_mp_vector output);
        /* lrs driver, argv[2]= 2nd input file for nash equilibria */

long lrs_getfirstbasis2 (lrs_dic ** D_p, lrs_dat * Q, lrs_dic *P2orig,
                                           lrs_mp_matrix * Lin, long no_output);

long getabasis2 (lrs_dic * P, lrs_dat * Q, lrs_dic * P2orig, long order[]);

long lrs_nashoutput (lrs_dat * Q, lrs_mp_vector output, long player);
                  /* returns TRUE and prints output if not the origin */

int
main (int argc, char *argv[])

{
  lrs_dic *P1,*P2;		/* structure for holding current dictionary and indices */
  lrs_dat *Q1,*Q2;		/* structure for holding static problem data            */

  lrs_mp_vector output1;	/* holds one line of output; ray,vertex,facet,linearity */
  lrs_mp_vector output2;	/* holds one line of output; ray,vertex,facet,linearity */
  lrs_mp_matrix Lin;		/* holds input linearities if any are found             */

  lrs_dic *P2orig;              /* we will save player 2's dictionary in getabasis      */

  long col;			/* output column index for dictionary                   */
  long startcol = 0;
  long prune = FALSE;		/* if TRUE, getnextbasis will prune tree and backtrack  */
  long numequilib=0;            /* number of nash equilibria found                      */
  long oldnum=0;                                                                            


/* global variables lrs_ifp and lrs_ofp are file pointers for input and output   */
/* they default to stdin and stdout, but may be overidden by command line parms. */

  if(argc <= 2 )
  { printf("Usage: nash input1 input2 [outputfile]     \n");
	  return 1;
  }

/***************************************************
 Step 0: 
  Do some global initialization that should only be done once,
  no matter how many lrs_dat records are allocated. db

***************************************************/

  if ( !lrs_init ("\n*nash:"))
    return 1;
  printf(AUTHOR);

/*********************************************************************************/
/* Step 1: Allocate lrs_dat, lrs_dic and set up the problem                      */
/*********************************************************************************/


  Q1 = lrs_alloc_dat ("LRS globals");	/* allocate and init structure for static problem data */

  if (Q1 == NULL)
    return 1;
  Q1->nash=TRUE;

  if (!lrs_read_dat (Q1, argc, argv))	/* read first part of problem data to get dimensions   */
    return 1;                   	/* and problem type: H- or V- input representation     */

  P1 = lrs_alloc_dic (Q1);	/* allocate and initialize lrs_dic                     */
  if (P1 == NULL)
    return 1;

  if (!lrs_read_dic (P1, Q1))	/* read remainder of input to setup P1 and Q1           */
    return 1;

  output1 = lrs_alloc_mp_vector (Q1->n + Q1->m);   /* output holds one line of output from dictionary     */

  fclose(lrs_ifp);

/* allocate and init structure for player 2's problem data                                   */

  printf ("\n*Second input taken from file %s\n", argv[2]);
  Q2 = lrs_alloc_dat ("LRS globals"); 
  if (Q2 == NULL)
          return 1;

  Q2->nash=TRUE;

  if (!lrs_read_dat (Q2, 2, argv))	/* read first part of problem data to get dimensions   */
    return 1;                   	/* and problem type: H- or V- input representation     */

  if (Q2->nlinearity > 0)
      free(Q2->linearity);               /* we will start again */
  Q2->linearity  = CALLOC ((Q2->m + 2), sizeof (long));

  P2 = lrs_alloc_dic (Q2);	     /* allocate and initialize lrs_dic                     */
  if (P2 == NULL)
         return 1;
  if (!lrs_read_dic (P2, Q2))        /* read remainder of input to setup P2 and Q2          */
    return 1;

  output2 = lrs_alloc_mp_vector (Q1->n + Q1->m);     /* output holds one line of output from dictionary     */

  P2orig = lrs_getdic(Q2);  	     /* allocate and initialize lrs_dic                     */
  if (P2orig == NULL)
         return 1;
  copy_dict(Q2,P2orig,P2);

  fprintf (lrs_ofp, "\n***** %ld %ld rational", Q1->n, Q2->n);


