File: libzpaq.cpp

package info (click to toggle)
lrzip 0.641-1
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 1,260 kB
  • sloc: ansic: 13,577; cpp: 2,864; sh: 568; makefile: 238; asm: 197
file content (3186 lines) | stat: -rw-r--r-- 113,827 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
/* libzpaq.cpp - Part of LIBZPAQ Version 5.01

  Copyright (C) 2011, Dell Inc. Written by Matt Mahoney.

  Permission is hereby granted, free of charge, to any person obtaining a copy
  of this software and associated documentation files (the "Software"), to deal
  in the Software without restriction, including without limitation the rights
  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  copies of the Software, and to permit persons to whom the Software is
  furnished to do so without restriction.
  This Software is provided "as is" without warranty.

LIBZPAQ is a C++ library for compression and decompression of data
conforming to the ZPAQ level 2 standard. See http://mattmahoney.net/zpaq/
*/

#include "libzpaq.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#ifndef NOJIT
#ifndef _WIN32
#include <sys/mman.h>
#else
#include <windows.h>
#endif
#endif

namespace libzpaq {

// Standard library redirections
void* calloc(size_t a, size_t b) {return ::calloc(a, b);}
void free(void* p) {::free(p);}
int memcmp(const void* d, const void* s, size_t n) {
  return ::memcmp(d, s, n);}
void* memset(void* d, int c, size_t n) {return ::memset(d, c, n);}
double log(double x) {return ::log(x);}
double exp(double x) {return ::exp(x);}
double pow(double x, double y) {return ::pow(x, y);}

// Read 16 bit little-endian number
int toU16(const char* p) {
  return (p[0]&255)+256*(p[1]&255);
}

// Default read() and write()
int Reader::read(char* buf, int n) {
  int i=0, c;
  while (i<n && (c=get())>=0)
    buf[i++]=c;
  return i;
}

void Writer::write(const char* buf, int n) {
  for (int i=0; i<n; ++i)
    put(U8(buf[i]));
}

void error(const char* msg) {
  fprintf(stderr, "zpipe error: %s\n", msg);
  exit(1);
}
///////////////////////// allocx //////////////////////

// Allocate newsize > 0 bytes of executable memory and update
// p to point to it and newsize = n. Free any previously
// allocated memory first. If newsize is 0 then free only.
// Call error in case of failure. If NOJIT, ignore newsize
// and set p=0, n=0 without allocating memory.
void allocx(U8* &p, int &n, int newsize) {
#ifdef NOJIT
  p=0;
  n=0;
#else
  if (p || n) {
    if (p)
#ifndef _WIN32
      munmap(p, n);
#else // Windows
      VirtualFree(p, 0, MEM_RELEASE);
#endif
    p=0;
    n=0;
  }
  if (newsize>0) {
#ifndef _WIN32
    p=(U8*)mmap(0, newsize, PROT_READ|PROT_WRITE|PROT_EXEC,
                MAP_PRIVATE|MAP_ANON, -1, 0);
    if ((void*)p==MAP_FAILED) p=0;
#else
    p=(U8*)VirtualAlloc(0, newsize, MEM_RESERVE|MEM_COMMIT,
                        PAGE_EXECUTE_READWRITE);
#endif
    if (p)
      n=newsize;
    else {
      n=0;
      error("allocx failed");
    }
  }
#endif
}

//////////////////////////// SHA1 ////////////////////////////

// SHA1 code, see http://en.wikipedia.org/wiki/SHA-1

// Start a new hash
void SHA1::init() {
  len0=len1=0;
  h[0]=0x67452301;
  h[1]=0xEFCDAB89;
  h[2]=0x98BADCFE;
  h[3]=0x10325476;
  h[4]=0xC3D2E1F0;
}

// Return old result and start a new hash
const char* SHA1::result() {

  // pad and append length
  const U32 s1=len1, s0=len0;
  put(0x80);
  while ((len0&511)!=448)
    put(0);
  put(s1>>24);
  put(s1>>16);
  put(s1>>8);
  put(s1);
  put(s0>>24);
  put(s0>>16);
  put(s0>>8);
  put(s0);

  // copy h to hbuf
  for (int i=0; i<5; ++i) {
    hbuf[4*i]=h[i]>>24;
    hbuf[4*i+1]=h[i]>>16;
    hbuf[4*i+2]=h[i]>>8;
    hbuf[4*i+3]=h[i];
  }

  // return hash prior to clearing state
  init();
  return hbuf;
}

// Hash 1 block of 64 bytes
void SHA1::process() {
  for (int i=16; i<80; ++i) {
    w[i]=w[i-3]^w[i-8]^w[i-14]^w[i-16];
    w[i]=w[i]<<1|w[i]>>31;
  }
  U32 a=h[0];
  U32 b=h[1];
  U32 c=h[2];
  U32 d=h[3];
  U32 e=h[4];
  const U32 k1=0x5A827999, k2=0x6ED9EBA1, k3=0x8F1BBCDC, k4=0xCA62C1D6;
#define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+((b&c)|(~b&d))+k1+w[i]; b=b<<30|b>>2;
#define f5(i) f1(a,b,c,d,e,i) f1(e,a,b,c,d,i+1) f1(d,e,a,b,c,i+2) \
              f1(c,d,e,a,b,i+3) f1(b,c,d,e,a,i+4)
  f5(0) f5(5) f5(10) f5(15)
#undef f1
#define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+(b^c^d)+k2+w[i]; b=b<<30|b>>2;
  f5(20) f5(25) f5(30) f5(35)
#undef f1
#define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+((b&c)|(b&d)|(c&d))+k3+w[i]; b=b<<30|b>>2;
  f5(40) f5(45) f5(50) f5(55)
#undef f1
#define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+(b^c^d)+k4+w[i]; b=b<<30|b>>2;
  f5(60) f5(65) f5(70) f5(75)
#undef f1
#undef f5
  h[0]+=a;
  h[1]+=b;
  h[2]+=c;
  h[3]+=d;
  h[4]+=e;
}

//////////////////////////// Component ///////////////////////

// A Component is a context model, indirect context model, match model,
// fixed weight mixer, adaptive 2 input mixer without or with current
// partial byte as context, adaptive m input mixer (without or with),
// or SSE (without or with).

const int compsize[256]={0,2,3,2,3,4,6,6,3,5};

void Component::init() {
  limit=cxt=a=b=c=0;
  cm.resize(0);
  ht.resize(0);
  a16.resize(0);
}

////////////////////////// StateTable //////////////////////////

// How many states with count of n0 zeros, n1 ones (0...2)
int StateTable::num_states(int n0, int n1) {
  const int B=6;
  const int bound[B]={20,48,15,8,6,5}; // n0 -> max n1, n1 -> max n0
  if (n0<n1) return num_states(n1, n0);
  if (n0<0 || n1<0 || n1>=B || n0>bound[n1]) return 0;
  return 1+(n1>0 && n0+n1<=17);
}

// New value of count n0 if 1 is observed (and vice versa)
void StateTable::discount(int& n0) {
  n0=(n0>=1)+(n0>=2)+(n0>=3)+(n0>=4)+(n0>=5)+(n0>=7)+(n0>=8);
}

// compute next n0,n1 (0 to N) given input y (0 or 1)
void StateTable::next_state(int& n0, int& n1, int y) {
  if (n0<n1)
    next_state(n1, n0, 1-y);
  else {
    if (y) {
      ++n1;
      discount(n0);
    }
    else {
      ++n0;
      discount(n1);
    }
    // 20,0,0 -> 20,0
    // 48,1,0 -> 48,1
    // 15,2,0 -> 8,1
    //  8,3,0 -> 6,2
    //  8,3,1 -> 5,3
    //  6,4,0 -> 5,3
    //  5,5,0 -> 5,4
    //  5,5,1 -> 4,5
    while (!num_states(n0, n1)) {
      if (n1<2) --n0;
      else {
        n0=(n0*(n1-1)+(n1/2))/n1;
        --n1;
      }
    }
  }
}

// Initialize next state table ns[state*4] -> next if 0, next if 1, n0, n1
StateTable::StateTable() {

  // Assign states by increasing priority
  const int N=50;
  U8 t[N][N][2]={{{0}}}; // (n0,n1,y) -> state number
  int state=0;
  for (int i=0; i<N; ++i) {
    for (int n1=0; n1<=i; ++n1) {
      int n0=i-n1;
      int n=num_states(n0, n1);
      assert(n>=0 && n<=2);
      if (n) {
        t[n0][n1][0]=state;
        t[n0][n1][1]=state+n-1;
        state+=n;
      }
    }
  }
       
  // Generate next state table
  memset(ns, 0, sizeof(ns));
  for (int n0=0; n0<N; ++n0) {
    for (int n1=0; n1<N; ++n1) {
      for (int y=0; y<num_states(n0, n1); ++y) {
        int s=t[n0][n1][y];
        assert(s>=0 && s<256);
        int s0=n0, s1=n1;
        next_state(s0, s1, 0);
        assert(s0>=0 && s0<N && s1>=0 && s1<N);
        ns[s*4+0]=t[s0][s1][0];
        s0=n0, s1=n1;
        next_state(s0, s1, 1);
        assert(s0>=0 && s0<N && s1>=0 && s1<N);
        ns[s*4+1]=t[s0][s1][1];
        ns[s*4+2]=n0;
        ns[s*4+3]=n1;
      }
    }
  }
}

/////////////////////////// ZPAQL //////////////////////////

// Write header to out2, return true if HCOMP/PCOMP section is present.
// If pp is true, then write only the postprocessor code.
bool ZPAQL::write(Writer* out2, bool pp) {
  if (header.size()<=6) return false;
  assert(header[0]+256*header[1]==cend-2+hend-hbegin);
  assert(cend>=7);
  assert(hbegin>=cend);
  assert(hend>=hbegin);
  assert(out2);
  if (!pp) {  // if not a postprocessor then write COMP
    for (int i=0; i<cend; ++i)
      out2->put(header[i]);
  }
  else {  // write PCOMP size only
    out2->put((hend-hbegin)&255);
    out2->put((hend-hbegin)>>8);
  }
  for (int i=hbegin; i<hend; ++i)
    out2->put(header[i]);
  return true;
}

// Read header from in2
int ZPAQL::read(Reader* in2) {

  // Get header size and allocate
  int hsize=in2->get();
  hsize+=in2->get()*256;
  header.resize(hsize+300);
  cend=hbegin=hend=0;
  header[cend++]=hsize&255;
  header[cend++]=hsize>>8;
  while (cend<7) header[cend++]=in2->get(); // hh hm ph pm n

  // Read COMP
  int n=header[cend-1];
  for (int i=0; i<n; ++i) {
    int type=in2->get();  // component type
    if (type==-1) error("unexpected end of file");
    header[cend++]=type;  // component type
    int size=compsize[type];
    if (size<1) error("Invalid component type");
    if (cend+size>header.isize()-8) error("COMP list too big");
    for (int j=1; j<size; ++j)
      header[cend++]=in2->get();
  }
  if ((header[cend++]=in2->get())!=0) error("missing COMP END");

  // Insert a guard gap and read HCOMP
  hbegin=hend=cend+128;
  while (hend<hsize+129) {
    assert(hend<header.isize()-8);
    int op=in2->get();
    if (op==-1) error("unexpected end of file");
    header[hend++]=op;
  }
  if ((header[hend++]=in2->get())!=0) error("missing HCOMP END");
  assert(cend>=7 && cend<header.isize());
  assert(hbegin==cend+128 && hbegin<header.isize());
  assert(hend>hbegin && hend<header.isize());
  assert(hsize==header[0]+256*header[1]);
  assert(hsize==cend-2+hend-hbegin);
  allocx(rcode, rcode_size, 0);  // clear JIT code
  return cend+hend-hbegin;
}

// Free memory, but preserve output, sha1 pointers
void ZPAQL::clear() {
  cend=hbegin=hend=0;  // COMP and HCOMP locations
  a=b=c=d=f=pc=0;      // machine state
  header.resize(0);
  h.resize(0);
  m.resize(0);
  r.resize(0);
  allocx(rcode, rcode_size, 0);
}

// Constructor
ZPAQL::ZPAQL() {
  output=0;
  sha1=0;
  rcode=0;
  rcode_size=0;
  clear();
  outbuf.resize(1<<14);
  bufptr=0;
}

ZPAQL::~ZPAQL() {
  allocx(rcode, rcode_size, 0);
}

// Initialize machine state as HCOMP
void ZPAQL::inith() {
  assert(header.isize()>6);
  assert(output==0);
  assert(sha1==0);
  init(header[2], header[3]); // hh, hm
}

// Initialize machine state as PCOMP
void ZPAQL::initp() {
  assert(header.isize()>6);
  init(header[4], header[5]); // ph, pm
}

// Flush pending output
void ZPAQL::flush() {
  if (output) output->write(&outbuf[0], bufptr);
  if (sha1) for (int i=0; i<bufptr; ++i) sha1->put(U8(outbuf[i]));
  bufptr=0;
}

// Return memory requirement in bytes
double ZPAQL::memory() {
  double mem=pow(2.0,header[2]+2)+pow(2.0,header[3])  // hh hm
            +pow(2.0,header[4]+2)+pow(2.0,header[5])  // ph pm
            +header.size();
  int cp=7;  // start of comp list
  for (int i=0; i<header[6]; ++i) {  // n
    assert(cp<cend);
    double size=pow(2.0, header[cp+1]); // sizebits
    switch(header[cp]) {
      case CM: mem+=4*size; break;
      case ICM: mem+=64*size+1024; break;
      case MATCH: mem+=4*size+pow(2.0, header[cp+2]); break; // bufbits
      case MIX2: mem+=2*size; break;
      case MIX: mem+=4*size*header[cp+3]; break; // m
      case ISSE: mem+=64*size+2048; break;
      case SSE: mem+=128*size; break;
    }
    cp+=compsize[header[cp]];
  }
  return mem;
}

// Initialize machine state to run a program.
void ZPAQL::init(int hbits, int mbits) {
  assert(header.isize()>0);
  assert(cend>=7);
  assert(hbegin>=cend+128);
  assert(hend>=hbegin);
  assert(hend<header.isize()-130);
  assert(header[0]+256*header[1]==cend-2+hend-hbegin);
  assert(bufptr==0);
  assert(outbuf.isize()>0);
  h.resize(1, hbits);
  m.resize(1, mbits);
  r.resize(256);
  a=b=c=d=pc=f=0;
}

// Run program on input by interpreting header
void ZPAQL::run0(U32 input) {
  assert(cend>6);
  assert(hbegin>=cend+128);
  assert(hend>=hbegin);
  assert(hend<header.isize()-130);
  assert(m.size()>0);
  assert(h.size()>0);
  assert(header[0]+256*header[1]==cend+hend-hbegin-2);
  pc=hbegin;
  a=input;
  while (execute()) ;
}

