1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
|
/* libzpaq.cpp - Part of LIBZPAQ Version 5.01
Copyright (C) 2011, Dell Inc. Written by Matt Mahoney.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so without restriction.
This Software is provided "as is" without warranty.
LIBZPAQ is a C++ library for compression and decompression of data
conforming to the ZPAQ level 2 standard. See http://mattmahoney.net/zpaq/
*/
#include "libzpaq.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifndef NOJIT
#ifndef _WIN32
#include <sys/mman.h>
#else
#include <windows.h>
#endif
#endif
namespace libzpaq {
// Standard library redirections
void* calloc(size_t a, size_t b) {return ::calloc(a, b);}
void free(void* p) {::free(p);}
int memcmp(const void* d, const void* s, size_t n) {
return ::memcmp(d, s, n);}
void* memset(void* d, int c, size_t n) {return ::memset(d, c, n);}
double log(double x) {return ::log(x);}
double exp(double x) {return ::exp(x);}
double pow(double x, double y) {return ::pow(x, y);}
// Read 16 bit little-endian number
int toU16(const char* p) {
return (p[0]&255)+256*(p[1]&255);
}
// Default read() and write()
int Reader::read(char* buf, int n) {
int i=0, c;
while (i<n && (c=get())>=0)
buf[i++]=c;
return i;
}
void Writer::write(const char* buf, int n) {
for (int i=0; i<n; ++i)
put(U8(buf[i]));
}
void error(const char* msg) {
fprintf(stderr, "zpipe error: %s\n", msg);
exit(1);
}
///////////////////////// allocx //////////////////////
// Allocate newsize > 0 bytes of executable memory and update
// p to point to it and newsize = n. Free any previously
// allocated memory first. If newsize is 0 then free only.
// Call error in case of failure. If NOJIT, ignore newsize
// and set p=0, n=0 without allocating memory.
void allocx(U8* &p, int &n, int newsize) {
#ifdef NOJIT
p=0;
n=0;
#else
if (p || n) {
if (p)
#ifndef _WIN32
munmap(p, n);
#else // Windows
VirtualFree(p, 0, MEM_RELEASE);
#endif
p=0;
n=0;
}
if (newsize>0) {
#ifndef _WIN32
p=(U8*)mmap(0, newsize, PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANON, -1, 0);
if ((void*)p==MAP_FAILED) p=0;
#else
p=(U8*)VirtualAlloc(0, newsize, MEM_RESERVE|MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
#endif
if (p)
n=newsize;
else {
n=0;
error("allocx failed");
}
}
#endif
}
//////////////////////////// SHA1 ////////////////////////////
// SHA1 code, see http://en.wikipedia.org/wiki/SHA-1
// Start a new hash
void SHA1::init() {
len0=len1=0;
h[0]=0x67452301;
h[1]=0xEFCDAB89;
h[2]=0x98BADCFE;
h[3]=0x10325476;
h[4]=0xC3D2E1F0;
}
// Return old result and start a new hash
const char* SHA1::result() {
// pad and append length
const U32 s1=len1, s0=len0;
put(0x80);
while ((len0&511)!=448)
put(0);
put(s1>>24);
put(s1>>16);
put(s1>>8);
put(s1);
put(s0>>24);
put(s0>>16);
put(s0>>8);
put(s0);
// copy h to hbuf
for (int i=0; i<5; ++i) {
hbuf[4*i]=h[i]>>24;
hbuf[4*i+1]=h[i]>>16;
hbuf[4*i+2]=h[i]>>8;
hbuf[4*i+3]=h[i];
}
// return hash prior to clearing state
init();
return hbuf;
}
// Hash 1 block of 64 bytes
void SHA1::process() {
for (int i=16; i<80; ++i) {
w[i]=w[i-3]^w[i-8]^w[i-14]^w[i-16];
w[i]=w[i]<<1|w[i]>>31;
}
U32 a=h[0];
U32 b=h[1];
U32 c=h[2];
U32 d=h[3];
U32 e=h[4];
const U32 k1=0x5A827999, k2=0x6ED9EBA1, k3=0x8F1BBCDC, k4=0xCA62C1D6;
#define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+((b&c)|(~b&d))+k1+w[i]; b=b<<30|b>>2;
#define f5(i) f1(a,b,c,d,e,i) f1(e,a,b,c,d,i+1) f1(d,e,a,b,c,i+2) \
f1(c,d,e,a,b,i+3) f1(b,c,d,e,a,i+4)
f5(0) f5(5) f5(10) f5(15)
#undef f1
#define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+(b^c^d)+k2+w[i]; b=b<<30|b>>2;
f5(20) f5(25) f5(30) f5(35)
#undef f1
#define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+((b&c)|(b&d)|(c&d))+k3+w[i]; b=b<<30|b>>2;
f5(40) f5(45) f5(50) f5(55)
#undef f1
#define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+(b^c^d)+k4+w[i]; b=b<<30|b>>2;
f5(60) f5(65) f5(70) f5(75)
#undef f1
#undef f5
h[0]+=a;
h[1]+=b;
h[2]+=c;
h[3]+=d;
h[4]+=e;
}
//////////////////////////// Component ///////////////////////
// A Component is a context model, indirect context model, match model,
// fixed weight mixer, adaptive 2 input mixer without or with current
// partial byte as context, adaptive m input mixer (without or with),
// or SSE (without or with).