/*********************************************************************************/
/* Step 2: Find a starting cobasis from default of specified order               */
/*         P1 is created to hold  active dictionary data and may be cached       */
/*         Lin is created if necessary to hold linearity space                   */
/*         Print linearity space if any, and retrieve output from first dict.    */
/*********************************************************************************/

  if (!lrs_getfirstbasis (&P1, Q1, &Lin, TRUE))
    return 1;

  if (Q1->dualdeg)
     {
      printf("\n*Warning! Dual degenerate, ouput may be incomplete");
      printf("\n*Recommendation: Add dualperturb option before maximize in first input file\n");
     }

  if (Q1->unbounded)
     {
      printf("\n*Warning! Unbounded starting dictionary for p1, output may be incomplete");
      printf("\n*Recommendation: Change/remove maximize option, or include bounds \n");
     }

  /* Pivot to a starting dictionary                      */
  /* There may have been column redundancy               */
  /* If so the linearity space is obtained and redundant */
  /* columns are removed. User can access linearity space */
  /* from lrs_mp_matrix Lin dimensions nredundcol x d+1  */



  if (Q1->homogeneous && Q1->hull)
    startcol++;			/* col zero not treated as redundant   */

  for (col = startcol; col < Q1->nredundcol; col++)	/* print linearity space               */
    lrs_printoutput (Q1, Lin[col]);	/* Array Lin[][] holds the coeffs.     */

/*********************************************************************************/
/* Step 3: Terminate if lponly option set, otherwise initiate a reverse          */
/*         search from the starting dictionary. Get output for each new dict.    */
/*********************************************************************************/

  /* We initiate reverse search from this dictionary       */
  /* getting new dictionaries until the search is complete */
  /* User can access each output line from output which is */
  /* vertex/ray/facet from the lrs_mp_vector output         */
  /* prune is TRUE if tree should be pruned at current node */
  do
    {
      prune=lrs_checkbound(P1,Q1);
      if (!prune && lrs_getsolution (P1, Q1, output1, col))
	{ 
           oldnum=numequilib;
           nash2_main(argc,argv,P1,Q1,P2orig,Q2,&numequilib,output2);
	   if (numequilib > oldnum || Q1->verbose)
	      {
                if(Q1->verbose)
                  prat(" \np2's obj value: ",P1->objnum,P1->objden);
                lrs_nashoutput (Q1, output1, 1L);
       	        fprintf (lrs_ofp, "\n");
	      }
	}
    }
  while (lrs_getnextbasis (&P1, Q1, prune));

  fprintf(lrs_ofp,"\n*Number of equilibria found: %ld",numequilib);
  fprintf (lrs_ofp,"\n*Player 1: vertices=%ld bases=%ld pivots=%ld", Q1->count[1],  Q1->count[2],Q1->count[3]);
  fprintf (lrs_ofp,"\n*Player 2: vertices=%ld bases=%ld pivots=%ld", Q2->count[1],  Q2->count[2],Q2->count[3]);

  lrs_clear_mp_vector(output1, Q1->m + Q1->n);
  lrs_clear_mp_vector(output2, Q1->m + Q1->n);

  lrs_free_dic (P1,Q1);          /* deallocate lrs_dic */
  lrs_free_dat (Q1);             /* deallocate lrs_dat */

/* 2006.10.10 not sure what is going on with three lines below - sometimes crashes */
/*  Q2->Qhead = P2;  */               /* reset this or you crash free_dic */
/*  lrs_free_dic (P2,Q2); */        /* deallocate lrs_dic */
/*  lrs_free_dat (Q2);  */            /* deallocate lrs_dat */


  lrs_close ("nash:");

  return 0;
}
/*********************************************/
/* end of nash driver                        */
/*********************************************/


/**********************************************************/
/* nash2_main is a second driver used in computing nash   */
/* equilibria on a second polytope interleaved with first */
/**********************************************************/

long nash2_main (int argc, char *argv[], lrs_dic *P1, lrs_dat *Q1, lrs_dic *P2orig, 
     lrs_dat *Q2, long *numequilib, lrs_mp_vector output)