// Execute one instruction, return 0 after HALT else 1
int ZPAQL::execute() {
  switch(header[pc++]) {
    case 0: err(); break; // ERROR
    case 1: ++a; break; // A++
    case 2: --a; break; // A--
    case 3: a = ~a; break; // A!
    case 4: a = 0; break; // A=0
    case 7: a = r[header[pc++]]; break; // A=R N
    case 8: swap(b); break; // B<>A
    case 9: ++b; break; // B++
    case 10: --b; break; // B--
    case 11: b = ~b; break; // B!
    case 12: b = 0; break; // B=0
    case 15: b = r[header[pc++]]; break; // B=R N
    case 16: swap(c); break; // C<>A
    case 17: ++c; break; // C++
    case 18: --c; break; // C--
    case 19: c = ~c; break; // C!
    case 20: c = 0; break; // C=0
    case 23: c = r[header[pc++]]; break; // C=R N
    case 24: swap(d); break; // D<>A
    case 25: ++d; break; // D++
    case 26: --d; break; // D--
    case 27: d = ~d; break; // D!
    case 28: d = 0; break; // D=0
    case 31: d = r[header[pc++]]; break; // D=R N
    case 32: swap(m(b)); break; // *B<>A
    case 33: ++m(b); break; // *B++
    case 34: --m(b); break; // *B--
    case 35: m(b) = ~m(b); break; // *B!
    case 36: m(b) = 0; break; // *B=0
    case 39: if (f) pc+=((header[pc]+128)&255)-127; else ++pc; break; // JT N
    case 40: swap(m(c)); break; // *C<>A
    case 41: ++m(c); break; // *C++
    case 42: --m(c); break; // *C--
    case 43: m(c) = ~m(c); break; // *C!
    case 44: m(c) = 0; break; // *C=0
    case 47: if (!f) pc+=((header[pc]+128)&255)-127; else ++pc; break; // JF N
    case 48: swap(h(d)); break; // *D<>A
    case 49: ++h(d); break; // *D++
    case 50: --h(d); break; // *D--
    case 51: h(d) = ~h(d); break; // *D!
    case 52: h(d) = 0; break; // *D=0
    case 55: r[header[pc++]] = a; break; // R=A N
    case 56: return 0  ; // HALT
    case 57: outc(a&255); break; // OUT
    case 59: a = (a+m(b)+512)*773; break; // HASH
    case 60: h(d) = (h(d)+a+512)*773; break; // HASHD
    case 63: pc+=((header[pc]+128)&255)-127; break; // JMP N
    case 64: break; // A=A
    case 65: a = b; break; // A=B
    case 66: a = c; break; // A=C
    case 67: a = d; break; // A=D
    case 68: a = m(b); break; // A=*B
    case 69: a = m(c); break; // A=*C
    case 70: a = h(d); break; // A=*D
    case 71: a = header[pc++]; break; // A= N
    case 72: b = a; break; // B=A
    case 73: break; // B=B
    case 74: b = c; break; // B=C
    case 75: b = d; break; // B=D
    case 76: b = m(b); break; // B=*B
    case 77: b = m(c); break; // B=*C
    case 78: b = h(d); break; // B=*D
    case 79: b = header[pc++]; break; // B= N
    case 80: c = a; break; // C=A
    case 81: c = b; break; // C=B
    case 82: break; // C=C
    case 83: c = d; break; // C=D
    case 84: c = m(b); break; // C=*B
    case 85: c = m(c); break; // C=*C
    case 86: c = h(d); break; // C=*D
    case 87: c = header[pc++]; break; // C= N
    case 88: d = a; break; // D=A
    case 89: d = b; break; // D=B
    case 90: d = c; break; // D=C
    case 91: break; // D=D
    case 92: d = m(b); break; // D=*B
    case 93: d = m(c); break; // D=*C
    case 94: d = h(d); break; // D=*D
    case 95: d = header[pc++]; break; // D= N
    case 96: m(b) = a; break; // *B=A
    case 97: m(b) = b; break; // *B=B
    case 98: m(b) = c; break; // *B=C
    case 99: m(b) = d; break; // *B=D
    case 100: m(b) = m(b); break; // *B=*B
    case 101: m(b) = m(c); break; // *B=*C
    case 102: m(b) = h(d); break; // *B=*D
    case 103: m(b) = header[pc++]; break; // *B= N
    case 104: m(c) = a; break; // *C=A
    case 105: m(c) = b; break; // *C=B
    case 106: m(c) = c; break; // *C=C
    case 107: m(c) = d; break; // *C=D
    case 108: m(c) = m(b); break; // *C=*B
    case 109: m(c) = m(c); break; // *C=*C
    case 110: m(c) = h(d); break; // *C=*D
    case 111: m(c) = header[pc++]; break; // *C= N
    case 112: h(d) = a; break; // *D=A
    case 113: h(d) = b; break; // *D=B
    case 114: h(d) = c; break; // *D=C
    case 115: h(d) = d; break; // *D=D
    case 116: h(d) = m(b); break; // *D=*B
    case 117: h(d) = m(c); break; // *D=*C
    case 118: h(d) = h(d); break; // *D=*D
    case 119: h(d) = header[pc++]; break; // *D= N
    case 128: a += a; break; // A+=A
    case 129: a += b; break; // A+=B
    case 130: a += c; break; // A+=C
    case 131: a += d; break; // A+=D
    case 132: a += m(b); break; // A+=*B
    case 133: a += m(c); break; // A+=*C
    case 134: a += h(d); break; // A+=*D
    case 135: a += header[pc++]; break; // A+= N
    case 136: a -= a; break; // A-=A
    case 137: a -= b; break; // A-=B
    case 138: a -= c; break; // A-=C
    case 139: a -= d; break; // A-=D
    case 140: a -= m(b); break; // A-=*B
    case 141: a -= m(c); break; // A-=*C
    case 142: a -= h(d); break; // A-=*D
    case 143: a -= header[pc++]; break; // A-= N
    case 144: a *= a; break; // A*=A
    case 145: a *= b; break; // A*=B
    case 146: a *= c; break; // A*=C
    case 147: a *= d; break; // A*=D
    case 148: a *= m(b); break; // A*=*B
    case 149: a *= m(c); break; // A*=*C
    case 150: a *= h(d); break; // A*=*D
    case 151: a *= header[pc++]; break; // A*= N
    case 152: div(a); break; // A/=A
    case 153: div(b); break; // A/=B
    case 154: div(c); break; // A/=C
    case 155: div(d); break; // A/=D
    case 156: div(m(b)); break; // A/=*B
    case 157: div(m(c)); break; // A/=*C
    case 158: div(h(d)); break; // A/=*D
    case 159: div(header[pc++]); break; // A/= N
    case 160: mod(a); break; // A%=A
    case 161: mod(b); break; // A%=B
    case 162: mod(c); break; // A%=C
    case 163: mod(d); break; // A%=D
    case 164: mod(m(b)); break; // A%=*B
    case 165: mod(m(c)); break; // A%=*C
    case 166: mod(h(d)); break; // A%=*D
    case 167: mod(header[pc++]); break; // A%= N
    case 168: a &= a; break; // A&=A
    case 169: a &= b; break; // A&=B
    case 170: a &= c; break; // A&=C
    case 171: a &= d; break; // A&=D
    case 172: a &= m(b); break; // A&=*B
    case 173: a &= m(c); break; // A&=*C
    case 174: a &= h(d); break; // A&=*D
    case 175: a &= header[pc++]; break; // A&= N
    case 176: a &= ~ a; break; // A&~A
    case 177: a &= ~ b; break; // A&~B
    case 178: a &= ~ c; break; // A&~C
    case 179: a &= ~ d; break; // A&~D
    case 180: a &= ~ m(b); break; // A&~*B
    case 181: a &= ~ m(c); break; // A&~*C
    case 182: a &= ~ h(d); break; // A&~*D
    case 183: a &= ~ header[pc++]; break; // A&~ N
    case 184: a |= a; break; // A|=A
    case 185: a |= b; break; // A|=B
    case 186: a |= c; break; // A|=C
    case 187: a |= d; break; // A|=D
    case 188: a |= m(b); break; // A|=*B
    case 189: a |= m(c); break; // A|=*C
    case 190: a |= h(d); break; // A|=*D
    case 191: a |= header[pc++]; break; // A|= N
    case 192: a ^= a; break; // A^=A
    case 193: a ^= b; break; // A^=B
    case 194: a ^= c; break; // A^=C
    case 195: a ^= d; break; // A^=D
    case 196: a ^= m(b); break; // A^=*B
    case 197: a ^= m(c); break; // A^=*C
    case 198: a ^= h(d); break; // A^=*D
    case 199: a ^= header[pc++]; break; // A^= N
    case 200: a <<= (a&31); break; // A<<=A
    case 201: a <<= (b&31); break; // A<<=B
    case 202: a <<= (c&31); break; // A<<=C
    case 203: a <<= (d&31); break; // A<<=D
    case 204: a <<= (m(b)&31); break; // A<<=*B
    case 205: a <<= (m(c)&31); break; // A<<=*C
    case 206: a <<= (h(d)&31); break; // A<<=*D
    case 207: a <<= (header[pc++]&31); break; // A<<= N
    case 208: a >>= (a&31); break; // A>>=A
    case 209: a >>= (b&31); break; // A>>=B
    case 210: a >>= (c&31); break; // A>>=C
    case 211: a >>= (d&31); break; // A>>=D
    case 212: a >>= (m(b)&31); break; // A>>=*B
    case 213: a >>= (m(c)&31); break; // A>>=*C
    case 214: a >>= (h(d)&31); break; // A>>=*D
    case 215: a >>= (header[pc++]&31); break; // A>>= N
    case 216: f = (true); break; // A==A
    case 217: f = (a == b); break; // A==B
    case 218: f = (a == c); break; // A==C
    case 219: f = (a == d); break; // A==D
    case 220: f = (a == U32(m(b))); break; // A==*B
    case 221: f = (a == U32(m(c))); break; // A==*C
    case 222: f = (a == h(d)); break; // A==*D
    case 223: f = (a == U32(header[pc++])); break; // A== N
    case 224: f = (false); break; // A<A
    case 225: f = (a < b); break; // A<B
    case 226: f = (a < c); break; // A<C
    case 227: f = (a < d); break; // A<D
    case 228: f = (a < U32(m(b))); break; // A<*B
    case 229: f = (a < U32(m(c))); break; // A<*C
    case 230: f = (a < h(d)); break; // A<*D
    case 231: f = (a < U32(header[pc++])); break; // A< N
    case 232: f = (false); break; // A>A
    case 233: f = (a > b); break; // A>B
    case 234: f = (a > c); break; // A>C
    case 235: f = (a > d); break; // A>D
    case 236: f = (a > U32(m(b))); break; // A>*B
    case 237: f = (a > U32(m(c))); break; // A>*C
    case 238: f = (a > h(d)); break; // A>*D
    case 239: f = (a > U32(header[pc++])); break; // A> N
    case 255: if((pc=hbegin+header[pc]+256*header[pc+1])>=hend)err();break;//LJ
    default: err();
  }
  return 1;
}

// Print illegal instruction error message and exit
void ZPAQL::err() {
  error("ZPAQL execution error");
}

///////////////////////// Predictor /////////////////////////

// Initailize model-independent tables
Predictor::Predictor(ZPAQL& zr):
    c8(1), hmap4(1), z(zr) {
  assert(sizeof(U8)==1);
  assert(sizeof(U16)==2);
  assert(sizeof(U32)==4);
  assert(sizeof(U64)==8);
  assert(sizeof(short)==2);
  assert(sizeof(int)==4);

  // Initialize tables
  dt2k[0]=0;
  for (int i=1; i<256; ++i)
    dt2k[i]=2048/i;
  for (int i=0; i<1024; ++i)
    dt[i]=(1<<17)/(i*2+3)*2;
  for (int i=0; i<32768; ++i)
    stretcht[i]=int(log((i+0.5)/(32767.5-i))*64+0.5+100000)-100000;
  for (int i=0; i<4096; ++i)
    squasht[i]=int(32768.0/(1+exp((i-2048)*(-1.0/64))));

  // Verify floating point math for squash() and stretch()
  U32 sqsum=0, stsum=0;
  for (int i=32767; i>=0; --i)
    stsum=stsum*3+stretch(i);
  for (int i=4095; i>=0; --i)
    sqsum=sqsum*3+squash(i-2048);
  assert(stsum==3887533746u);
  assert(sqsum==2278286169u);

  pcode=0;
  pcode_size=0;
}

Predictor::~Predictor() {
  allocx(pcode, pcode_size, 0);  // free executable memory
}

// Initialize the predictor with a new model in z
void Predictor::init() {

  // Clear old JIT code if any
  allocx(pcode, pcode_size, 0);

  // Initialize context hash function
  z.inith();

  // Initialize predictions
  for (int i=0; i<256; ++i) h[i]=p[i]=0;

  // Initialize components
  for (int i=0; i<256; ++i)  // clear old model
    comp[i].init();
  int n=z.header[6]; // hsize[0..1] hh hm ph pm n (comp)[n] END 0[128] (hcomp) END
  const U8* cp=&z.header[7];  // start of component list
  for (int i=0; i<n; ++i) {
    assert(cp<&z.header[z.cend]);
    assert(cp>&z.header[0] && cp<&z.header[z.header.isize()-8]);
    Component& cr=comp[i];
    switch(cp[0]) {
      case CONS:  // c
        p[i]=(cp[1]-128)*4;
        break;
      case CM: // sizebits limit
        if (cp[1]>32) error("max size for CM is 32");
        cr.cm.resize(1, cp[1]);  // packed CM (22 bits) + CMCOUNT (10 bits)
        cr.limit=cp[2]*4;
        for (size_t j=0; j<cr.cm.size(); ++j)
          cr.cm[j]=0x80000000;
        break;
      case ICM: // sizebits
        if (cp[1]>26) error("max size for ICM is 26");
        cr.limit=1023;
        cr.cm.resize(256);
        cr.ht.resize(64, cp[1]);
        for (size_t j=0; j<cr.cm.size(); ++j)
          cr.cm[j]=st.cminit(j);
        break;
      case MATCH:  // sizebits
        if (cp[1]>32 || cp[2]>32) error("max size for MATCH is 32 32");
        cr.cm.resize(1, cp[1]);  // index
        cr.ht.resize(1, cp[2]);  // buf
        cr.ht(0)=1;
        break;
      case AVG: // j k wt
        if (cp[1]>=i) error("AVG j >= i");
        if (cp[2]>=i) error("AVG k >= i");
        break;
      case MIX2:  // sizebits j k rate mask
        if (cp[1]>32) error("max size for MIX2 is 32");
        if (cp[3]>=i) error("MIX2 k >= i");
        if (cp[2]>=i) error("MIX2 j >= i");
        cr.c=(size_t(1)<<cp[1]); // size (number of contexts)
        cr.a16.resize(1, cp[1]);  // wt[size][m]
        for (size_t j=0; j<cr.a16.size(); ++j)
          cr.a16[j]=32768;
        break;
      case MIX: {  // sizebits j m rate mask
        if (cp[1]>32) error("max size for MIX is 32");
        if (cp[2]>=i) error("MIX j >= i");
        if (cp[3]<1 || cp[3]>i-cp[2]) error("MIX m not in 1..i-j");
        int m=cp[3];  // number of inputs
        assert(m>=1);
        cr.c=(size_t(1)<<cp[1]); // size (number of contexts)
        cr.cm.resize(m, cp[1]);  // wt[size][m]
        for (size_t j=0; j<cr.cm.size(); ++j)
          cr.cm[j]=65536/m;
        break;
      }
      case ISSE:  // sizebits j
        if (cp[1]>32) error("max size for ISSE is 32");
        if (cp[2]>=i) error("ISSE j >= i");
        cr.ht.resize(64, cp[1]);
        cr.cm.resize(512);
        for (int j=0; j<256; ++j) {
          cr.cm[j*2]=1<<15;
          cr.cm[j*2+1]=clamp512k(stretch(st.cminit(j)>>8)<<10);
        }
        break;
      case SSE: // sizebits j start limit
        if (cp[1]>32) error("max size for SSE is 32");
        if (cp[2]>=i) error("SSE j >= i");
        if (cp[3]>cp[4]*4) error("SSE start > limit*4");
        cr.cm.resize(32, cp[1]);
        cr.limit=cp[4]*4;
        for (size_t j=0; j<cr.cm.size(); ++j)
          cr.cm[j]=squash((j&31)*64-992)<<17|cp[3];
        break;
      default: error("unknown component type");
    }
    assert(compsize[*cp]>0);
    cp+=compsize[*cp];
    assert(cp>=&z.header[7] && cp<&z.header[z.cend]);
  }
}

// Return next bit prediction using interpreted COMP code
int Predictor::predict0() {
  assert(c8>=1 && c8<=255);