const int compsize[256]={0,2,3,2,3,4,6,6,3,5};
void Component::init() {
limit=cxt=a=b=c=0;
cm.resize(0);
ht.resize(0);
a16.resize(0);
}
////////////////////////// StateTable //////////////////////////
// How many states with count of n0 zeros, n1 ones (0...2)
int StateTable::num_states(int n0, int n1) {
const int B=6;
const int bound[B]={20,48,15,8,6,5}; // n0 -> max n1, n1 -> max n0
if (n0<n1) return num_states(n1, n0);
if (n0<0 || n1<0 || n1>=B || n0>bound[n1]) return 0;
return 1+(n1>0 && n0+n1<=17);
}
// New value of count n0 if 1 is observed (and vice versa)
void StateTable::discount(int& n0) {
n0=(n0>=1)+(n0>=2)+(n0>=3)+(n0>=4)+(n0>=5)+(n0>=7)+(n0>=8);
}
// compute next n0,n1 (0 to N) given input y (0 or 1)
void StateTable::next_state(int& n0, int& n1, int y) {
if (n0<n1)
next_state(n1, n0, 1-y);
else {
if (y) {
++n1;
discount(n0);
}
else {
++n0;
discount(n1);
}
// 20,0,0 -> 20,0
// 48,1,0 -> 48,1
// 15,2,0 -> 8,1
// 8,3,0 -> 6,2
// 8,3,1 -> 5,3
// 6,4,0 -> 5,3
// 5,5,0 -> 5,4
// 5,5,1 -> 4,5
while (!num_states(n0, n1)) {
if (n1<2) --n0;
else {
n0=(n0*(n1-1)+(n1/2))/n1;
--n1;
}
}
}
}
// Initialize next state table ns[state*4] -> next if 0, next if 1, n0, n1
StateTable::StateTable() {
// Assign states by increasing priority
const int N=50;
U8 t[N][N][2]={{{0}}}; // (n0,n1,y) -> state number
int state=0;
for (int i=0; i<N; ++i) {
for (int n1=0; n1<=i; ++n1) {
int n0=i-n1;
int n=num_states(n0, n1);
assert(n>=0 && n<=2);
if (n) {
t[n0][n1][0]=state;
t[n0][n1][1]=state+n-1;
state+=n;
}
}
}
// Generate next state table
memset(ns, 0, sizeof(ns));
for (int n0=0; n0<N; ++n0) {
for (int n1=0; n1<N; ++n1) {
for (int y=0; y<num_states(n0, n1); ++y) {
int s=t[n0][n1][y];
assert(s>=0 && s<256);
int s0=n0, s1=n1;
next_state(s0, s1, 0);
assert(s0>=0 && s0<N && s1>=0 && s1<N);
ns[s*4+0]=t[s0][s1][0];
s0=n0, s1=n1;
next_state(s0, s1, 1);
assert(s0>=0 && s0<N && s1>=0 && s1<N);
ns[s*4+1]=t[s0][s1][1];
ns[s*4+2]=n0;
ns[s*4+3]=n1;
}
}
}
}
/////////////////////////// ZPAQL //////////////////////////
// Write header to out2, return true if HCOMP/PCOMP section is present.