{

  lrs_dic *P2;                  /* This can get resized, cached etc. Loaded from P2orig */
  lrs_mp_matrix Lin;		/* holds input linearities if any are found             */
  long col;			/* output column index for dictionary                   */
  long startcol = 0;
  long prune = FALSE;		/* if TRUE, getnextbasis will prune tree and backtrack  */
  long nlinearity;
  long *linearity;
  static long firstwarning=TRUE;    /* FALSE if dual deg warning for Q2 already given     */
  static long firstunbounded=TRUE;  /* FALSE if dual deg warning for Q2 already given     */

  long i,j;

/* global variables lrs_ifp and lrs_ofp are file pointers for input and output   */
/* they default to stdin and stdout, but may be overidden by command line parms. */


/*********************************************************************************/
/* Step 1: Allocate lrs_dat, lrs_dic and set up the problem                      */
/*********************************************************************************/


  P2=lrs_getdic(Q2);
  copy_dict(Q2,P2,P2orig);

/* Here we take the linearities generated by the current vertex of player 1*/
/* and append them to the linearity in player 2's input matrix             */ 
/* next is the key magic linking player 1 and 2 */
/* be careful if you mess with this!            */

  linearity=Q2->linearity;
  nlinearity=0;
       for(i=Q1->lastdv+1;i <= P1->m; i++)
        {
           if (!zero(P1->A[P1->Row[i]][0]))
           {
             j =  Q1->inequality[P1->B[i]-Q1->lastdv];
             if (Q1->nlinearity ==0 || j < Q1->linearity[0])
	         linearity[nlinearity++]= j;
	   }
         }
/* add back in the linearity for probs summing to one */
    if (Q1->nlinearity > 0)
       linearity[nlinearity++]= Q1->linearity[0];


/*sort linearities */
  for (i = 1; i < nlinearity; i++)	
    reorder (linearity, nlinearity);

  if(Q2->verbose)
  {
       fprintf(lrs_ofp,"\np2: linearities %ld",nlinearity);
       for (i=0;i < nlinearity; i++)
	       fprintf(lrs_ofp," %ld",linearity[i]);
  }    

  Q2->nlinearity = nlinearity;
  Q2->polytope = FALSE;


/*********************************************************************************/
/* Step 2: Find a starting cobasis from default of specified order               */
/*         P2 is created to hold  active dictionary data and may be cached        */
/*         Lin is created if necessary to hold linearity space                   */
/*         Print linearity space if any, and retrieve output from first dict.    */
/*********************************************************************************/

  if (!lrs_getfirstbasis2 (&P2, Q2, P2orig, &Lin, TRUE))
    goto sayonara;
  if (firstwarning && Q2->dualdeg)
     {
      firstwarning=FALSE;
      printf("\n*Warning! Dual degenerate, ouput may be incomplete");
      printf("\n*Recommendation: Add dualperturb option before maximize in second input file\n");
     }
  if (firstunbounded && Q2->unbounded)
     {
      firstunbounded=FALSE;
      printf("\n*Warning! Unbounded starting dictionary for p2, output may be incomplete");
      printf("\n*Recommendation: Change/remove maximize option, or include bounds \n");
     }

  /* Pivot to a starting dictionary                      */
  /* There may have been column redundancy               */
  /* If so the linearity space is obtained and redundant */
  /* columns are removed. User can access linearity space */
  /* from lrs_mp_matrix Lin dimensions nredundcol x d+1  */



  if (Q2->homogeneous && Q2->hull)
    startcol++;                 /* col zero not treated as redundant   */


  /* for (col = startcol; col < Q2->nredundcol; col++)*/	/* print linearity space               */
    /*lrs_printoutput (Q2, Lin[col]);*/	/* Array Lin[][] holds the coeffs.     */



/*********************************************************************************/
/* Step 3: Terminate if lponly option set, otherwise initiate a reverse          */
/*         search from the starting dictionary. Get output for each new dict.    */
/*********************************************************************************/