  // Predict next bit
  int n=z.header[6];
  assert(n>0 && n<=255);
  const U8* cp=&z.header[7];
  assert(cp[-1]==n);
  for (int i=0; i<n; ++i) {
    assert(cp>&z.header[0] && cp<&z.header[z.header.isize()-8]);
    Component& cr=comp[i];
    switch(cp[0]) {
      case CONS:  // c
        break;
      case CM:  // sizebits limit
        cr.cxt=h[i]^hmap4;
        p[i]=stretch(cr.cm(cr.cxt)>>17);
        break;
      case ICM: // sizebits
        assert((hmap4&15)>0);
        if (c8==1 || (c8&0xf0)==16) cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8);
        cr.cxt=cr.ht[cr.c+(hmap4&15)];
        p[i]=stretch(cr.cm(cr.cxt)>>8);
        break;
      case MATCH: // sizebits bufbits: a=len, b=offset, c=bit, cxt=bitpos,
                  //                   ht=buf, limit=pos
        assert(cr.cm.size()==(size_t(1)<<cp[1]));
        assert(cr.ht.size()==(size_t(1)<<cp[2]));
        assert(cr.a<=255);
        assert(cr.c==0 || cr.c==1);
        assert(cr.cxt<8);
        assert(cr.limit<cr.ht.size());
        if (cr.a==0) p[i]=0;
        else {
          cr.c=(cr.ht(cr.limit-cr.b)>>(7-cr.cxt))&1; // predicted bit
          p[i]=stretch(dt2k[cr.a]*(cr.c*-2+1)&32767);
        }
        break;
      case AVG: // j k wt
        p[i]=(p[cp[1]]*cp[3]+p[cp[2]]*(256-cp[3]))>>8;
        break;
      case MIX2: { // sizebits j k rate mask
                   // c=size cm=wt[size] cxt=input
        cr.cxt=((h[i]+(c8&cp[5]))&(cr.c-1));
        assert(cr.cxt<cr.a16.size());
        int w=cr.a16[cr.cxt];
        assert(w>=0 && w<65536);
        p[i]=(w*p[cp[2]]+(65536-w)*p[cp[3]])>>16;
        assert(p[i]>=-2048 && p[i]<2048);
      }
        break;
      case MIX: {  // sizebits j m rate mask
                   // c=size cm=wt[size][m] cxt=index of wt in cm
        int m=cp[3];
        assert(m>=1 && m<=i);
        cr.cxt=h[i]+(c8&cp[5]);
        cr.cxt=(cr.cxt&(cr.c-1))*m; // pointer to row of weights
        assert(cr.cxt<=cr.cm.size()-m);
        int* wt=(int*)&cr.cm[cr.cxt];
        p[i]=0;
        for (int j=0; j<m; ++j)
          p[i]+=(wt[j]>>8)*p[cp[2]+j];
        p[i]=clamp2k(p[i]>>8);
      }
        break;
      case ISSE: { // sizebits j -- c=hi, cxt=bh
        assert((hmap4&15)>0);
        if (c8==1 || (c8&0xf0)==16)
          cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8);
        cr.cxt=cr.ht[cr.c+(hmap4&15)];  // bit history
        int *wt=(int*)&cr.cm[cr.cxt*2];
        p[i]=clamp2k((wt[0]*p[cp[2]]+wt[1]*64)>>16);
      }
        break;
      case SSE: { // sizebits j start limit
        cr.cxt=(h[i]+c8)*32;
        int pq=p[cp[2]]+992;
        if (pq<0) pq=0;
        if (pq>1983) pq=1983;
        int wt=pq&63;
        pq>>=6;
        assert(pq>=0 && pq<=30);
        cr.cxt+=pq;
        p[i]=stretch(((cr.cm(cr.cxt)>>10)*(64-wt)+(cr.cm(cr.cxt+1)>>10)*wt)>>13);
        cr.cxt+=wt>>5;
      }
        break;
      default:
        error("component predict not implemented");
    }
    cp+=compsize[cp[0]];
    assert(cp<&z.header[z.cend]);
    assert(p[i]>=-2048 && p[i]<2048);
  }
  assert(cp[0]==NONE);
  return squash(p[n-1]);
}

// Update model with decoded bit y (0...1)
void Predictor::update0(int y) {
  assert(y==0 || y==1);
  assert(c8>=1 && c8<=255);
  assert(hmap4>=1 && hmap4<=511);

  // Update components
  const U8* cp=&z.header[7];
  int n=z.header[6];
  assert(n>=1 && n<=255);
  assert(cp[-1]==n);
  for (int i=0; i<n; ++i) {
    Component& cr=comp[i];
    switch(cp[0]) {
      case CONS:  // c
        break;
      case CM:  // sizebits limit
        train(cr, y);
        break;
      case ICM: { // sizebits: cxt=ht[b]=bh, ht[c][0..15]=bh row, cxt=bh
        cr.ht[cr.c+(hmap4&15)]=st.next(cr.ht[cr.c+(hmap4&15)], y);
        U32& pn=cr.cm(cr.cxt);
        pn+=int(y*32767-(pn>>8))>>2;
      }
        break;
      case MATCH: // sizebits bufbits:
                  //   a=len, b=offset, c=bit, cm=index, cxt=bitpos
                  //   ht=buf, limit=pos
      {
        assert(cr.a<=255);
        assert(cr.c==0 || cr.c==1);
        assert(cr.cxt<8);
        assert(cr.cm.size()==(size_t(1)<<cp[1]));
        assert(cr.ht.size()==(size_t(1)<<cp[2]));
        assert(cr.limit<cr.ht.size());
        if (int(cr.c)!=y) cr.a=0;  // mismatch?
        cr.ht(cr.limit)+=cr.ht(cr.limit)+y;
        if (++cr.cxt==8) {
          cr.cxt=0;
          ++cr.limit;
          cr.limit&=(1<<cp[2])-1;
          if (cr.a==0) {  // look for a match
            cr.b=cr.limit-cr.cm(h[i]);
            if (cr.b&(cr.ht.size()-1))
              while (cr.a<255
                     && cr.ht(cr.limit-cr.a-1)==cr.ht(cr.limit-cr.a-cr.b-1))
                ++cr.a;
          }
          else cr.a+=cr.a<255;
          cr.cm(h[i])=cr.limit;
        }
      }
        break;
      case AVG:  // j k wt
        break;
      case MIX2: { // sizebits j k rate mask
                   // cm=wt[size], cxt=input
        assert(cr.a16.size()==cr.c);
        assert(cr.cxt<cr.a16.size());
        int err=(y*32767-squash(p[i]))*cp[4]>>5;
        int w=cr.a16[cr.cxt];
        w+=(err*(p[cp[2]]-p[cp[3]])+(1<<12))>>13;
        if (w<0) w=0;
        if (w>65535) w=65535;
        cr.a16[cr.cxt]=w;
      }
        break;
      case MIX: {   // sizebits j m rate mask
                    // cm=wt[size][m], cxt=input
        int m=cp[3];
        assert(m>0 && m<=i);
        assert(cr.cm.size()==m*cr.c);
        assert(cr.cxt+m<=cr.cm.size());
        int err=(y*32767-squash(p[i]))*cp[4]>>4;
        int* wt=(int*)&cr.cm[cr.cxt];
        for (int j=0; j<m; ++j)
          wt[j]=clamp512k(wt[j]+((err*p[cp[2]+j]+(1<<12))>>13));
      }
        break;
      case ISSE: { // sizebits j  -- c=hi, cxt=bh
        assert(cr.cxt==cr.ht[cr.c+(hmap4&15)]);
        int err=y*32767-squash(p[i]);
        int *wt=(int*)&cr.cm[cr.cxt*2];
        wt[0]=clamp512k(wt[0]+((err*p[cp[2]]+(1<<12))>>13));
        wt[1]=clamp512k(wt[1]+((err+16)>>5));
        cr.ht[cr.c+(hmap4&15)]=st.next(cr.cxt, y);
      }
        break;
      case SSE:  // sizebits j start limit
        train(cr, y);
        break;
      default:
        assert(0);
    }
    cp+=compsize[cp[0]];
    assert(cp>=&z.header[7] && cp<&z.header[z.cend] 
           && cp<&z.header[z.header.isize()-8]);
  }
  assert(cp[0]==NONE);

  // Save bit y in c8, hmap4
  c8+=c8+y;
  if (c8>=256) {
    z.run(c8-256);
    hmap4=1;
    c8=1;
    for (int i=0; i<n; ++i) h[i]=z.H(i);
  }
  else if (c8>=16 && c8<32)
    hmap4=(hmap4&0xf)<<5|y<<4|1;
  else
    hmap4=(hmap4&0x1f0)|(((hmap4&0xf)*2+y)&0xf);
}

// Find cxt row in hash table ht. ht has rows of 16 indexed by the
// low sizebits of cxt with element 0 having the next higher 8 bits for
// collision detection. If not found after 3 adjacent tries, replace the
// row with lowest element 1 as priority. Return index of row.
size_t Predictor::find(Array<U8>& ht, int sizebits, U32 cxt) {
  assert(ht.size()==size_t(16)<<sizebits);
  int chk=cxt>>sizebits&255;
  size_t h0=(cxt*16)&(ht.size()-16);
  if (ht[h0]==chk) return h0;
  size_t h1=h0^16;
  if (ht[h1]==chk) return h1;
  size_t h2=h0^32;
  if (ht[h2]==chk) return h2;
  if (ht[h0+1]<=ht[h1+1] && ht[h0+1]<=ht[h2+1])
    return memset(&ht[h0], 0, 16), ht[h0]=chk, h0;
  else if (ht[h1+1]<ht[h2+1])
    return memset(&ht[h1], 0, 16), ht[h1]=chk, h1;
  else
    return memset(&ht[h2], 0, 16), ht[h2]=chk, h2;
}

/////////////////////// Decoder ///////////////////////

Decoder::Decoder(ZPAQL& z):
    in(0), low(1), high(0xFFFFFFFF), curr(0), pr(z), buf(BUFSIZE) {
}

void Decoder::init() {
  pr.init();
  if (pr.isModeled()) low=1, high=0xFFFFFFFF, curr=0;
  else low=high=curr=0;
}

// Read un-modeled input into buf[low=0..high-1]
// with curr remaining in subblock to read.
void Decoder::loadbuf() {
  assert(!pr.isModeled());
  assert(low==high);
  if (curr==0) {
    for (int i=0; i<4; ++i) {
      int c=in->get();
      if (c<0) error("unexpected end of input");
      curr=curr<<8|c;
    }
  }
  U32 n=buf.size();
  if (n>curr) n=curr;
  high=in->read(&buf[0], n);
  curr-=high;
  low=0;
}

// Return next bit of decoded input, which has 16 bit probability p of being 1
int Decoder::decode(int p) {
  assert(p>=0 && p<65536);
  assert(high>low && low>0);
  if (curr<low || curr>high) error("archive corrupted");
  assert(curr>=low && curr<=high);
  U32 mid=low+U32(((high-low)*U64(U32(p)))>>16);  // split range
  assert(high>mid && mid>=low);
  int y=curr<=mid;
  if (y) high=mid; else low=mid+1; // pick half
  while ((high^low)<0x1000000) { // shift out identical leading bytes
    high=high<<8|255;
    low=low<<8;
    low+=(low==0);
    int c=in->get();
    if (c<0) error("unexpected end of file");
    curr=curr<<8|c;
  }
  return y;
}

// Decompress 1 byte or -1 at end of input
int Decoder::decompress() {
  if (pr.isModeled()) {  // n>0 components?
    if (curr==0) {  // segment initialization
      for (int i=0; i<4; ++i)
        curr=curr<<8|in->get();
    }
    if (decode(0)) {
      if (curr!=0) error("decoding end of stream");
      return -1;
    }
    else {
      int c=1;
      while (c<256) {  // get 8 bits
        int p=pr.predict()*2+1;
        c+=c+decode(p);
        pr.update(c&1);
      }
      return c-256;
    }
  }
  else {
    if (low==high) loadbuf();
    if (low==high) return -1;
    return buf[low++]&255;
  }
}

// Find end of compressed data and return next byte
int Decoder::skip() {
  int c=-1;
  if (pr.isModeled()) {
    while (curr==0)  // at start?
      curr=in->get();
    while (curr && (c=in->get())>=0)  // find 4 zeros
      curr=curr<<8|c;
    while ((c=in->get())==0) ;  // might be more than 4
    return c;
  }
  else {
    if (curr==0)  // at start?
      for (int i=0; i<4 && (c=in->get())>=0; ++i) curr=curr<<8|c;
    while (curr>0) {
      U32 n=BUFSIZE;
      if (n>curr) n=curr;
      U32 n1=in->read(&buf[0], n);
      curr-=n1;
      if (n1!=n) return -1;
      if (curr==0)
        for (int i=0; i<4 && (c=in->get())>=0; ++i) curr=curr<<8|c;
    }
    if (c>=0) c=in->get();
    return c;
  }
}

////////////////////// PostProcessor //////////////////////

// Copy ph, pm from block header
void PostProcessor::init(int h, int m) {
  state=hsize=0;
  ph=h;
  pm=m;
  z.clear();
}

// (PASS=0 | PROG=1 psize[0..1] pcomp[0..psize-1]) data... EOB=-1
// Return state: 1=PASS, 2..4=loading PROG, 5=PROG loaded
int PostProcessor::write(int c) {
  assert(c>=-1 && c<=255);
  switch (state) {
    case 0:  // initial state
      if (c<0) error("Unexpected EOS");
      state=c+1;  // 1=PASS, 2=PROG
      if (state>2) error("unknown post processing type");
      if (state==1) z.clear();
      break;
    case 1:  // PASS
      z.outc(c);
      break;
    case 2: // PROG
      if (c<0) error("Unexpected EOS");
      hsize=c;  // low byte of size
      state=3;
      break;
    case 3:  // PROG psize[0]
      if (c<0) error("Unexpected EOS");
      hsize+=c*256;  // high byte of psize
      z.header.resize(hsize+300);
      z.cend=8;
      z.hbegin=z.hend=z.cend+128;
      z.header[4]=ph;
      z.header[5]=pm;
      state=4;
      break;
    case 4:  // PROG psize[0..1] pcomp[0...]
      if (c<0) error("Unexpected EOS");
      assert(z.hend<z.header.isize());
      z.header[z.hend++]=c;  // one byte of pcomp
      if (z.hend-z.hbegin==hsize) {  // last byte of pcomp?
        hsize=z.cend-2+z.hend-z.hbegin;
        z.header[0]=hsize&255;  // header size with empty COMP
        z.header[1]=hsize>>8;
        z.initp();
        state=5;
      }
      break;
    case 5:  // PROG ... data
      z.run(c);
      if (c<0) z.flush();
      break;
  }
  return state;
}

/////////////////////// Decompresser /////////////////////

// Find the start of a block and return true if found. Set memptr
// to memory used.
bool Decompresser::findBlock(double* memptr) {
  assert(state==BLOCK);

  // Find start of block
  U32 h1=0x3D49B113, h2=0x29EB7F93, h3=0x2614BE13, h4=0x3828EB13;
  // Rolling hashes initialized to hash of first 13 bytes
  int c;
  while ((c=dec.in->get())!=-1) {
    h1=h1*12+c;
    h2=h2*20+c;
    h3=h3*28+c;
    h4=h4*44+c;
    if (h1==0xB16B88F1 && h2==0xFF5376F1 && h3==0x72AC5BF1 && h4==0x2F909AF1)
      break;  // hash of 16 byte string
  }
  if (c==-1) return false;

  // Read header
  if ((c=dec.in->get())!=1 && c!=2) error("unsupported ZPAQ level");
  if (dec.in->get()!=1) error("unsupported ZPAQL type");
  z.read(dec.in);
  if (c==1 && z.header.isize()>6 && z.header[6]==0)
    error("ZPAQ level 1 requires at least 1 component");
  if (memptr) *memptr=z.memory();
  state=FILENAME;
  decode_state=FIRSTSEG;
  return true;
}

// Read the start of a segment (1) or end of block code (255).
// If a segment is found, write the filename and return true, else false.
bool Decompresser::findFilename(Writer* filename) {
  assert(state==FILENAME);
  int c=dec.in->get();
  if (c==1) {  // segment found
    while (true) {
      c=dec.in->get();
      if (c==-1) error("unexpected EOF");
      if (c==0) {
        state=COMMENT;
        return true;
      }
      if (filename) filename->put(c);
    }
  }
  else if (c==255) {  // end of block found
    state=BLOCK;
    return false;
  }
  else
    error("missing segment or end of block");
  return false;
}

// Read the comment from the segment header
void Decompresser::readComment(Writer* comment) {
  assert(state==COMMENT);
  state=DATA;
  while (true) {
    int c=dec.in->get();
    if (c==-1) error("unexpected EOF");
    if (c==0) break;
    if (comment) comment->put(c);
  }
  if (dec.in->get()!=0) error("missing reserved byte");
}

// Decompress n bytes, or all if n < 0. Return false if done
bool Decompresser::decompress(int n) {
  assert(state==DATA);
  assert(decode_state!=SKIP);

  // Initialize models to start decompressing block
  if (decode_state==FIRSTSEG) {
    dec.init();
    assert(z.header.size()>5);
    pp.init(z.header[4], z.header[5]);
    decode_state=SEG;
  }

  // Decompress and load PCOMP into postprocessor
  while ((pp.getState()&3)!=1)
    pp.write(dec.decompress());

  // Decompress n bytes, or all if n < 0
  while (n) {
    int c=dec.decompress();
    pp.write(c);
    if (c==-1) {
      state=SEGEND;
      return false;
    }
    if (n>0) --n;
  }
  return true;
}

// Read end of block. If a SHA1 checksum is present, write 1 and the
// 20 byte checksum into sha1string, else write 0 in first byte.
// If sha1string is 0 then discard it.
void Decompresser::readSegmentEnd(char* sha1string) {
  assert(state==DATA || state==SEGEND);

  // Skip remaining data if any and get next byte
  int c=0;
  if (state==DATA) {
    c=dec.skip();
    decode_state=SKIP;
  }
  else if (state==SEGEND)
    c=dec.in->get();
  state=FILENAME;

  // Read checksum
  if (c==254) {
    if (sha1string) sha1string[0]=0;  // no checksum
  }
  else if (c==253) {
    if (sha1string) sha1string[0]=1;
    for (int i=1; i<=20; ++i) {
      c=dec.in->get();
      if (sha1string) sha1string[i]=c;
    }
  }
  else
    error("missing end of segment marker");
}

/////////////////////////// decompress() /////////////////////

void decompress(Reader* in, Writer* out) {
  Decompresser d;
  d.setInput(in);
  d.setOutput(out);
  while (d.findBlock()) {       // don't calculate memory
    while (d.findFilename()) {  // discard filename
      d.readComment();          // discard comment
      d.decompress();           // to end of segment
      d.readSegmentEnd();       // discard sha1string
    }
  }
}