// If pp is true, then write only the postprocessor code.
bool ZPAQL::write(Writer* out2, bool pp) {
if (header.size()<=6) return false;
assert(header[0]+256*header[1]==cend-2+hend-hbegin);
assert(cend>=7);
assert(hbegin>=cend);
assert(hend>=hbegin);
assert(out2);
if (!pp) { // if not a postprocessor then write COMP
for (int i=0; i<cend; ++i)
out2->put(header[i]);
}
else { // write PCOMP size only
out2->put((hend-hbegin)&255);
out2->put((hend-hbegin)>>8);
}
for (int i=hbegin; i<hend; ++i)
out2->put(header[i]);
return true;
}
// Read header from in2
int ZPAQL::read(Reader* in2) {
// Get header size and allocate
int hsize=in2->get();
hsize+=in2->get()*256;
header.resize(hsize+300);
cend=hbegin=hend=0;
header[cend++]=hsize&255;
header[cend++]=hsize>>8;
while (cend<7) header[cend++]=in2->get(); // hh hm ph pm n
// Read COMP
int n=header[cend-1];
for (int i=0; i<n; ++i) {
int type=in2->get(); // component type
if (type==-1) error("unexpected end of file");
header[cend++]=type; // component type
int size=compsize[type];
if (size<1) error("Invalid component type");
if (cend+size>header.isize()-8) error("COMP list too big");
for (int j=1; j<size; ++j)
header[cend++]=in2->get();
}
if ((header[cend++]=in2->get())!=0) error("missing COMP END");
// Insert a guard gap and read HCOMP
hbegin=hend=cend+128;
while (hend<hsize+129) {
assert(hend<header.isize()-8);
int op=in2->get();
if (op==-1) error("unexpected end of file");
header[hend++]=op;
}
if ((header[hend++]=in2->get())!=0) error("missing HCOMP END");
assert(cend>=7 && cend<header.isize());
assert(hbegin==cend+128 && hbegin<header.isize());
assert(hend>hbegin && hend<header.isize());
assert(hsize==header[0]+256*header[1]);
assert(hsize==cend-2+hend-hbegin);
allocx(rcode, rcode_size, 0); // clear JIT code
return cend+hend-hbegin;
}
// Free memory, but preserve output, sha1 pointers
void ZPAQL::clear() {
cend=hbegin=hend=0; // COMP and HCOMP locations
a=b=c=d=f=pc=0; // machine state
header.resize(0);
h.resize(0);
m.resize(0);
r.resize(0);
allocx(rcode, rcode_size, 0);
}
// Constructor
ZPAQL::ZPAQL() {
output=0;
sha1=0;
rcode=0;
rcode_size=0;
clear();
outbuf.resize(1<<14);
bufptr=0;
}
ZPAQL::~ZPAQL() {
allocx(rcode, rcode_size, 0);
}
// Initialize machine state as HCOMP
void ZPAQL::inith() {
assert(header.isize()>6);
assert(output==0);
assert(sha1==0);
init(header[2], header[3]); // hh, hm
}
// Initialize machine state as PCOMP
void ZPAQL::initp() {
assert(header.isize()>6);
init(header[4], header[5]); // ph, pm
}
// Flush pending output
void ZPAQL::flush() {
if (output) output->write(&outbuf[0], bufptr);
if (sha1) for (int i=0; i<bufptr; ++i) sha1->put(U8(outbuf[i]));
bufptr=0;
}
// Return memory requirement in bytes
double ZPAQL::memory() {
double mem=pow(2.0,header[2]+2)+pow(2.0,header[3]) // hh hm
+pow(2.0,header[4]+2)+pow(2.0,header[5]) // ph pm
+header.size();
int cp=7; // start of comp list
for (int i=0; i<header[6]; ++i) { // n
assert(cp<cend);
double size=pow(2.0, header[cp+1]); // sizebits
switch(header[cp]) {
case CM: mem+=4*size; break;
case ICM: mem+=64*size+1024; break;
case MATCH: mem+=4*size+pow(2.0, header[cp+2]); break; // bufbits
case MIX2: mem+=2*size; break;
case MIX: mem+=4*size*header[cp+3]; break; // m
case ISSE: mem+=64*size+2048; break;
case SSE: mem+=128*size; break;
}
cp+=compsize[header[cp]];
}
return mem;
}
// Initialize machine state to run a program.
void ZPAQL::init(int hbits, int mbits) {
assert(header.isize()>0);
assert(cend>=7);
assert(hbegin>=cend+128);
assert(hend>=hbegin);
assert(hend<header.isize()-130);
assert(header[0]+256*header[1]==cend-2+hend-hbegin);
assert(bufptr==0);
assert(outbuf.isize()>0);
h.resize(1, hbits);
m.resize(1, mbits);
r.resize(256);
a=b=c=d=pc=f=0;
}
// Run program on input by interpreting header
void ZPAQL::run0(U32 input) {
assert(cend>6);
assert(hbegin>=cend+128);
assert(hend>=hbegin);
assert(hend<header.isize()-130);
assert(m.size()>0);
assert(h.size()>0);
assert(header[0]+256*header[1]==cend+hend-hbegin-2);
pc=hbegin;
a=input;
while (execute()) ;
}
// Execute one instruction, return 0 after HALT else 1
int ZPAQL::execute() {
switch(header[pc++]) {
case 0: err(); break; // ERROR
case 1: ++a; break; // A++
case 2: --a; break; // A--
case 3: a = ~a; break; // A!