  /* We initiate reverse search from this dictionary       */
  /* getting new dictionaries until the search is complete */
  /* User can access each output line from output which is */
  /* vertex/ray/facet from the lrs_mp_vector output         */
  /* prune is TRUE if tree should be pruned at current node */
  do
    {
        prune=lrs_checkbound(P2,Q2);
        col=0;
	if (!prune && lrs_getsolution (P2, Q2, output, col))
	{
             if (Q2->verbose)
                  prat(" \np1's obj value: ",P2->objnum,P2->objden);
	     if (lrs_nashoutput (Q2, output, 2L))
                (*numequilib)++;
	}
    }
  while (lrs_getnextbasis (&P2, Q2, prune));

sayonara:
  lrs_free_dic(P2,Q2);
  return 0;

}
/*********************************************/
/* end of nash2_main                          */
/*********************************************/


/* In lrs_getfirstbasis and lrs_getnextbasis we use D instead of P */
/* since the dictionary P may change, ie. &P in calling routine    */

#define D (*D_p)

long 
lrs_getfirstbasis2 (lrs_dic ** D_p, lrs_dat * Q, lrs_dic * P2orig, lrs_mp_matrix * Lin, long no_output)
/* gets first basis, FALSE if none              */
/* P may get changed if lin. space Lin found    */
/* no_output is TRUE supresses output headers   */
{
  long i, j, k;

/* assign local variables to structures */

  lrs_mp_matrix A;
  long *B, *C, *Row, *Col;
  long *inequality;
  long *linearity;
  long hull = Q->hull;
  long m, d, lastdv, nlinearity, nredundcol;

  static long ocount=0;


  m = D->m;
  d = D->d;
  lastdv = Q->lastdv;

  nredundcol = 0L;		/* will be set after getabasis        */
  nlinearity = Q->nlinearity;	/* may be reset if new linearity read */
  linearity = Q->linearity;

  A = D->A;
  B = D->B;
  C = D->C;
  Row = D->Row;
  Col = D->Col;
  inequality = Q->inequality;

/* default is to look for starting cobasis using linearies first, then     */
/* filling in from last rows of input as necessary                         */
/* linearity array is assumed sorted here                                  */
/* note if restart/given start inequality indices already in place         */
/* from nlinearity..d-1                                                    */

  for (i = 0; i < nlinearity; i++)      /* put linearities first in the order */
    inequality[i] = linearity[i];


  k = 0;			/* index for linearity array   */

  if (Q->givenstart)
    k = d;
  else
    k = nlinearity;
  for (i = m; i >= 1; i--)
    {
      j = 0;
      while (j < k && inequality[j] != i)
	j++;			/* see if i is in inequality  */
      if (j == k)
	inequality[k++] = i;
    }
  if (Q->debug)
    {
      fprintf (lrs_ofp, "\n*Starting cobasis uses input row order");
      for (i = 0; i < m; i++)
	fprintf (lrs_ofp, " %ld", inequality[i]);
    }

  if (!Q->maximize && !Q->minimize)
    for (j = 0; j <= d; j++)
      itomp (ZERO, A[0][j]);

/* Now we pivot to standard form, and then find a primal feasible basis       */
/* Note these steps MUST be done, even if restarting, in order to get         */
/* the same index/inequality correspondance we had for the original prob.     */
/* The inequality array is used to give the insertion order                   */
/* and is defaulted to the last d rows when givenstart=FALSE                  */

  if (!getabasis2 (D, Q,P2orig, inequality))
          return FALSE;

  if(Q->debug)
  {
    fprintf(lrs_ofp,"\nafter getabasis2");
    printA(D, Q);
  }
  nredundcol = Q->nredundcol;
  lastdv = Q->lastdv;
  d = D->d;

/********************************************************************/
/* now we start printing the output file  unless no output requested */
/********************************************************************/
  if (!no_output || Q->debug)
    {
      fprintf (lrs_ofp, "\nV-representation");

/* Print linearity space                 */
/* Don't print linearity if first column zero in hull computation */

      k = 0;

     if (nredundcol > k)
	{
	  fprintf (lrs_ofp, "\nlinearity %ld ", nredundcol - k);	/*adjust nredundcol for homog. */
	  for (i = 1; i <= nredundcol - k; i++)
	    fprintf (lrs_ofp, " %ld", i);
	}			/* end print of linearity space */

      fprintf (lrs_ofp, "\nbegin");
      fprintf (lrs_ofp, "\n***** %ld rational", Q->n);