////////////////////// Encoder ////////////////////

// Initialize for start of block
void Encoder::init() {
  low=1;
  high=0xFFFFFFFF;
  pr.init();
  if (!pr.isModeled()) low=0, buf.resize(1<<16);
}

// compress bit y having probability p/64K
void Encoder::encode(int y, int p) {
  assert(out);
  assert(p>=0 && p<65536);
  assert(y==0 || y==1);
  assert(high>low && low>0);
  U32 mid=low+U32(((high-low)*U64(U32(p)))>>16);  // split range
  assert(high>mid && mid>=low);
  if (y) high=mid; else low=mid+1; // pick half
  while ((high^low)<0x1000000) { // write identical leading bytes
    out->put(high>>24);  // same as low>>24
    high=high<<8|255;
    low=low<<8;
    low+=(low==0); // so we don't code 4 0 bytes in a row
  }
}

// compress byte c (0..255 or -1=EOS)
void Encoder::compress(int c) {
  assert(out);
  if (pr.isModeled()) {
    if (c==-1)
      encode(1, 0);
    else {
      assert(c>=0 && c<=255);
      encode(0, 0);
      for (int i=7; i>=0; --i) {
        int p=pr.predict()*2+1;
        assert(p>0 && p<65536);
        int y=c>>i&1;
        encode(y, p);
        pr.update(y);
      }
    }
  }
  else {
    if (c<0 || low==buf.size()) {
      out->put((low>>24)&255);
      out->put((low>>16)&255);
      out->put((low>>8)&255);
      out->put(low&255);
      out->write(&buf[0], low);
      low=0;
    }
    if (c>=0) buf[low++]=c;
  }
}

///////////////////// Compressor //////////////////////

// Write 13 byte start tag
// "\x37\x6B\x53\x74\xA0\x31\x83\xD3\x8C\xB2\x28\xB0\xD3"
void Compressor::writeTag() {
  assert(state==INIT);
  enc.out->put(0x37);
  enc.out->put(0x6b);
  enc.out->put(0x53);
  enc.out->put(0x74);
  enc.out->put(0xa0);
  enc.out->put(0x31);
  enc.out->put(0x83);
  enc.out->put(0xd3);
  enc.out->put(0x8c);
  enc.out->put(0xb2);
  enc.out->put(0x28);
  enc.out->put(0xb0);
  enc.out->put(0xd3);
}

void Compressor::startBlock(int level) {

  // Model 1 - min.cfg
  static const char models[]={
  26,0,1,2,0,0,2,3,16,8,19,0,0,96,4,28,
  59,10,59,112,25,10,59,10,59,112,56,0,

  // Model 2 - mid.cfg
  69,0,3,3,0,0,8,3,5,8,13,0,8,17,1,8,
  18,2,8,18,3,8,19,4,4,22,24,7,16,0,7,24,
  (char)-1,0,17,104,74,4,95,1,59,112,10,25,59,112,10,25,
  59,112,10,25,59,112,10,25,59,112,10,25,59,10,59,112,
  25,69,(char)-49,8,112,56,0,

  // Model 3 - max.cfg
  (char)-60,0,5,9,0,0,22,1,(char)-96,3,5,8,13,1,8,16,
  2,8,18,3,8,19,4,8,19,5,8,20,6,4,22,24,
  3,17,8,19,9,3,13,3,13,3,13,3,14,7,16,0,
  15,24,(char)-1,7,8,0,16,10,(char)-1,6,0,15,16,24,0,9,
  8,17,32,(char)-1,6,8,17,18,16,(char)-1,9,16,19,32,(char)-1,6,
  0,19,20,16,0,0,17,104,74,4,95,2,59,112,10,25,
  59,112,10,25,59,112,10,25,59,112,10,25,59,112,10,25,
  59,10,59,112,10,25,59,112,10,25,69,(char)-73,32,(char)-17,64,47,
  14,(char)-25,91,47,10,25,60,26,48,(char)-122,(char)-105,20,112,63,9,70,
  (char)-33,0,39,3,25,112,26,52,25,25,74,10,4,59,112,25,
  10,4,59,112,25,10,4,59,112,25,65,(char)-113,(char)-44,72,4,59,
  112,8,(char)-113,(char)-40,8,68,(char)-81,60,60,25,69,(char)-49,9,112,25,25,
  25,25,25,112,56,0,

  0,0}; // 0,0 = end of list

  if (level<1) error("compression level must be at least 1");
  const char* p=models;
  int i;
  for (i=1; i<level && toU16(p); ++i)
    p+=toU16(p)+2;
  if (toU16(p)<1) error("compression level too high");
  startBlock(p);
}

// Memory reader
class MemoryReader: public Reader {
  const char* p;
public:
  MemoryReader(const char* p_): p(p_) {}
  int get() {return *p++&255;}
};

// Write a block header
void Compressor::startBlock(const char* hcomp) {
  assert(state==INIT);
  assert(hcomp);
  int len=toU16(hcomp)+2;
  enc.out->put('z');
  enc.out->put('P');
  enc.out->put('Q');
  enc.out->put(1+(len>6 && hcomp[6]==0));  // level 1 or 2
  enc.out->put(1);
  for (int i=0; i<len; ++i)  // write compression model hcomp
    enc.out->put(hcomp[i]);
  MemoryReader m(hcomp);
  z.read(&m);
  state=BLOCK1;
}

// Write a segment header
void Compressor::startSegment(const char* filename, const char* comment) {
  assert(state==BLOCK1 || state==BLOCK2);
  enc.out->put(1);
  while (filename && *filename)
    enc.out->put(*filename++);
  enc.out->put(0);
  while (comment && *comment)
    enc.out->put(*comment++);
  enc.out->put(0);
  enc.out->put(0);
  if (state==BLOCK1) state=SEG1;
  if (state==BLOCK2) state=SEG2;
}

// Initialize encoding and write pcomp to first segment
// If len is 0 then length is encoded in pcomp[0..1]
void Compressor::postProcess(const char* pcomp, int len) {
  assert(state==SEG1);
  enc.init();
  if (pcomp) {
    enc.compress(1);
    if (len<=0) {
      len=toU16(pcomp);
      pcomp+=2;
    }
    enc.compress(len&255);
    enc.compress((len>>8)&255);
    for (int i=0; i<len; ++i)
      enc.compress(pcomp[i]&255);
  }
  else
    enc.compress(0);
  state=SEG2;
}

// Compress n bytes, or to EOF if n <= 0
bool Compressor::compress(int n) {
  assert(state==SEG2);
  int ch=0;
  while (n && (ch=in->get())>=0) {
    enc.compress(ch);
    if (n>0) --n;
  }
  return ch>=0;
}

// End segment, write sha1string if present
void Compressor::endSegment(const char* sha1string) {
  assert(state==SEG2);
  enc.compress(-1);
  enc.out->put(0);
  enc.out->put(0);
  enc.out->put(0);
  enc.out->put(0);
  if (sha1string) {
    enc.out->put(253);
    for (int i=0; i<20; ++i)
      enc.out->put(sha1string[i]);
  }
  else
    enc.out->put(254);
  state=BLOCK2;
}

// End block
void Compressor::endBlock() {
  assert(state==BLOCK2);
  enc.out->put(255);
  state=INIT;
}

/////////////////////////// compress() ///////////////////////

void compress(Reader* in, Writer* out, int level) {
  assert(level>=1);
  Compressor c;
  c.setInput(in);
  c.setOutput(out);
  c.startBlock(level);
  c.startSegment();
  c.postProcess();
  c.compress();
  c.endSegment();
  c.endBlock();
}

//////////////////////// ZPAQL::assemble() ////////////////////

#ifndef NOJIT
/*
assemble();

Assembles the ZPAQL code in hcomp[0..hlen-1] and stores x86-32 or x86-64
code in rcode[0..rcode_size-1]. Execution begins at rcode[0]. It will not
write beyond the end of rcode, but in any case it returns the number of
bytes that would have been written. It returns 0 in case of error.

The assembled code implements run() and returns 1 if successful or
0 if the ZPAQL code executes an invalid instruction or jumps out of
bounds.

A ZPAQL virtual machine has the following state. All values are
unsigned and initially 0:

  a, b, c, d: 32 bit registers (pointed to by their respective parameters)
  f: 1 bit flag register (pointed to)
  r[0..255]: 32 bit registers
  m[0..msize-1]: 8 bit registers, where msize is a power of 2
  h[0..hsize-1]: 32 bit registers, where hsize is a power of 2
  out: pointer to a Writer
  sha1: pointer to a SHA1

Generally a ZPAQL machine is used to compute contexts which are
placed in h. A second machine might post-process, and write its
output to out and sha1. In either case, a machine is called with
its input in a, representing a single byte (0..255) or
(for a postprocessor) EOF (0xffffffff). Execution returs after a
ZPAQL halt instruction.

ZPAQL instructions are 1 byte unless the last 3 bits are 1.
In this case, a second operand byte follows. Opcode 255 is
the only 3 byte instruction. They are organized:

  00dddxxx = unary opcode xxx on destination ddd (ddd < 111)
  00111xxx = special instruction xxx
  01dddsss = assignment: ddd = sss (ddd < 111)
  1xxxxsss = operation sxxx from sss to a

The meaning of sss and ddd are as follows:

  000 = a   (accumulator)
  001 = b
  010 = c
  011 = d
  100 = *b  (means m[b mod msize])
  101 = *c  (means m[c mod msize])
  110 = *d  (means h[d mod hsize])
  111 = n   (constant 0..255 in second byte of instruction)

For example, 01001110 assigns *d to b. The other instructions xxx
are as follows:

Group 00dddxxx where ddd < 111 and xxx is:
  000 = ddd<>a, swap with a (except 00000000 is an error, and swap
        with *b or *c leaves the high bits of a unchanged)
  001 = ddd++, increment
  010 = ddd--, decrement
  011 = ddd!, not (invert all bits)
  100 = ddd=0, clear (set all bits of ddd to 0)
  101 = not used (error)
  110 = not used
  111 = ddd=r n, assign from r[n] to ddd, n=0..255 in next opcode byte
Except:
  00100111 = jt n, jump if f is true (n = -128..127, relative to next opcode)
  00101111 = jf n, jump if f is false (n = -128..127)
  00110111 = r=a n, assign r[n] = a (n = 0..255)

Group 00111xxx where xxx is:
  000 = halt (return)
  001 = output a
  010 = not used
  011 = hash: a = (a + *b + 512) * 773
  100 = hashd: *d = (*d + a + 512) * 773
  101 = not used
  110 = not used
  111 = unconditional jump (n = -128 to 127, relative to next opcode)
  
Group 1xxxxsss where xxxx is:
  0000 = a += sss (add, subtract, multiply, divide sss to a)
  0001 = a -= sss
  0010 = a *= sss
  0011 = a /= sss (unsigned, except set a = 0 if sss is 0)
  0100 = a %= sss (remainder, except set a = 0 if sss is 0)
  0101 = a &= sss (bitwise AND)
  0110 = a &= ~sss (bitwise AND with complement of sss)
  0111 = a |= sss (bitwise OR)
  1000 = a ^= sss (bitwise XOR)
  1001 = a <<= (sss % 32) (left shift by low 5 bits of sss)
  1010 = a >>= (sss % 32) (unsigned, zero bits shifted in)
  1011 = a == sss (compare, set f = true if equal or false otherwise)
  1100 = a < sss (unsigned compare, result in f)
  1101 = a > sss (unsigned compare)
  1110 = not used
  1111 = not used except 11111111 is a 3 byte jump to the absolute address
         in the next 2 bytes in little-endian (LSB first) order.

assemble() translates ZPAQL to 32 bit x86 code to be executed by run().
Registers are mapped as follows:

  eax = source sss from *b, *c, *d or sometimes n
  ecx = pointer to destination *b, *c, *d, or spare
  edx = a
  ebx = f (1 for true, 0 for false)
  esp = stack pointer
  ebp = d
  esi = b
  edi = c

run() saves non-volatile registers (ebp, esi, edi, ebx) on the stack,
loads a, b, c, d, f, and executes the translated instructions.
A halt instruction saves a, b, c, d, f, pops the saved registers
and returns. Invalid instructions or jumps outside of the range
of the ZPAQL code call libzpaq::error().

In 64 bit mode, the following additional registers are used:

  r12 = h
  r14 = r
  r15 = m

*/

// Called by out
static void flush1(ZPAQL* z) {
  z->flush();
}

// return true if op is an undefined ZPAQL instruction
static bool iserr(int op) {
  return op==0 || (op>=120 && op<=127) || (op>=240 && op<=254)
    || op==58 || (op<64 && (op%8==5 || op%8==6));
}

// Write k bytes of x to rcode[o++] MSB first
static void put(U8* rcode, int n, int& o, U32 x, int k) {
  while (k-->0) {
    if (o<n) rcode[o]=(x>>(k*8))&255;
    ++o;
  }
}

// Write 4 bytes of x to rcode[o++] LSB first
static void put4lsb(U8* rcode, int n, int& o, U32 x) {
  for (int k=0; k<4; ++k) {
    if (o<n) rcode[o]=(x>>(k*8))&255;
    ++o;
  }
}

// Write a 1-4 byte x86 opcode without or with an 4 byte operand
// to rcode[o...]
#define put1(x) put(rcode, rcode_size, o, (x), 1)
#define put2(x) put(rcode, rcode_size, o, (x), 2)
#define put3(x) put(rcode, rcode_size, o, (x), 3)
#define put4(x) put(rcode, rcode_size, o, (x), 4)
#define put5(x,y) put4(x), put1(y)
#define put6(x,y) put4(x), put2(y)
#define put4r(x) put4lsb(rcode, rcode_size, o, x)
#define puta(x) t=U32(size_t(x)), put4r(t)
#define put1a(x,y) put1(x), puta(y)
#define put2a(x,y) put2(x), puta(y)
#define put3a(x,y) put3(x), puta(y)
#define put4a(x,y) put4(x), puta(y)
#define put5a(x,y,z) put4(x), put1(y), puta(z)
#define put2l(x,y) put2(x), t=U32(size_t(y)), put4r(t), \
  t=U32(size_t(y)>>(S*4)), put4r(t)

// Assemble ZPAQL in in the HCOMP section of header to rcode,
// but do not write beyond rcode_size. Return the number of
// bytes output or that would have been output.
// Execution starts at rcode[0] and returns 1 if successful or 0
// in case of a ZPAQL execution error.
int ZPAQL::assemble() {

  // x86? (not foolproof)
  const int S=sizeof(char*);      // 4 = x86, 8 = x86-64
  U32 t=0x12345678;
  if (*(char*)&t!=0x78 || (S!=4 && S!=8))
    error("JIT supported only for x86-32 and x86-64");

  const U8* hcomp=&header[hbegin];
  const int hlen=hend-hbegin+1;
  const int msize=m.size();
  const int hsize=h.size();
  const int regcode[8]={2,6,7,5}; // a,b,c,d.. -> edx,esi,edi,ebp,eax..
  Array<int> it(hlen);            // hcomp -> rcode locations
  int done=0;  // number of instructions assembled (0..hlen)
  int o=5;  // rcode output index, reserve space for jmp

  // Code for the halt instruction (restore registers and return)
  const int halt=o;
  if (S==8) {
    put2l(0x48b9, &a);        // mov rcx, a
    put2(0x8911);             // mov [rcx], edx
    put2l(0x48b9, &b);        // mov rcx, b
    put2(0x8931);             // mov [rcx], esi
    put2l(0x48b9, &c);        // mov rcx, c
    put2(0x8939);             // mov [rcx], edi
    put2l(0x48b9, &d);        // mov rcx, d
    put2(0x8929);             // mov [rcx], ebp
    put2l(0x48b9, &f);        // mov rcx, f
    put2(0x8919);             // mov [rcx], ebx
    put4(0x4883c438);         // add rsp, 56
    put2(0x415f);             // pop r15
    put2(0x415e);             // pop r14
    put2(0x415d);             // pop r13
    put2(0x415c);             // pop r12
  }
  else {
    put2a(0x8915, &a);        // mov [a], edx
    put2a(0x8935, &b);        // mov [b], esi
    put2a(0x893d, &c);        // mov [c], edi
    put2a(0x892d, &d);        // mov [d], ebp
    put2a(0x891d, &f);        // mov [f], ebx
    put3(0x83c43c);           // add esp, 60
  }
  put1(0x5d);                 // pop ebp
  put1(0x5b);                 // pop ebx
  put1(0x5f);                 // pop edi
  put1(0x5e);                 // pop esi
  put1(0xc3);                 // ret