    }				/* end of if !no_output .......   */

/* Reset up the inequality array to remember which index is which input inequality */
/* inequality[B[i]-lastdv] is row number of the inequality with index B[i]              */
/* inequality[C[i]-lastdv] is row number of the inequality with index C[i]              */

  for (i = 1; i <= m; i++)
    inequality[i] = i;
  if (nlinearity > 0)		/* some cobasic indices will be removed */
    {
      for (i = 0; i < nlinearity; i++)	/* remove input linearity indices */
	inequality[linearity[i]] = 0;
      k = 1;			/* counter for linearities         */
      for (i = 1; i <= m - nlinearity; i++)
	{
	  while (k <= m && inequality[k] == 0)
	    k++;		/* skip zeroes in corr. to linearity */
	  inequality[i] = inequality[k++];
	}
    }				/* end if linearity */
  if (Q->debug)
    {
      fprintf (lrs_ofp, "\ninequality array initialization:");
      for (i = 1; i <= m - nlinearity; i++)
	fprintf (lrs_ofp, " %ld", inequality[i]);
    }
  if (nredundcol > 0)
    {
      *Lin = lrs_alloc_mp_matrix (nredundcol, Q->n);

      for (i = 0; i < nredundcol; i++)
	{
	  if (!(Q->homogeneous && Q->hull && i == 0))	/* skip redund col 1 for homog. hull */
	    {
	      lrs_getray (D, Q, Col[0], D->C[0] + i - hull, (*Lin)[i]);		/* adjust index for deletions */
	    }

	  if (!removecobasicindex (D, Q, 0L))
	    return FALSE;
	}
    }				/* end if nredundcol > 0 */

      if (Q->verbose)
      {
      fprintf (lrs_ofp, "\nNumber of pivots for starting dictionary: %ld",Q->count[3]);
      ocount=Q->count[3];
      }

/* Do dual pivots to get primal feasibility */
  if (!primalfeasible (D, Q))
    {
     if ( Q->verbose )
      {
          fprintf (lrs_ofp, "\nNumber of pivots for feasible solution: %ld",Q->count[3]);
          fprintf (lrs_ofp, " - No feasible solution");
          ocount=Q->count[3];
      }
      return FALSE;
    }

    if (Q->verbose)
     {
      fprintf (lrs_ofp, "\nNumber of pivots for feasible solution: %ld",Q->count[3]);
      ocount=Q->count[3];
     }


/* Now solve LP if objective function was given */
  if (Q->maximize || Q->minimize)
    {
      Q->unbounded = !lrs_solvelp (D, Q, Q->maximize);

      /* check to see if objective is dual degenerate */
      j = 1;
      while (j <= d && !zero (A[0][j]))
      j++;
      if (j <= d)
	    Q->dualdeg = TRUE;
    }
  else
/* re-initialize cost row to -det */
    {
      for (j = 1; j <= d; j++)
	{
	  copy (A[0][j], D->det);
	  storesign (A[0][j], NEG);
	}

      itomp (ZERO, A[0][0]);	/* zero optimum objective value */
    }


/* reindex basis to 0..m if necessary */
/* we use the fact that cobases are sorted by index value */
  if (Q->debug)
    printA (D, Q);
  while (C[0] <= m)
    {
      i = C[0];
      j = inequality[B[i] - lastdv];
      inequality[B[i] - lastdv] = inequality[C[0] - lastdv];
      inequality[C[0] - lastdv] = j;
      C[0] = B[i];
      B[i] = i;
      reorder1 (C, Col, ZERO, d);
    }

  if (Q->debug)
    {
      fprintf (lrs_ofp, "\n*Inequality numbers for indices %ld .. %ld : ", lastdv + 1, m + d);
      for (i = 1; i <= m - nlinearity; i++)
	fprintf (lrs_ofp, " %ld ", inequality[i]);
      printA (D, Q);
    }



  if (Q->restart)
    {
      if (Q->debug)
	fprintf (lrs_ofp, "\nPivoting to restart co-basis");
      if (!restartpivots (D, Q))
	return FALSE;
      D->lexflag = lexmin (D, Q, ZERO);		/* see if lexmin basis */
      if (Q->debug)
	printA (D, Q);
    }
/* Check to see if necessary to resize */
  if (Q->inputd > D->d)
    *D_p = resize (D, Q);

  return TRUE;
}
/********* end of lrs_getfirstbasis  ***************/
long 
getabasis2 (lrs_dic * P, lrs_dat * Q, lrs_dic * P2orig, long order[])

/* Pivot Ax<=b to standard form */
/*Try to find a starting basis by pivoting in the variables x[1]..x[d]        */
/*If there are any input linearities, these appear first in order[]           */
/* Steps: (a) Try to pivot out basic variables using order                    */
/*            Stop if some linearity cannot be made to leave basis            */
/*        (b) Permanently remove the cobasic indices of linearities           */
/*        (c) If some decision variable cobasic, it is a linearity,           */
/*            and will be removed.                                            */

{
  long i, j, k;
/* assign local variables to structures */
  lrs_mp_matrix A = P->A;
  long *B = P->B;
  long *C = P->C;
  long *Row = P->Row;
  long *Col = P->Col;
  long *linearity = Q->linearity;
  long *redundcol = Q->redundcol;
  long m, d, nlinearity;
  long nredundcol = 0L;		/* will be calculated here */

  static long firsttime=TRUE;
  static long *linindex;

  m = P->m;
  d = P->d;
  nlinearity = Q->nlinearity;

  if(firsttime)
  {
    firsttime = FALSE;
    linindex = calloc ((m + d + 2), sizeof (long));
  }
  else     /* after first time we update the change in linearities from the last time, saving many pivots */
  {
    for(i=1;i<=m+d;i++)
	  linindex[i]=FALSE;
    if(Q->debug)
        fprintf(lrs_ofp,"\nlindex =");
    for(i=0;i<nlinearity;i++)
    {
       	  linindex[d+linearity[i]]=TRUE;
	  if(Q->debug)
             fprintf(lrs_ofp,"  %ld",d+linearity[i]);		   
    }
	  
    for(i=1;i<=m;i++)
    {
	  if(linindex[B[i]])  /* pivot out unwanted linearities */
	  {
		  k=0;
		  while(k<d && (linindex[C[k]] ||  zero (A[Row[i]][Col[k]])))
			  k++;

                  if (k < d)
                  {
	            j=i;   /* note this index changes in update, cannot use i!)*/

		    if(C[k] > B[j])  /* decrease i or we may skip a linearity */
		       i--;
	            pivot (P, Q, j, k);
		    update (P, Q, &j, &k);
                  }
		   else
                  {
                     /* this is not necessarily an error, eg. two identical rows/cols in payoff matrix */
                     if(! zero(A[Row[i]][0]))    /* error condition */
                       {
                         if(Q->debug || Q->verbose)
                              {
                               fprintf(lrs_ofp,"\n*Infeasible linearity i=%ld B[i]=%ld",i,B[i]);
                               if (Q->debug)
                                     printA(P,Q);
                              }
                        return(FALSE);
                       }
                     if(Q->debug || Q->verbose)
                       {
		        fprintf(lrs_ofp,"\n*Couldn't remove linearity i=%ld B[i]=%ld",i,B[i]);		   
                       }
                   }

           } /* if linindex */
    }   /* for i   ..*/
   goto hotstart;
  }

/* standard lrs processing is done on only the first call to getabasis2 */

  if (Q->debug)
    {
      fprintf (lrs_ofp, "\ngetabasis from inequalities given in order");
      for (i = 0; i < m; i++)
	fprintf (lrs_ofp, " %ld", order[i]);
    }
  for (j = 0; j < m; j++)
    {
      i = 0;
      while (i <= m && B[i] != d + order[j])
	i++;			/* find leaving basis index i */
      if (j < nlinearity && i > m)	/* cannot pivot linearity to cobasis */
	{
	  if (Q->debug)
	    printA (P, Q);
#ifndef LRS_QUIET
	  fprintf (lrs_ofp, "\nCannot find linearity in the basis");
#endif
	  return FALSE;
	}
      if (i <= m)
	{			/* try to do a pivot */
	  k = 0;
	  while (C[k] <= d && zero (A[Row[i]][Col[k]]))
	    k++;