  // Code for the out instruction.
  // Store a=edx at outbuf[bufptr++]. If full, call flush1().
  const int outlabel=o;
  if (S==8) {
    put2l(0x48b8, &outbuf[0]);// mov rax, outbuf.p
    put2l(0x49ba, &bufptr);   // mov r10, &bufptr
    put3(0x418b0a);           // mov ecx, [r10]
    put3(0x891408);           // mov [rax+rcx], edx
    put2(0xffc1);             // inc ecx
    put3(0x41890a);           // mov [r10], ecx
    put2a(0x81f9, outbuf.size());  // cmp ecx, outbuf.size()
    put2(0x7401);             // jz L1
    put1(0xc3);               // ret
    put4(0x4883ec30);         // L1: sub esp, 48  ; call flush1(this)
    put4(0x48893c24);         // mov [rsp], rdi
    put5(0x48897424,8);       // mov [rsp+8], rsi
    put5(0x48895424,16);      // mov [rsp+16], rdx
    put5(0x48894c24,24);      // mov [rsp+24], rcx
#ifndef _WIN32
    put2l(0x48bf, this);      // mov rdi, this
#else  // Windows
    put2l(0x48b9, this);      // mov rcx, this
#endif
    put2l(0x49bb, &flush1);   // mov r11, &flush1
    put3(0x41ffd3);           // call r11
    put5(0x488b4c24,24);      // mov rcx, [rsp+24]
    put5(0x488b5424,16);      // mov rdx, [rsp+16]
    put5(0x488b7424,8);       // mov rsi, [rsp+8]
    put4(0x488b3c24);         // mov rdi, [rsp]
    put4(0x4883c430);         // add esp, 48
    put1(0xc3);               // ret
  }
  else {
    put1a(0xb8, &outbuf[0]);  // mov eax, outbuf.p
    put2a(0x8b0d, &bufptr);   // mov ecx, [bufptr]
    put3(0x891408);           // mov [eax+ecx], edx
    put2(0xffc1);             // inc ecx
    put2a(0x890d, &bufptr);   // mov [bufptr], ecx
    put2a(0x81f9, outbuf.size());  // cmp ecx, outbuf.size()
    put2(0x7401);             // jz L1
    put1(0xc3);               // ret
    put3(0x83ec08);           // L1: sub esp, 8
    put4(0x89542404);         // mov [esp+4], edx
    put3a(0xc70424, this);    // mov [esp], this
    put1a(0xb8, &flush1);     // mov eax, &flush1
    put2(0xffd0);             // call eax
    put4(0x8b542404);         // mov edx, [esp+4]
    put3(0x83c408);           // add esp, 8
    put1(0xc3);               // ret
  }

  // Set it[i]=1 for each ZPAQL instruction reachable from the previous
  // instruction + 2 if reachable by a jump (or 3 if both).
  it[0]=2;
  assert(hlen>0 && hcomp[hlen-1]==0);  // ends with error
  do {
    done=0;
    const int NONE=0x80000000;
    for (int i=0; i<hlen; ++i) {
      int op=hcomp[i];
      if (it[i]) {
        int next1=i+1+(op%8==7), next2=NONE; // next and jump targets
        if (iserr(op)) next1=NONE;  // error
        if (op==56) next1=NONE, next2=0;  // halt
        if (op==255) next1=NONE, next2=hcomp[i+1]+256*hcomp[i+2]; // lj
        if (op==39||op==47||op==63)next2=i+2+(hcomp[i+1]<<24>>24);// jt,jf,jmp
        if (op==63) next1=NONE;  // jmp
        if ((next2<0 || next2>=hlen) && next2!=NONE) next2=hlen-1; // error
        if (next1!=NONE && !(it[next1]&1)) it[next1]|=1, ++done;
        if (next2!=NONE && !(it[next2]&2)) it[next2]|=2, ++done;
      }
    }
  } while (done>0);

  // Set it[i] bits 2-3 to 4, 8, or 12 if a comparison
  //  (<, >, == respectively) does not need to save the result in f,
  // or if a conditional jump (jt, jf) does not need to read f.
  // This is true if a comparison is followed directly by a jt/jf,
  // the jt/jf is not a jump target, the byte before is not a jump
  // target (for a 2 byte comparison), and for the comparison instruction
  // if both paths after the jt/jf lead to another comparison or error
  // before another jt/jf. At most hlen steps are traced because after
  // that it must be an infinite loop.
  for (int i=0; i<hlen; ++i) {
    const int op1=hcomp[i]; // 216..239 = comparison
    const int i2=i+1+(op1%8==7);  // address of next instruction
    const int op2=hcomp[i2];  // 39,47 = jt,jf
    if (it[i] && op1>=216 && op1<240 && (op2==39 || op2==47)
        && it[i2]==1 && (i2==i+1 || it[i+1]==0)) {
      int code=(op1-208)/8*4; // 4,8,12 is ==,<,>
      it[i2]+=code;  // OK to test CF, ZF instead of f
      for (int j=0; j<2 && code; ++j) {  // trace each path from i2
        int k=i2+2; // branch not taken
        if (j==1) k=i2+2+(hcomp[i2+1]<<24>>24);  // branch taken
        for (int l=0; l<hlen && code; ++l) {  // trace at most hlen steps
          if (k<0 || k>=hlen) break;  // out of bounds, pass
          const int op=hcomp[k];
          if (op==39 || op==47) code=0;  // jt,jf, fail
          else if (op>=216 && op<240) break;  // ==,<,>, pass
          else if (iserr(op)) break;  // error, pass
          else if (op==255) k=hcomp[k+1]+256*hcomp[k+2]; // lj
          else if (op==63) k=k+2+(hcomp[k+1]<<24>>24);  // jmp
          else if (op==56) k=0;  // halt
          else k=k+1+(op%8==7);  // ordinary instruction
        }
      }
      it[i]+=code;  // if > 0 then OK to not save flags in f (bl)
    }
  }

  // Start of run(): Save x86 and load ZPAQL registers
  const int start=o;
  assert(start>=16);
  put1(0x56);          // push esi/rsi
  put1(0x57);          // push edi/rdi
  put1(0x53);          // push ebx/rbx
  put1(0x55);          // push ebp/rbp
  if (S==8) {
    put2(0x4154);      // push r12
    put2(0x4155);      // push r13
    put2(0x4156);      // push r14
    put2(0x4157);      // push r15
    put4(0x4883ec38);  // sub rsp, 56
    put2l(0x48b8, &a); // mov rax, a
    put2(0x8b10);      // mov edx, [rax]
    put2l(0x48b8, &b); // mov rax, b
    put2(0x8b30);      // mov esi, [rax]
    put2l(0x48b8, &c); // mov rax, c
    put2(0x8b38);      // mov edi, [rax]
    put2l(0x48b8, &d); // mov rax, d
    put2(0x8b28);      // mov ebp, [rax]
    put2l(0x48b8, &f); // mov rax, f
    put2(0x8b18);      // mov ebx, [rax]
    put2l(0x49bc, &h[0]);   // mov r12, h
    put2l(0x49bd, &outbuf[0]); // mov r13, outbuf.p
    put2l(0x49be, &r[0]);   // mov r14, r
    put2l(0x49bf, &m[0]);   // mov r15, m
  }
  else {
    put3(0x83ec3c);    // sub esp, 60
    put2a(0x8b15, &a); // mov edx, [a]
    put2a(0x8b35, &b); // mov esi, [b]
    put2a(0x8b3d, &c); // mov edi, [c]
    put2a(0x8b2d, &d); // mov ebp, [d]
    put2a(0x8b1d, &f); // mov ebx, [f]
  }

  // Assemble in multiple passes until every byte of hcomp has a translation
  for (int istart=0; istart<hlen; ++istart) {
    for (int i=istart; i<hlen&&it[i]; i=i+1+(hcomp[i]%8==7)+(hcomp[i]==255)) {
      const int code=it[i];

      // If already assembled, then assemble a jump to it
      U32 t;
      assert(it.isize()>i);
      assert(i>=0 && i<hlen);
      if (code>=16) {
        if (i>istart) {
          int a=code-o;
          if (a>-120 && a<120)
            put2(0xeb00+((a-2)&255)); // jmp short o
          else
            put1a(0xe9, a-5);  // jmp near o
        }
        break;
      }

      // Else assemble the instruction at hcode[i] to rcode[o]
      else {
        assert(i>=0 && i<it.isize());
        assert(it[i]>0 && it[i]<16);
        assert(o>=16);
        it[i]=o;
        ++done;
        const int op=hcomp[i];
        const int arg=hcomp[i+1]+((op==255)?256*hcomp[i+2]:0);
        const int ddd=op/8%8;
        const int sss=op%8;

        // error instruction: return 0
        if (iserr(op)) {
          put2(0x31c0);           // xor eax, eax
          put1a(0xe9, halt-o-4);  // jmp near halt
          continue;
        }

        // Load source *b, *c, *d, or hash (*b) into eax except:
        // {a,b,c,d}=*d, a{+,-,*,&,|,^,=,==,>,>}=*d: load address to eax
        // {a,b,c,d}={*b,*c}: load source into ddd
        if (op==59 || (op>=64 && op<240 && op%8>=4 && op%8<7)) {
          put2(0x89c0+8*regcode[sss-3+(op==59)]);  // mov eax, {esi,edi,ebp}
          const int sz=(sss==6?hsize:msize)-1;
          if (sz>=128) put1a(0x25, sz);            // and eax, dword msize-1
          else put3(0x83e000+sz);                  // and eax, byte msize-1
          const int move=(op>=64 && op<112); // = or else ddd is eax
          if (sss<6) { // ddd={a,b,c,d,*b,*c}
            if (S==8) put5(0x410fb604+8*move*regcode[ddd],0x07);
                                                   // movzx ddd, byte [r15+rax]
            else put3a(0x0fb680+8*move*regcode[ddd], &m[0]);
                                                   // movzx ddd, byte [m+eax]
          }
          else if ((0x06587000>>(op/8))&1) {// {*b,*c,*d,a/,a%,a&~,a<<,a>>}=*d
            if (S==8) put4(0x418b0484);            // mov eax, [r12+rax*4]
            else put3a(0x8b0485, &h[0]);           // mov eax, [h+eax*4]
          }
        }

        // Load destination address *b, *c, *d or hashd (*d) into ecx
        if ((op>=32 && op<56 && op%8<5) || (op>=96 && op<120) || op==60) {
          put2(0x89c1+8*regcode[op/8%8-3-(op==60)]);// mov ecx,{esi,edi,ebp}
          const int sz=(ddd==6||op==60?hsize:msize)-1;
          if (sz>=128) put2a(0x81e1, sz);   // and ecx, dword sz
          else put3(0x83e100+sz);           // and ecx, byte sz
          if (op/8%8==6 || op==60) { // *d
            if (S==8) put4(0x498d0c8c);     // lea rcx, [r12+rcx*4]
            else put3a(0x8d0c8d, &h[0]);    // lea ecx, [ecx*4+h]
          }
          else { // *b, *c
            if (S==8) put4(0x498d0c0f);     // lea rcx, [r15+rcx]
            else put2a(0x8d89, &m[0]);      // lea ecx, [ecx+h]
          }
        }

        // Translate by opcode
        switch((op/8)&31) {
          case 0:  // ddd = a
          case 1:  // ddd = b
          case 2:  // ddd = c
          case 3:  // ddd = d
            switch(sss) {
              case 0:  // ddd<>a (swap)
                put2(0x87d0+regcode[ddd]);   // xchg edx, ddd
                break;
              case 1:  // ddd++
                put2(0xffc0+regcode[ddd]);   // inc ddd
                break;
              case 2:  // ddd--
                put2(0xffc8+regcode[ddd]);   // dec ddd
                break;
              case 3:  // ddd!
                put2(0xf7d0+regcode[ddd]);   // not ddd
                break;
              case 4:  // ddd=0
                put2(0x31c0+9*regcode[ddd]); // xor ddd,ddd
                break;
              case 7:  // ddd=r n
                if (S==8)
                  put3a(0x418b86+8*regcode[ddd], arg*4); // mov ddd, [r14+n*4]
                else
                  put2a(0x8b05+8*regcode[ddd], (&r[arg]));//mov ddd, [r+n]
                break;
            }
            break;
          case 4:  // ddd = *b
          case 5:  // ddd = *c
            switch(sss) {
              case 0:  // ddd<>a (swap)
                put2(0x8611);                // xchg dl, [ecx]
                break;
              case 1:  // ddd++
                put2(0xfe01);                // inc byte [ecx]
                break;
              case 2:  // ddd--
                put2(0xfe09);                // dec byte [ecx]
                break;
              case 3:  // ddd!
                put2(0xf611);                // not byte [ecx]
                break;
              case 4:  // ddd=0
                put2(0x31c0);                // xor eax, eax
                put2(0x8801);                // mov [ecx], al
                break;
              case 7:  // jt, jf
              {
                assert(code>=0 && code<16);
                const int jtab[2][4]={{5,4,2,7},{4,5,3,6}};
                               // jnz,je,jb,ja, jz,jne,jae,jbe
                if (code<4) put2(0x84db);    // test bl, bl
                if (arg>=128 && arg-257-i>=0 && o-it[arg-257-i]<120)
                  put2(0x7000+256*jtab[op==47][code/4]); // jx short 0
                else
                  put2a(0x0f80+jtab[op==47][code/4], 0); // jx near 0
                break;
              }
            }
            break;
          case 6:  // ddd = *d
            switch(sss) {
              case 0:  // ddd<>a (swap)
                put2(0x8711);             // xchg edx, [ecx]
                break;
              case 1:  // ddd++
                put2(0xff01);             // inc dword [ecx]
                break;
              case 2:  // ddd--
                put2(0xff09);             // dec dword [ecx]
                break;
              case 3:  // ddd!
                put2(0xf711);             // not dword [ecx]
                break;
              case 4:  // ddd=0
                put2(0x31c0);             // xor eax, eax
                put2(0x8901);             // mov [ecx], eax
                break;
              case 7:  // ddd=r n
                if (S==8)
                  put3a(0x418996, arg*4); // mov [r14+n*4], edx
                else
                  put2a(0x8915, &r[arg]); // mov [r+n], edx
                break;
            }
            break;
          case 7:  // special
            switch(op) {
              case 56: // halt
                put1a(0xb8, 1);           // mov eax, 1
                put1a(0xe9, halt-o-4);    // jmp near halt
                break;
              case 57:  // out
                put1a(0xe8, outlabel-o-4);// call outlabel
                break;
              case 59:  // hash: a = (a + *b + 512) * 773
                put3a(0x8d8410, 512);     // lea edx, [eax+edx+512]
                put2a(0x69d0, 773);       // imul edx, eax, 773
                break;
              case 60:  // hashd: *d = (*d + a + 512) * 773
                put2(0x8b01);             // mov eax, [ecx]
                put3a(0x8d8410, 512);     // lea eax, [eax+edx+512]
                put2a(0x69c0, 773);       // imul eax, eax, 773
                put2(0x8901);             // mov [ecx], eax
                break;
              case 63:  // jmp
                put1a(0xe9, 0);           // jmp near 0 (fill in target later)
                break;
            }
            break;
          case 8:   // a=
          case 9:   // b=
          case 10:  // c=
          case 11:  // d=
            if (sss==7)  // n
              put1a(0xb8+regcode[ddd], arg);         // mov ddd, n
            else if (sss==6) { // *d
              if (S==8)
                put4(0x418b0484+(regcode[ddd]<<11)); // mov ddd, [r12+rax*4]
              else
                put3a(0x8b0485+(regcode[ddd]<<11),&h[0]);// mov ddd, [h+eax*4]
            }
            else if (sss<4) // a, b, c, d
              put2(0x89c0+regcode[ddd]+8*regcode[sss]);// mov ddd,sss
            break;
          case 12:  // *b=
          case 13:  // *c=
            if (sss==7) put3(0xc60100+arg);          // mov byte [ecx], n
            else if (sss==0) put2(0x8811);           // mov byte [ecx], dl
            else {
              if (sss<4) put2(0x89c0+8*regcode[sss]);// mov eax, sss
              put2(0x8801);                          // mov byte [ecx], al
            }
            break;
          case 14:  // *d=
            if (sss<7) put2(0x8901+8*regcode[sss]);  // mov [ecx], sss
            else put2a(0xc701, arg);                 // mov dword [ecx], n
            break;
          case 15: break; // not used
          case 16:  // a+=
            if (sss==6) {
              if (S==8) put4(0x41031484);            // add edx, [r12+rax*4]
              else put3a(0x031485, &h[0]);           // add edx, [h+eax*4]
            }
            else if (sss<7) put2(0x01c2+8*regcode[sss]);// add edx, sss
            else if (arg>128) put2a(0x81c2, arg);    // add edx, n
            else put3(0x83c200+arg);                 // add edx, byte n
            break;
          case 17:  // a-=
            if (sss==6) {
              if (S==8) put4(0x412b1484);            // sub edx, [r12+rax*4]
              else put3a(0x2b1485, &h[0]);           // sub edx, [h+eax*4]
            }
            else if (sss<7) put2(0x29c2+8*regcode[sss]);// sub edx, sss
            else if (arg>=128) put2a(0x81ea, arg);   // sub edx, n
            else put3(0x83ea00+arg);                 // sub edx, byte n
            break;
          case 18:  // a*=
            if (sss==6) {
              if (S==8) put5(0x410faf14,0x84);       // imul edx, [r12+rax*4]
              else put4a(0x0faf1485, &h[0]);         // imul edx, [h+eax*4]
            }
            else if (sss<7) put3(0x0fafd0+regcode[sss]);// imul edx, sss
            else if (arg>=128) put2a(0x69d2, arg);   // imul edx, n
            else put3(0x6bd200+arg);                 // imul edx, byte n
            break;
          case 19:  // a/=
          case 20:  // a%=
            if (sss<7) put2(0x89c1+8*regcode[sss]);  // mov ecx, sss
            else put1a(0xb9, arg);                   // mov ecx, n
            put2(0x85c9);                            // test ecx, ecx
            put3(0x0f44d1);                          // cmovz edx, ecx
            put2(0x7408-2*(op/8==20));               // jz (over rest)
            put2(0x89d0);                            // mov eax, edx
            put2(0x31d2);                            // xor edx, edx
            put2(0xf7f1);                            // div ecx
            if (op/8==19) put2(0x89c2);              // mov edx, eax
            break;
          case 21:  // a&=
            if (sss==6) {
              if (S==8) put4(0x41231484);            // and edx, [r12+rax*4]
              else put3a(0x231485, &h[0]);           // and edx, [h+eax*4]
            }
            else if (sss<7) put2(0x21c2+8*regcode[sss]);// and edx, sss
            else if (arg>=128) put2a(0x81e2, arg);   // and edx, n
            else put3(0x83e200+arg);                 // and edx, byte n
            break;
          case 22:  // a&~
            if (sss==7) {
              if (arg<128) put3(0x83e200+(~arg&255));// and edx, byte ~n
              else put2a(0x81e2, ~arg);              // and edx, ~n
            }
            else {
              if (sss<4) put2(0x89c0+8*regcode[sss]);// mov eax, sss
              put2(0xf7d0);                          // not eax
              put2(0x21c2);                          // and edx, eax
            }
            break;
          case 23:  // a|=
            if (sss==6) {
              if (S==8) put4(0x410b1484);            // or edx, [r12+rax*4]
              else put3a(0x0b1485, &h[0]);           // or edx, [h+eax*4]
            }
            else if (sss<7) put2(0x09c2+8*regcode[sss]);// or edx, sss
            else if (arg>=128) put2a(0x81ca, arg);   // or edx, n
            else put3(0x83ca00+arg);                 // or edx, byte n
            break;
          case 24:  // a^=
            if (sss==6) {
              if (S==8) put4(0x41331484);            // xor edx, [r12+rax*4]
              else put3a(0x331485, &h[0]);           // xor edx, [h+eax*4]
            }
            else if (sss<7) put2(0x31c2+8*regcode[sss]);// xor edx, sss
            else if (arg>=128) put2a(0x81f2, arg);   // xor edx, byte n
            else put3(0x83f200+arg);                 // xor edx, n
            break;
          case 25:  // a<<=
          case 26:  // a>>=
            if (sss==7)  // sss = n
              put3(0xc1e200+8*256*(op/8==26)+arg);   // shl/shr n
            else {
              put2(0x89c1+8*regcode[sss]);           // mov ecx, sss
              put2(0xd3e2+8*(op/8==26));             // shl/shr edx, cl
            }
            break;
          case 27:  // a==
          case 28:  // a<
          case 29:  // a>
            if (sss==6) {
              if (S==8) put4(0x413b1484);            // cmp edx, [r12+rax*4]
              else put3a(0x3b1485, &h[0]);           // cmp edx, [h+eax*4]
            }
            else if (sss==7)  // sss = n
              put2a(0x81fa, arg);                    // cmp edx, dword n
            else
              put2(0x39c2+8*regcode[sss]);           // cmp edx, sss
            if (code<4) {
              if (op/8==27) put3(0x0f94c3);          // setz bl
              if (op/8==28) put3(0x0f92c3);          // setc bl
              if (op/8==29) put3(0x0f97c3);          // seta bl
            }
            break;
          case 30:  // not used
          case 31:  // 255 = lj
            if (op==255) put1a(0xe9, 0);             // jmp near
            break;
        }
      }
    }
  }