	  if (C[k] <= d)
	    {
	      pivot (P, Q, i, k);
	      update (P, Q, &i, &k);
	    }
	  else if (j < nlinearity)
	    {			/* cannot pivot linearity to cobasis */
	      if (zero (A[Row[i]][0]))
		{
#ifndef LRS_QUIET
		  fprintf (lrs_ofp, "\n*Input linearity in row %ld is redundant--skipped", order[j]);
#endif
		  linearity[j] = 0;
		}
	      else
		{
		  if (Q->debug)
		    printA (P, Q);
		  if (Q->verbose)
		    fprintf (lrs_ofp, "\nInconsistent linearities");
		  return FALSE;
		}
	    }			/* end if j < nlinearity */

	}			/* end of if i <= m .... */
    }				/* end of for   */

/* update linearity array to get rid of redundancies */
  i = 0;
  k = 0;			/* counters for linearities         */
  while (k < nlinearity)
    {
      while (k < nlinearity && linearity[k] == 0)
	k++;
      if (k < nlinearity)
	linearity[i++] = linearity[k++];
    }

  nlinearity = i;

/* column dependencies now can be recorded  */
/* redundcol contains input column number 0..n-1 where redundancy is */
  k = 0;
  while (k < d && C[k] <= d)
    {
      if (C[k] <= d)		/* decision variable still in cobasis */
	redundcol[nredundcol++] = C[k] - Q->hull;	/* adjust for hull indices */
      k++;
    }

/* now we know how many decision variables remain in problem */
  Q->nredundcol = nredundcol;
  Q->lastdv = d - nredundcol;

  /* if not first time we continue from here after loading dictionary */

hotstart:

  if (Q->debug)
    {
      fprintf (lrs_ofp, "\nend of first phase of getabasis2: ");
      fprintf (lrs_ofp, "lastdv=%ld nredundcol=%ld", Q->lastdv, Q->nredundcol);
      fprintf (lrs_ofp, "\nredundant cobases:");
      for (i = 0; i < nredundcol; i++)
	fprintf (lrs_ofp, " %ld", redundcol[i]);
      printA (P, Q);
    }

/* here we save dictionary for use next time, *before* we resize */

  copy_dict(Q,P2orig,P);

/* Remove linearities from cobasis for rest of computation */
/* This is done in order so indexing is not screwed up */

  for (i = 0; i < nlinearity; i++)
    {				/* find cobasic index */
      k = 0;
      while (k < d && C[k] != linearity[i] + d)
	k++;
      if (k >= d)
	{
          if(Q->debug || Q->verbose)
           {
	    fprintf (lrs_ofp, "\nCould not remove cobasic index");
           }
          /* not neccesarily an error as eg., could be repeated row/col in payoff */
	}
      else
         { 
              removecobasicindex (P, Q, k);
              d = P->d;
         }
    }
  if (Q->debug && nlinearity > 0)
    printA (P, Q);
/* set index value for first slack variable */

/* Check feasability */
  if (Q->givenstart)
    {
      i = Q->lastdv + 1;
      while (i <= m && !negative (A[Row[i]][0]))
	i++;
      if (i <= m)
	fprintf (lrs_ofp, "\n*Infeasible startingcobasis - will be modified");
    }
  return TRUE;
}				/*  end of getabasis2 */

long
lrs_nashoutput (lrs_dat * Q, lrs_mp_vector output, long player)
{
  long i;
  long origin=TRUE;

/* do not print the origin for either player */
  for (i = 1; i < Q->n; i++)
      if(!zero(output[i]))
         origin=FALSE;

  if (origin)
      return FALSE;

  fprintf (lrs_ofp, "\n%ld ",player);
  for (i = 1; i < Q->n; i++)
             prat ("", output[i], output[0]);
  fflush(lrs_ofp);
  return TRUE;
}  /* end lrs_nashoutput */