  // Finish first pass
  const int rsize=o;
  if (o>rcode_size) return rsize;

  // Fill in jump addresses (second pass)
  for (int i=0; i<hlen; ++i) {
    if (it[i]<16) continue;
    int op=hcomp[i];
    if (op==39 || op==47 || op==63 || op==255) {  // jt, jf, jmp, lj
      int target=hcomp[i+1];
      if (op==255) target+=hcomp[i+2]*256;  // lj
      else {
        if (target>=128) target-=256;
        target+=i+2;
      }
      if (target<0 || target>=hlen) target=hlen-1;  // runtime ZPAQL error
      o=it[i];
      assert(o>=16 && o<rcode_size);
      if ((op==39 || op==47) && rcode[o]==0x84) o+=2;  // jt, jf -> skip test
      assert(o>=16 && o<rcode_size);
      if (rcode[o]==0x0f) ++o;  // first byte of jz near, jnz near
      assert(o<rcode_size);
      op=rcode[o++];  // x86 opcode
      target=it[target]-o;
      if ((op>=0x72 && op<0x78) || op==0xeb) {  // jx, jmp short
        --target;
        if (target<-128 || target>127)
          error("Cannot code x86 short jump");
        assert(o<rcode_size);
        rcode[o]=target&255;
      }
      else if ((op>=0x82 && op<0x88) || op==0xe9) // jx, jmp near
      {
        target-=4;
        puta(target);
      }
      else assert(false);  // not a x86 jump
    }
  }

  // Jump to start
  o=0;
  put1a(0xe9, start-5);  // jmp near start
  return rsize;
}

//////////////////////// Predictor::assemble_p() /////////////////////

// Assemble the ZPAQL code in the HCOMP section of z.header to pcomp and
// return the number of bytes of x86 or x86-64 code written, or that would
// be written if pcomp were large enough. The code for predict() begins
// at pr.pcomp[0] and update() at pr.pcomp[5], both as jmp instructions.

// The assembled code is equivalent to int predict(Predictor*)
// and void update(Predictor*, int y); The Preditor address is placed in
// edi/rdi. The update bit y is placed in ebp/rbp.

int Predictor::assemble_p() {
  Predictor& pr=*this;
  U8* rcode=pr.pcode;         // x86 output array
  int rcode_size=pcode_size;  // output size
  int o=0;                    // output index in pcode
  const int S=sizeof(char*);  // 4 or 8
  U8* hcomp=&pr.z.header[0];  // The code to translate
#define off(x)  ((char*)&(pr.x)-(char*)&pr)
#define offc(x) ((char*)&(pr.comp[i].x)-(char*)&pr)

  // test for little-endian (probably x86)
  U32 t=0x12345678;
  if (*(char*)&t!=0x78 || (S!=4 && S!=8))
    error("JIT supported only for x86-32 and x86-64");

  // Initialize for predict(). Put predictor address in edi/rdi
  put1a(0xe9, 5);             // jmp predict
  put1a(0, 0x90909000);       // reserve space for jmp update
  put1(0x53);                 // push ebx/rbx
  put1(0x55);                 // push ebp/rbp
  put1(0x56);                 // push esi/rsi
  put1(0x57);                 // push edi/rdi
  if (S==4)
    put4(0x8b7c2414);         // mov edi,[esp+0x14] ; pr
  else {
#ifdef _WIN32
    put3(0x4889cf);           // mov rdi, rcx (1st arg in Win64)
#endif
  }

  // Code predict() for each component
  const int n=hcomp[6];  // number of components
  U8* cp=hcomp+7;
  for (int i=0; i<n; ++i, cp+=compsize[cp[0]]) {
    if (cp-hcomp>=pr.z.cend) error("comp too big");
    if (cp[0]<1 || cp[0]>9) error("invalid component");
    assert(compsize[cp[0]]>0 && compsize[cp[0]]<8);
    switch (cp[0]) {

      case CONS:  // c
        break;

      case CM:  // sizebits limit
        // Component& cr=comp[i];
        // cr.cxt=h[i]^hmap4;
        // p[i]=stretch(cr.cm(cr.cxt)>>17);

        put2a(0x8b87, off(h[i]));              // mov eax, [edi+&h[i]]
        put2a(0x3387, off(hmap4));             // xor eax, [edi+&hmap4]
        put1a(0x25, (1<<cp[1])-1);             // and eax, size-1
        put2a(0x8987, offc(cxt));              // mov [edi+cxt], eax
        if (S==8) put1(0x48);                  // rex.w (esi->rsi)
        put2a(0x8bb7, offc(cm));               // mov esi, [edi+&cm]
        put3(0x8b0486);                        // mov eax, [esi+eax*4]
        put3(0xc1e811);                        // shr eax, 17
        put4a(0x0fbf8447, off(stretcht));      // movsx eax,word[edi+eax*2+..]
        put2a(0x8987, off(p[i]));              // mov [edi+&p[i]], eax
        break;

      case ISSE:  // sizebits j -- c=hi, cxt=bh
        // assert((hmap4&15)>0);
        // if (c8==1 || (c8&0xf0)==16)
        //   cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8);
        // cr.cxt=cr.ht[cr.c+(hmap4&15)];  // bit history
        // int *wt=(int*)&cr.cm[cr.cxt*2];
        // p[i]=clamp2k((wt[0]*p[cp[2]]+wt[1]*64)>>16);

      case ICM: // sizebits
        // assert((hmap4&15)>0);
        // if (c8==1 || (c8&0xf0)==16) cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8);
        // cr.cxt=cr.ht[cr.c+(hmap4&15)];
        // p[i]=stretch(cr.cm(cr.cxt)>>8);
        //
        // Find cxt row in hash table ht. ht has rows of 16 indexed by the low
        // sizebits of cxt with element 0 having the next higher 8 bits for
        // collision detection. If not found after 3 adjacent tries, replace
        // row with lowest element 1 as priority. Return index of row.
        //
        // size_t Predictor::find(Array<U8>& ht, int sizebits, U32 cxt) {
        //  assert(ht.size()==size_t(16)<<sizebits);
        //  int chk=cxt>>sizebits&255;
        //  size_t h0=(cxt*16)&(ht.size()-16);
        //  if (ht[h0]==chk) return h0;
        //  size_t h1=h0^16;
        //  if (ht[h1]==chk) return h1;
        //  size_t h2=h0^32;
        //  if (ht[h2]==chk) return h2;
        //  if (ht[h0+1]<=ht[h1+1] && ht[h0+1]<=ht[h2+1])
        //    return memset(&ht[h0], 0, 16), ht[h0]=chk, h0;
        //  else if (ht[h1+1]<ht[h2+1])
        //    return memset(&ht[h1], 0, 16), ht[h1]=chk, h1;
        //  else
        //    return memset(&ht[h2], 0, 16), ht[h2]=chk, h2;
        // }

        if (S==8) put1(0x48);                  // rex.w
        put2a(0x8bb7, offc(ht));               // mov esi, [edi+&ht]
        put2(0x8b07);                          // mov eax, edi ; c8
        put2(0x89c1);                          // mov ecx, eax ; c8
        put3(0x83f801);                        // cmp eax, 1
        put2(0x740a);                          // je L1
        put1a(0x25, 240);                      // and eax, 0xf0
        put3(0x83f810);                        // cmp eax, 16
        put2(0x7576);                          // jne L2 ; skip find()
           // L1: ; find cxt in ht, return index in eax
        put3(0xc1e104);                        // shl ecx, 4
        put2a(0x038f, off(h[i]));              // add [edi+&h[i]]
        put2(0x89c8);                          // mov eax, ecx ; cxt
        put3(0xc1e902+cp[1]);                  // shr ecx, sizebits+2
        put2a(0x81e1, 255);                    // and eax, 255 ; chk
        put3(0xc1e004);                        // shl eax, 4
        put1a(0x25, (64<<cp[1])-16);           // and eax, ht.size()-16 = h0
        put3(0x3a0c06);                        // cmp cl, [esi+eax] ; ht[h0]
        put2(0x744d);                          // je L3 ; match h0
        put3(0x83f010);                        // xor eax, 16 ; h1
        put3(0x3a0c06);                        // cmp cl, [esi+eax]
        put2(0x7445);                          // je L3 ; match h1
        put3(0x83f030);                        // xor eax, 48 ; h2
        put3(0x3a0c06);                        // cmp cl, [esi+eax]
        put2(0x743d);                          // je L3 ; match h2
          // No checksum match, so replace the lowest priority among h0,h1,h2
        put3(0x83f021);                        // xor eax, 33 ; h0+1
        put3(0x8a1c06);                        // mov bl, [esi+eax] ; ht[h0+1]
        put2(0x89c2);                          // mov edx, eax ; h0+1
        put3(0x83f220);                        // xor edx, 32  ; h2+1
        put3(0x3a1c16);                        // cmp bl, [esi+edx]
        put2(0x7708);                          // ja L4 ; test h1 vs h2
        put3(0x83f230);                        // xor edx, 48  ; h1+1
        put3(0x3a1c16);                        // cmp bl, [esi+edx]
        put2(0x7611);                          // jbe L7 ; replace h0
          // L4: ; h0 is not lowest, so replace h1 or h2
        put3(0x83f010);                        // xor eax, 16 ; h1+1
        put3(0x8a1c06);                        // mov bl, [esi+eax]
        put3(0x83f030);                        // xor eax, 48 ; h2+1
        put3(0x3a1c06);                        // cmp bl, [esi+eax]
        put2(0x7303);                          // jae L7
        put3(0x83f030);                        // xor eax, 48 ; h1+1
          // L7: ; replace row pointed to by eax = h0,h1,h2
        put3(0x83f001);                        // xor eax, 1
        put3(0x890c06);                        // mov [esi+eax], ecx ; chk
        put2(0x31c9);                          // xor ecx, ecx
        put4(0x894c0604);                      // mov [esi+eax+4], ecx
        put4(0x894c0608);                      // mov [esi+eax+8], ecx
        put4(0x894c060c);                      // mov [esi+eax+12], ecx
          // L3: ; save nibble context (in eax) in c
        put2a(0x8987, offc(c));                // mov [edi+c], eax
        put2(0xeb06);                          // jmp L8
          // L2: ; get nibble context
        put2a(0x8b87, offc(c));                // mov eax, [edi+c]
          // L8: ; nibble context is in eax
        put2a(0x8b97, off(hmap4));             // mov edx, [edi+&hmap4]
        put3(0x83e20f);                        // and edx, 15  ; hmap4
        put2(0x01d0);                          // add eax, edx ; c+(hmap4&15)
        put4(0x0fb61406);                      // movzx edx, byte [esi+eax]
        put2a(0x8997, offc(cxt));              // mov [edi+&cxt], edx ; cxt=bh
        if (S==8) put1(0x48);                  // rex.w
        put2a(0x8bb7, offc(cm));               // mov esi, [edi+&cm] ; cm

        // esi points to cm[256] (ICM) or cm[512] (ISSE) with 23 bit
        // prediction (ICM) or a pair of 20 bit signed weights (ISSE).
        // cxt = bit history bh (0..255) is in edx.
        if (cp[0]==ICM) {
          put3(0x8b0496);                      // mov eax, [esi+edx*4];cm[bh]
          put3(0xc1e808);                      // shr eax, 8
          put4a(0x0fbf8447, off(stretcht));    // movsx eax,word[edi+eax*2+..]
        }
        else {  // ISSE
          put2a(0x8b87, off(p[cp[2]]));        // mov eax, [edi+&p[j]]
          put4(0x0faf04d6);                    // imul eax, [esi+edx*8] ;wt[0]
          put4(0x8b4cd604);                    // mov ecx, [esi+edx*8+4];wt[1]
          put3(0xc1e106);                      // shl ecx, 6
          put2(0x01c8);                        // add eax, ecx
          put3(0xc1f810);                      // sar eax, 16
          put1a(0xb9, 2047);                   // mov ecx, 2047
          put2(0x39c8);                        // cmp eax, ecx
          put3(0x0f4fc1);                      // cmovg eax, ecx
          put1a(0xb9, -2048);                  // mov ecx, -2048
          put2(0x39c8);                        // cmp eax, ecx
          put3(0x0f4cc1);                      // cmovl eax, ecx

        }
        put2a(0x8987, off(p[i]));              // mov [edi+&p[i]], eax
        break;

      case MATCH: // sizebits bufbits: a=len, b=offset, c=bit, cxt=bitpos,
                  //                   ht=buf, limit=pos
        // assert(cr.cm.size()==(size_t(1)<<cp[1]));
        // assert(cr.ht.size()==(size_t(1)<<cp[2]));
        // assert(cr.a<=255);
        // assert(cr.c==0 || cr.c==1);
        // assert(cr.cxt<8);
        // assert(cr.limit<cr.ht.size());
        // if (cr.a==0) p[i]=0;
        // else {
        //   cr.c=(cr.ht(cr.limit-cr.b)>>(7-cr.cxt))&1; // predicted bit
        //   p[i]=stretch(dt2k[cr.a]*(cr.c*-2+1)&32767);
        // }

        if (S==8) put1(0x48);          // rex.w
        put2a(0x8bb7, offc(ht));       // mov esi, [edi+&ht]

        // If match length (a) is 0 then p[i]=0
        put2a(0x8b87, offc(a));        // mov eax, [edi+&a]
        put2(0x85c0);                  // test eax, eax
        put2(0x7449);                  // jz L2 ; p[i]=0

        // Else put predicted bit in c
        put1a(0xb9, 7);                // mov ecx, 7
        put2a(0x2b8f, offc(cxt));      // sub ecx, [edi+&cxt]
        put2a(0x8b87, offc(limit));    // mov eax, [edi+&limit]
        put2a(0x2b87, offc(b));        // sub eax, [edi+&b]
        put1a(0x25, (1<<cp[2])-1);     // and eax, ht.size()-1
        put4(0x0fb60406);              // movzx eax, byte [esi+eax]
        put2(0xd3e8);                  // shr eax, cl
        put3(0x83e001);                // and eax, 1  ; predicted bit
        put2a(0x8987, offc(c));        // mov [edi+&c], eax ; c

        // p[i]=stretch(dt2k[cr.a]*(cr.c*-2+1)&32767);
        put2a(0x8b87, offc(a));        // mov eax, [edi+&a]
        put3a(0x8b8487, off(dt2k));    // mov eax, [edi+eax*4+&dt2k] ; weight
        put2(0x7402);                  // jz L1 ; z if c==0
        put2(0xf7d8);                  // neg eax
        put1a(0x25, 0x7fff);           // L1: and eax, 32767
        put4a(0x0fbf8447, off(stretcht)); //movsx eax, word [edi+eax*2+...]
        put2a(0x8987, off(p[i]));      // L2: mov [edi+&p[i]], eax
        break;

      case AVG: // j k wt
        // p[i]=(p[cp[1]]*cp[3]+p[cp[2]]*(256-cp[3]))>>8;

        put2a(0x8b87, off(p[cp[1]]));  // mov eax, [edi+&p[j]]
        put2a(0x2b87, off(p[cp[2]]));  // sub eax, [edi+&p[k]]
        put2a(0x69c0, cp[3]);          // imul eax, wt
        put3(0xc1f808);                // sar eax, 8
        put2a(0x0387, off(p[cp[2]]));  // add eax, [edi+&p[k]]
        put2a(0x8987, off(p[i]));      // mov [edi+&p[i]], eax
        break;

      case MIX2:   // sizebits j k rate mask
                   // c=size cm=wt[size] cxt=input
        // cr.cxt=((h[i]+(c8&cp[5]))&(cr.c-1));
        // assert(cr.cxt<cr.a16.size());
        // int w=cr.a16[cr.cxt];
        // assert(w>=0 && w<65536);
        // p[i]=(w*p[cp[2]]+(65536-w)*p[cp[3]])>>16;
        // assert(p[i]>=-2048 && p[i]<2048);

        put2(0x8b07);                  // mov eax, [edi] ; c8
        put1a(0x25, cp[5]);            // and eax, mask
        put2a(0x0387, off(h[i]));      // add eax, [edi+&h[i]]
        put1a(0x25, (1<<cp[1])-1);     // and eax, size-1
        put2a(0x8987, offc(cxt));      // mov [edi+&cxt], eax ; cxt
        if (S==8) put1(0x48);          // rex.w
        put2a(0x8bb7, offc(a16));      // mov esi, [edi+&a16]
        put4(0x0fb70446);              // movzx eax, word [edi+eax*2] ; w
        put2a(0x8b8f, off(p[cp[2]]));  // mov ecx, [edi+&p[j]]
        put2a(0x8b97, off(p[cp[3]]));  // mov edx, [edi+&p[k]]
        put2(0x29d1);                  // sub ecx, edx
        put3(0x0fafc8);                // imul ecx, eax
        put3(0xc1e210);                // shl edx, 16
        put2(0x01d1);                  // add ecx, edx
        put3(0xc1f910);                // sar ecx, 16
        put2a(0x898f, off(p[i]));      // mov [edi+&p[i]]
        break;

      case MIX:    // sizebits j m rate mask
                   // c=size cm=wt[size][m] cxt=index of wt in cm
        // int m=cp[3];
        // assert(m>=1 && m<=i);
        // cr.cxt=h[i]+(c8&cp[5]);
        // cr.cxt=(cr.cxt&(cr.c-1))*m; // pointer to row of weights
        // assert(cr.cxt<=cr.cm.size()-m);
        // int* wt=(int*)&cr.cm[cr.cxt];
        // p[i]=0;
        // for (int j=0; j<m; ++j)
        //   p[i]+=(wt[j]>>8)*p[cp[2]+j];
        // p[i]=clamp2k(p[i]>>8);

        put2(0x8b07);                          // mov eax, [edi] ; c8
        put1a(0x25, cp[5]);                    // and eax, mask
        put2a(0x0387, off(h[i]));              // add eax, [edi+&h[i]]
        put1a(0x25, (1<<cp[1])-1);             // and eax, size-1
        put2a(0x69c0, cp[3]);                  // imul eax, m
        put2a(0x8987, offc(cxt));              // mov [edi+&cxt], eax ; cxt
        if (S==8) put1(0x48);                  // rex.w
        put2a(0x8bb7, offc(cm));               // mov esi, [edi+&cm]
        if (S==8) put1(0x48);                  // rex.w
        put3(0x8d3486);                        // lea esi, [esi+eax*4] ; wt

        // Unroll summation loop: esi=wt[0..m-1]
        for (int k=0; k<cp[3]; k+=8) {
          const int tail=cp[3]-k;  // number of elements remaining

          // pack 8 elements of wt in xmm1, 8 elements of p in xmm3
          put4a(0xf30f6f8e, k*4);              // movdqu xmm1, [esi+k*4]
          if (tail>3) put4a(0xf30f6f96, k*4+16);//movdqu xmm2, [esi+k*4+16]
          put5(0x660f72e1,0x08);               // psrad xmm1, 8
          if (tail>3) put5(0x660f72e2,0x08);   // psrad xmm2, 8
          put4(0x660f6bca);                    // packssdw xmm1, xmm2
          put4a(0xf30f6f9f, off(p[cp[2]+k]));  // movdqu xmm3, [edi+&p[j+k]]
          if (tail>3)
            put4a(0xf30f6fa7,off(p[cp[2]+k+4]));//movdqu xmm4, [edi+&p[j+k+4]]
          put4(0x660f6bdc);                    // packssdw, xmm3, xmm4
          if (tail>0 && tail<8) {  // last loop, mask extra weights
            put4(0x660f76ed);                  // pcmpeqd xmm5, xmm5 ; -1
            put5(0x660f73dd, 16-tail*2);       // psrldq xmm5, 16-tail*2
            put4(0x660fdbcd);                  // pand xmm1, xmm5
          }
          if (k==0) {  // first loop, initialize sum in xmm0
            put4(0xf30f6fc1);                  // movdqu xmm0, xmm1
            put4(0x660ff5c3);                  // pmaddwd xmm0, xmm3
          }
          else {  // accumulate sum in xmm0
            put4(0xf30f6fd1);                  // movdqu xmm2, xmm1
            put4(0x660ff5d3);                  // pmaddwd xmm2, xmm3
            put4(0x660ffec2);                  // paddd, xmm0, xmm2
          }
        }

        // Add up the 4 elements of xmm0 = p[i] in the first element
        put4(0xf30f6fc8);                      // movdqu xmm1, xmm0
        put5(0x660f73d9,0x08);                 // psrldq xmm1, 8
        put4(0x660ffec1);                      // paddd xmm0, xmm1
        put4(0xf30f6fc8);                      // movdqu xmm1, xmm0
        put5(0x660f73d9,0x04);                 // psrldq xmm1, 4
        put4(0x660ffec1);                      // paddd xmm0, xmm1
        put4(0x660f7ec0);                      // movd eax, xmm0 ; p[i]
        put3(0xc1f808);                        // sar eax, 8
        put1a(0xb9, 2047);                     // mov ecx, 2047 ; clamp2k
        put2(0x39c8);                          // cmp eax, ecx
        put3(0x0f4fc1);                        // cmovg eax, ecx
        put2(0xf7d1);                          // not ecx ; -2048
        put2(0x39c8);                          // cmp eax, ecx
        put3(0x0f4cc1);                        // cmovl eax, ecx
        put2a(0x8987, off(p[i]));              // mov [edi+&p[i]], eax
        break;

      case SSE:  // sizebits j start limit
        // cr.cxt=(h[i]+c8)*32;
        // int pq=p[cp[2]]+992;
        // if (pq<0) pq=0;
        // if (pq>1983) pq=1983;
        // int wt=pq&63;
        // pq>>=6;
        // assert(pq>=0 && pq<=30);
        // cr.cxt+=pq;
        // p[i]=stretch(((cr.cm(cr.cxt)>>10)*(64-wt)       // p0
        //               +(cr.cm(cr.cxt+1)>>10)*wt)>>13);  // p1
        // // p = p0*(64-wt)+p1*wt = (p1-p0)*wt + p0*64
        // cr.cxt+=wt>>5;

        put2a(0x8b8f, off(h[i]));      // mov ecx, [edi+&h[i]]
        put2(0x030f);                  // add ecx, [edi]  ; c0
        put2a(0x81e1, (1<<cp[1])-1);   // and ecx, size-1
        put3(0xc1e105);                // shl ecx, 5  ; cxt in 0..size*32-32
        put2a(0x8b87, off(p[cp[2]]));  // mov eax, [edi+&p[j]] ; pq
        put1a(0x05, 992);              // add eax, 992
        put2(0x31d2);                  // xor edx, edx ; 0
        put2(0x39d0);                  // cmp eax, edx
        put3(0x0f4cc2);                // cmovl eax, edx
        put1a(0xba, 1983);             // mov edx, 1983
        put2(0x39d0);                  // cmp eax, edx
        put3(0x0f4fc2);                // cmovg eax, edx ; pq in 0..1983
        put2(0x89c2);                  // mov edx, eax
        put3(0x83e23f);                // and edx, 63  ; wt in 0..63
        put3(0xc1e806);                // shr eax, 6   ; pq in 0..30
        put2(0x01c1);                  // add ecx, eax ; cxt in 0..size*32-2
        if (S==8) put1(0x48);          // rex.w
        put2a(0x8bb7, offc(cm));       // mov esi, [edi+cm]
        put3(0x8b048e);                // mov eax, [esi+ecx*4] ; cm[cxt]
        put4(0x8b5c8e04);              // mov ebx, [esi+ecx*4+4] ; cm[cxt+1]
        put3(0x83fa20);                // cmp edx, 32  ; wt
        put3(0x83d9ff);                // sbb ecx, -1  ; cxt+=wt>>5
        put2a(0x898f, offc(cxt));      // mov [edi+cxt], ecx  ; cxt saved
        put3(0xc1e80a);                // shr eax, 10 ; p0 = cm[cxt]>>10
        put3(0xc1eb0a);                // shr ebx, 10 ; p1 = cm[cxt+1]>>10
        put2(0x29c3);                  // sub ebx, eax, ; p1-p0
        put3(0x0fafda);                // imul ebx, edx ; (p1-p0)*wt
        put3(0xc1e006);                // shr eax, 6
        put2(0x01d8);                  // add eax, ebx ; p in 0..2^28-1
        put3(0xc1e80d);                // shr eax, 13  ; p in 0..32767
        put4a(0x0fbf8447, off(stretcht));  // movsx eax, word [edi+eax*2+...]
        put2a(0x8987, off(p[i]));      // mov [edi+&p[i]], eax
        break;

      default:
        error("invalid ZPAQ component");
    }
  }

  // return squash(p[n-1])
  put2a(0x8b87, off(p[n-1]));          // mov eax, [edi+...]
  put1a(0x05, 0x800);                  // add eax, 2048
  put4a(0x0fbf8447, off(squasht[0]));  // movsx eax, word [edi+eax*2+...]
  put1(0x5f);                          // pop edi
  put1(0x5e);                          // pop esi
  put1(0x5d);                          // pop ebp
  put1(0x5b);                          // pop ebx
  put1(0xc3);                          // ret

  // Initialize for update() Put predictor address in edi/rdi
  // and bit y=0..1 in ebp
  int save_o=o;
  o=5;
  put1a(0xe9, save_o-10);      // jmp update
  o=save_o;
  put1(0x53);                  // push ebx/rbx
  put1(0x55);                  // push ebp/rbp
  put1(0x56);                  // push esi/rsi
  put1(0x57);                  // push edi/rdi
  if (S==4) {
    put4(0x8b7c2414);          // mov edi,[esp+0x14] ; (1st arg = pr)
    put4(0x8b6c2418);          // mov ebp,[esp+0x18] ; (2nd arg = y)
  }
  else {
#ifndef _WIN32
    put3(0x4889f5);            // mov rbp, rsi (2nd arg in Linux-64)
#else
    put3(0x4889cf);            // mov rdi, rcx (1st arg in Win64)
    put3(0x4889d5);            // mov rbp, rdx (2nd arg)
#endif
  }

  // Code update() for each component
  cp=hcomp+7;
  for (int i=0; i<n; ++i, cp+=compsize[cp[0]]) {
    assert(cp-hcomp<pr.z.cend);
    assert (cp[0]>=1 && cp[0]<=9);
    assert(compsize[cp[0]]>0 && compsize[cp[0]]<8);
    switch (cp[0]) {

      case CONS:  // c
        break;

      case SSE:  // sizebits j start limit
      case CM:   // sizebits limit
        // train(cr, y);
        //
        // reduce prediction error in cr.cm
        // void train(Component& cr, int y) {
        //   assert(y==0 || y==1);
        //   U32& pn=cr.cm(cr.cxt);
        //   U32 count=pn&0x3ff;
        //   int error=y*32767-(cr.cm(cr.cxt)>>17);
        //   pn+=(error*dt[count]&-1024)+(count<cr.limit);

        if (S==8) put1(0x48);          // rex.w (esi->rsi)
        put2a(0x8bb7, offc(cm));       // mov esi,[edi+cm]  ; cm
        put2a(0x8b87, offc(cxt));      // mov eax,[edi+cxt] ; cxt
        put1a(0x25, pr.comp[i].cm.size()-1);  // and eax, size-1
        if (S==8) put1(0x48);          // rex.w
        put3(0x8d3486);                // lea esi,[esi+eax*4] ; &cm[cxt]
        put2(0x8b06);                  // mov eax,[esi] ; cm[cxt]
        put2(0x89c2);                  // mov edx, eax  ; cm[cxt]
        put3(0xc1e811);                // shr eax, 17   ; cm[cxt]>>17
        put2(0x89e9);                  // mov ecx, ebp  ; y
        put3(0xc1e10f);                // shl ecx, 15   ; y*32768
        put2(0x29e9);                  // sub ecx, ebp  ; y*32767
        put2(0x29c1);                  // sub ecx, eax  ; error
        put2a(0x81e2, 0x3ff);          // and edx, 1023 ; count
        put3a(0x8b8497, off(dt));      // mov eax,[edi+edx*4+dt] ; dt[count]
        put3(0x0fafc8);                // imul ecx, eax ; error*dt[count]
        put2a(0x81e1, 0xfffffc00);     // and ecx, -1024
        put2a(0x81fa, cp[2+2*(cp[0]==SSE)]*4); // cmp edx, limit*4
        put2(0x110e);                  // adc [esi], ecx ; pn+=...
        break;

      case ICM:   // sizebits: cxt=bh, ht[c][0..15]=bh row
        // cr.ht[cr.c+(hmap4&15)]=st.next(cr.ht[cr.c+(hmap4&15)], y);
        // U32& pn=cr.cm(cr.cxt);
        // pn+=int(y*32767-(pn>>8))>>2;

      case ISSE:  // sizebits j  -- c=hi, cxt=bh
        // assert(cr.cxt==cr.ht[cr.c+(hmap4&15)]);
        // int err=y*32767-squash(p[i]);
        // int *wt=(int*)&cr.cm[cr.cxt*2];
        // wt[0]=clamp512k(wt[0]+((err*p[cp[2]]+(1<<12))>>13));
        // wt[1]=clamp512k(wt[1]+((err+16)>>5));
        // cr.ht[cr.c+(hmap4&15)]=st.next(cr.cxt, y);

        // update bit history bh to next(bh,y=ebp) in ht[c+(hmap4&15)]
        put3(0x8b4700+off(hmap4));     // mov eax, [edi+&hmap4]
        put3(0x83e00f);                // and eax, 15
        put2a(0x0387, offc(c));        // add eax [edi+&c] ; cxt
        if (S==8) put1(0x48);          // rex.w
        put2a(0x8bb7, offc(ht));       // mov esi, [edi+&ht]
        put4(0x0fb61406);              // movzx edx, byte [esi+eax] ; bh
        put4(0x8d5c9500);              // lea ebx, [ebp+edx*4] ; index to st
        put4a(0x0fb69c1f, off(st));    // movzx ebx,byte[edi+ebx+st]; next bh
        put3(0x881c06);                // mov [esi+eax], bl ; save next bh
        if (S==8) put1(0x48);          // rex.w
        put2a(0x8bb7, offc(cm));       // mov esi, [edi+&cm]

        // ICM: update cm[cxt=edx=bit history] to reduce prediction error
        // esi = &cm
        if (cp[0]==ICM) {
          if (S==8) put1(0x48);        // rex.w
          put3(0x8d3496);              // lea esi, [esi+edx*4] ; &cm[bh]
          put2(0x8b06);                // mov eax, [esi] ; pn
          put3(0xc1e808);              // shr eax, 8 ; pn>>8
          put2(0x89e9);                // mov ecx, ebp ; y
          put3(0xc1e10f);              // shl ecx, 15
          put2(0x29e9);                // sub ecx, ebp ; y*32767
          put2(0x29c1);                // sub ecx, eax
          put3(0xc1f902);              // sar ecx, 2
          put2(0x010e);                // add [esi], ecx
        }

        // ISSE: update weights. edx=cxt=bit history (0..255), esi=cm[512]
        else {
          put2a(0x8b87, off(p[i]));    // mov eax, [edi+&p[i]]
          put1a(0x05, 2048);           // add eax, 2048
          put4a(0x0fb78447, off(squasht)); // movzx eax, word [edi+eax*2+..]
          put2(0x89e9);                // mov ecx, ebp ; y
          put3(0xc1e10f);              // shl ecx, 15
          put2(0x29e9);                // sub ecx, ebp ; y*32767
          put2(0x29c1);                // sub ecx, eax ; err
          put2a(0x8b87, off(p[cp[2]]));// mov eax, [edi+&p[j]]
          put3(0x0fafc1);              // imul eax, ecx
          put1a(0x05, (1<<12));        // add eax, 4096
          put3(0xc1f80d);              // sar eax, 13
          put3(0x0304d6);              // add eax, [esi+edx*8] ; wt[0]
          put1a(0xbb, (1<<19)-1);      // mov ebx, 524287
          put2(0x39d8);                // cmp eax, ebx
          put3(0x0f4fc3);              // cmovg eax, ebx
          put2(0xf7d3);                // not ebx ; -524288
          put2(0x39d8);                // cmp eax, ebx
          put3(0x0f4cc3);              // cmovl eax, ebx
          put3(0x8904d6);              // mov [esi+edx*8], eax
          put3(0x83c110);              // add ecx, 16 ; err
          put3(0xc1f905);              // sar ecx, 5
          put4(0x034cd604);            // add ecx, [esi+edx*8+4] ; wt[1]
          put1a(0xb8, (1<<19)-1);      // mov eax, 524287
          put2(0x39c1);                // cmp ecx, eax
          put3(0x0f4fc8);              // cmovg ecx, eax
          put2(0xf7d0);                // not eax ; -524288
          put2(0x39c1);                // cmp ecx, eax
          put3(0x0f4cc8);              // cmovl ecx, eax
          put4(0x894cd604);            // mov [esi+edx*8+4], ecx
        }
        break;

      case MATCH: // sizebits bufbits:
                  //   a=len, b=offset, c=bit, cm=index, cxt=bitpos
                  //   ht=buf, limit=pos
        // assert(cr.a<=255);
        // assert(cr.c==0 || cr.c==1);
        // assert(cr.cxt<8);
        // assert(cr.cm.size()==(size_t(1)<<cp[1]));
        // assert(cr.ht.size()==(size_t(1)<<cp[2]));
        // if (int(cr.c)!=y) cr.a=0;  // mismatch?
        // cr.ht(cr.limit)+=cr.ht(cr.limit)+y;
        // if (++cr.cxt==8) {
        //   cr.cxt=0;
        //   ++cr.limit;
        //   cr.limit&=(1<<cp[2])-1;
        //   if (cr.a==0) {  // look for a match
        //     cr.b=cr.limit-cr.cm(h[i]);
        //     if (cr.b&(cr.ht.size()-1))
        //       while (cr.a<255
        //              && cr.ht(cr.limit-cr.a-1)==cr.ht(cr.limit-cr.a-cr.b-1))
        //         ++cr.a;
        //   }
        //   else cr.a+=cr.a<255;
        //   cr.cm(h[i])=cr.limit;
        // }

        // Set pointers ebx=&cm, esi=&ht
        if (S==8) put1(0x48);          // rex.w
        put2a(0x8bb7, offc(ht));       // mov esi, [edi+&ht]
        if (S==8) put1(0x48);          // rex.w
        put2a(0x8b9f, offc(cm));       // mov ebx, [edi+&cm]

        // if (c!=y) a=0;
        put2a(0x8b87, offc(c));        // mov eax, [edi+&c]
        put2(0x39e8);                  // cmp eax, ebp ; y
        put2(0x7408);                  // jz L1
        put2(0x31c0);                  // xor eax, eax
        put2a(0x8987, offc(a));        // mov [edi+&a], eax

        // ht(limit)+=ht(limit)+y  (1E)
        put2a(0x8b87, offc(limit));    // mov eax, [edi+&limit]
        put4(0x0fb60c06);              // movzx, ecx, byte [esi+eax]
        put2(0x01c9);                  // add ecx, ecx
        put2(0x01e9);                  // add ecx, ebp
        put3(0x880c06);                // mov [esi+eax], cl

        // if (++cxt==8)
        put2a(0x8b87, offc(cxt));      // mov eax, [edi+&cxt]
        put2(0xffc0);                  // inc eax
        put3(0x83e007);                // and eax,byte +0x7
        put2a(0x8987, offc(cxt));      // mov [edi+&cxt],eax
        put2a(0x0f85, 0x9b);           // jnz L8

        // ++limit;
        // limit&=bufsize-1;
        put2a(0x8b87, offc(limit));    // mov eax,[edi+&limit]
        put2(0xffc0);                  // inc eax
        put1a(0x25, (1<<cp[2])-1);     // and eax, bufsize-1
        put2a(0x8987, offc(limit));    // mov [edi+&limit],eax

        // if (a==0)
        put2a(0x8b87, offc(a));        // mov eax, [edi+&a]
        put2(0x85c0);                  // test eax,eax
        put2(0x755c);                  // jnz L6

        //   b=limit-cm(h[i])
        put2a(0x8b8f, off(h[i]));      // mov ecx,[edi+h[i]]
        put2a(0x81e1, (1<<cp[1])-1);   // and ecx, size-1
        put2a(0x8b87, offc(limit));    // mov eax,[edi-&limit]
        put3(0x2b048b);                // sub eax,[ebx+ecx*4]
        put2a(0x8987, offc(b));        // mov [edi+&b],eax

        //   if (b&(bufsize-1))
        put1a(0xa9, (1<<cp[2])-1);     // test eax, bufsize-1
        put2(0x7448);                  // jz L7

        //      while (a<255 && ht(limit-a-1)==ht(limit-a-b-1)) ++a;
        put1(0x53);                    // push ebx
        put2a(0x8b9f, offc(limit));    // mov ebx,[edi+&limit]
        put2(0x89da);                  // mov edx,ebx
        put2(0x29c3);                  // sub ebx,eax  ; limit-b
        put2(0x31c9);                  // xor ecx,ecx  ; a=0
        put2a(0x81f9, 0xff);           // L2: cmp ecx,0xff ; while
        put2(0x741c);                  // jz L3 ; break
        put2(0xffca);                  // dec edx
        put2(0xffcb);                  // dec ebx
        put2a(0x81e2, (1<<cp[2])-1);   // and edx, bufsize-1
        put2a(0x81e3, (1<<cp[2])-1);   // and ebx, bufsize-1
        put3(0x8a0416);                // mov al,[esi+edx]
        put3(0x3a041e);                // cmp al,[esi+ebx]
        put2(0x7504);                  // jnz L3 ; break
        put2(0xffc1);                  // inc ecx
        put2(0xebdc);                  // jmp short L2 ; end while
        put1(0x5b);                    // L3: pop ebx
        put2a(0x898f, offc(a));        // mov [edi+&a],ecx
        put2(0xeb0e);                  // jmp short L7

        // a+=(a<255)
        put1a(0x3d, 0xff);             // L6: cmp eax, 0xff ; a
        put3(0x83d000);                // adc eax, 0
        put2a(0x8987, offc(a));        // mov [edi+&a],eax

        // cm(h[i])=limit
        put2a(0x8b87, off(h[i]));      // L7: mov eax,[edi+&h[i]]
        put1a(0x25, (1<<cp[1])-1);     // and eax, size-1
        put2a(0x8b8f, offc(limit));    // mov ecx,[edi+&limit]
        put3(0x890c83);                // mov [ebx+eax*4],ecx
                                       // L8:
        break;

      case AVG:  // j k wt
        break;

      case MIX2: // sizebits j k rate mask
                 // cm=wt[size], cxt=input
        // assert(cr.a16.size()==cr.c);
        // assert(cr.cxt<cr.a16.size());
        // int err=(y*32767-squash(p[i]))*cp[4]>>5;
        // int w=cr.a16[cr.cxt];
        // w+=(err*(p[cp[2]]-p[cp[3]])+(1<<12))>>13;
        // if (w<0) w=0;
        // if (w>65535) w=65535;
        // cr.a16[cr.cxt]=w;

        // set ecx=err
        put2a(0x8b87, off(p[i]));      // mov eax, [edi+&p[i]]
        put1a(0x05, 2048);             // add eax, 2048
        put4a(0x0fb78447, off(squasht));//movzx eax, word [edi+eax*2+&squasht]
        put2(0x89e9);                  // mov ecx, ebp ; y
        put3(0xc1e10f);                // shl ecx, 15
        put2(0x29e9);                  // sub ecx, ebp ; y*32767
        put2(0x29c1);                  // sub ecx, eax
        put2a(0x69c9, cp[4]);          // imul ecx, rate
        put3(0xc1f905);                // sar ecx, 5  ; err

        // Update w
        put2a(0x8b87, offc(cxt));      // mov eax, [edi+&cxt]
        if (S==8) put1(0x48);          // rex.w
        put2a(0x8bb7, offc(a16));      // mov esi, [edi+&a16]
        if (S==8) put1(0x48);          // rex.w
        put3(0x8d3446);                // lea esi, [esi+eax*2] ; &w
        put2a(0x8b87, off(p[cp[2]]));  // mov eax, [edi+&p[j]]
        put2a(0x2b87, off(p[cp[3]]));  // sub eax, [edi+&p[k]] ; p[j]-p[k]
        put3(0x0fafc1);                // imul eax, ecx  ; * err
        put1a(0x05, 1<<12);            // add eax, 4096
        put3(0xc1f80d);                // sar eax, 13
        put3(0x0fb716);                // movzx edx, word [esi] ; w
        put2(0x01d0);                  // add eax, edx
        put1a(0xba, 0xffff);           // mov edx, 65535
        put2(0x39d0);                  // cmp eax, edx
        put3(0x0f4fc2);                // cmovg eax, edx
        put2(0x31d2);                  // xor edx, edx
        put2(0x39d0);                  // cmp eax, edx
        put3(0x0f4cc2);                // cmovl eax, edx
        put3(0x668906);                // mov word [esi], ax
        break;

      case MIX: // sizebits j m rate mask
                // cm=wt[size][m], cxt=input
        // int m=cp[3];
        // assert(m>0 && m<=i);
        // assert(cr.cm.size()==m*cr.c);
        // assert(cr.cxt+m<=cr.cm.size());
        // int err=(y*32767-squash(p[i]))*cp[4]>>4;
        // int* wt=(int*)&cr.cm[cr.cxt];
        // for (int j=0; j<m; ++j)
        //   wt[j]=clamp512k(wt[j]+((err*p[cp[2]+j]+(1<<12))>>13));

        // set ecx=err
        put2a(0x8b87, off(p[i]));      // mov eax, [edi+&p[i]]
        put1a(0x05, 2048);             // add eax, 2048
        put4a(0x0fb78447, off(squasht));//movzx eax, word [edi+eax*2+&squasht]
        put2(0x89e9);                  // mov ecx, ebp ; y
        put3(0xc1e10f);                // shl ecx, 15
        put2(0x29e9);                  // sub ecx, ebp ; y*32767
        put2(0x29c1);                  // sub ecx, eax
        put2a(0x69c9, cp[4]);          // imul ecx, rate
        put3(0xc1f904);                // sar ecx, 4  ; err

        // set esi=wt
        put2a(0x8b87, offc(cxt));      // mov eax, [edi+&cxt] ; cxt
        if (S==8) put1(0x48);          // rex.w
        put2a(0x8bb7, offc(cm));       // mov esi, [edi+&cm]
        if (S==8) put1(0x48);          // rex.w
        put3(0x8d3486);                // lea esi, [esi+eax*4] ; wt

        for (int k=0; k<cp[3]; ++k) {
          put2a(0x8b87,off(p[cp[2]+k]));//mov eax, [edi+&p[cp[2]+k]
          put3(0x0fafc1);              // imul eax, ecx
          put1a(0x05, 1<<12);          // add eax, 1<<12
          put3(0xc1f80d);              // sar eax, 13
          put2(0x0306);                // add eax, [esi]
          put1a(0xba, (1<<19)-1);      // mov edx, (1<<19)-1
          put2(0x39d0);                // cmp eax, edx
          put3(0x0f4fc2);              // cmovg eax, edx
          put2(0xf7d2);                // not edx
          put2(0x39d0);                // cmp eax, edx
          put3(0x0f4cc2);              // cmovl eax, edx
          put2(0x8906);                // mov [esi], eax
          if (k<cp[3]-1) {
            if (S==8) put1(0x48);      // rex.w
            put3(0x83c604);            // add esi, 4
          }
        }
        break;

      default:
        error("invalid ZPAQ component");
    }
  }

  // return from update()
  put1(0x5f);                 // pop edi
  put1(0x5e);                 // pop esi
  put1(0x5d);                 // pop ebp
  put1(0x5b);                 // pop ebx
  put1(0xc3);                 // ret

  return o;
}

#endif // ifndef NOJIT

// Return a prediction of the next bit in range 0..32767
// Use JIT code starting at pcode[0] if available, or else create it.
int Predictor::predict() {
#ifdef NOJIT
  return predict0();
#else
  if (!pcode) {
    int n=assemble_p();
    allocx(pcode, pcode_size, n);
    if (!pcode || n!=assemble_p() || n<10 || pcode_size<10)
      error("predictor JIT failed");
  }
  assert(pcode && pcode[0]);
  return ((int(*)(Predictor*))&pcode[0])(this);
#endif
}

// Update the model with bit y = 0..1
// Use the JIT code starting at pcode[5].
void Predictor::update(int y) {
#ifdef NOJIT
  update0(y);
#else
  assert(pcode && pcode[5]);
  ((void(*)(Predictor*, int))&pcode[5])(this, y);

  // Save bit y in c8, hmap4 (not implemented in JIT)
  c8+=c8+y;
  if (c8>=256) {
    z.run(c8-256);
    hmap4=1;
    c8=1;
    for (int i=0; i<z.header[6]; ++i) h[i]=z.H(i);
  }
  else if (c8>=16 && c8<32)
    hmap4=(hmap4&0xf)<<5|y<<4|1;
  else
    hmap4=(hmap4&0x1f0)|(((hmap4&0xf)*2+y)&0xf);
#endif
}

// Execute the ZPAQL code with input byte or -1 for EOF.
// Use JIT code at rcode if available, or else create it.
void ZPAQL::run(U32 input) {
#ifdef NOJIT
  run0(input);
#else
  if (!rcode) {
    int n=assemble();
    allocx(rcode, rcode_size, n);
    if (!rcode || n<10 || rcode_size<10 || n!=assemble())
      error("run JIT failed");
  }
  a=input;
  if (!((int(*)())(&rcode[0]))())
    libzpaq::error("Bad ZPAQL opcode");
#endif
}

}  // end namespace libzpaq