case 4: a = 0; break; // A=0
case 7: a = r[header[pc++]]; break; // A=R N
case 8: swap(b); break; // B<>A
case 9: ++b; break; // B++
case 10: --b; break; // B--
case 11: b = ~b; break; // B!
case 12: b = 0; break; // B=0
case 15: b = r[header[pc++]]; break; // B=R N
case 16: swap(c); break; // C<>A
case 17: ++c; break; // C++
case 18: --c; break; // C--
case 19: c = ~c; break; // C!
case 20: c = 0; break; // C=0
case 23: c = r[header[pc++]]; break; // C=R N
case 24: swap(d); break; // D<>A
case 25: ++d; break; // D++
case 26: --d; break; // D--
case 27: d = ~d; break; // D!
case 28: d = 0; break; // D=0
case 31: d = r[header[pc++]]; break; // D=R N
case 32: swap(m(b)); break; // *B<>A
case 33: ++m(b); break; // *B++
case 34: --m(b); break; // *B--
case 35: m(b) = ~m(b); break; // *B!
case 36: m(b) = 0; break; // *B=0
case 39: if (f) pc+=((header[pc]+128)&255)-127; else ++pc; break; // JT N
case 40: swap(m(c)); break; // *C<>A
case 41: ++m(c); break; // *C++
case 42: --m(c); break; // *C--
case 43: m(c) = ~m(c); break; // *C!
case 44: m(c) = 0; break; // *C=0
case 47: if (!f) pc+=((header[pc]+128)&255)-127; else ++pc; break; // JF N
case 48: swap(h(d)); break; // *D<>A
case 49: ++h(d); break; // *D++
case 50: --h(d); break; // *D--
case 51: h(d) = ~h(d); break; // *D!
case 52: h(d) = 0; break; // *D=0
case 55: r[header[pc++]] = a; break; // R=A N
case 56: return 0 ; // HALT
case 57: outc(a&255); break; // OUT
case 59: a = (a+m(b)+512)*773; break; // HASH
case 60: h(d) = (h(d)+a+512)*773; break; // HASHD
case 63: pc+=((header[pc]+128)&255)-127; break; // JMP N
case 64: break; // A=A
case 65: a = b; break; // A=B
case 66: a = c; break; // A=C
case 67: a = d; break; // A=D
case 68: a = m(b); break; // A=*B
case 69: a = m(c); break; // A=*C
case 70: a = h(d); break; // A=*D
case 71: a = header[pc++]; break; // A= N
case 72: b = a; break; // B=A
case 73: break; // B=B
case 74: b = c; break; // B=C
case 75: b = d; break; // B=D
case 76: b = m(b); break; // B=*B
case 77: b = m(c); break; // B=*C
case 78: b = h(d); break; // B=*D
case 79: b = header[pc++]; break; // B= N
case 80: c = a; break; // C=A
case 81: c = b; break; // C=B
case 82: break; // C=C
case 83: c = d; break; // C=D
case 84: c = m(b); break; // C=*B
case 85: c = m(c); break; // C=*C
case 86: c = h(d); break; // C=*D
case 87: c = header[pc++]; break; // C= N
case 88: d = a; break; // D=A
case 89: d = b; break; // D=B
case 90: d = c; break; // D=C
case 91: break; // D=D
case 92: d = m(b); break; // D=*B
case 93: d = m(c); break; // D=*C
case 94: d = h(d); break; // D=*D
case 95: d = header[pc++]; break; // D= N
case 96: m(b) = a; break; // *B=A
case 97: m(b) = b; break; // *B=B
case 98: m(b) = c; break; // *B=C
case 99: m(b) = d; break; // *B=D
case 100: m(b) = m(b); break; // *B=*B
case 101: m(b) = m(c); break; // *B=*C
case 102: m(b) = h(d); break; // *B=*D
case 103: m(b) = header[pc++]; break; // *B= N
case 104: m(c) = a; break; // *C=A
case 105: m(c) = b; break; // *C=B
case 106: m(c) = c; break; // *C=C
case 107: m(c) = d; break; // *C=D
case 108: m(c) = m(b); break; // *C=*B
case 109: m(c) = m(c); break; // *C=*C
case 110: m(c) = h(d); break; // *C=*D
case 111: m(c) = header[pc++]; break; // *C= N
case 112: h(d) = a; break; // *D=A
case 113: h(d) = b; break; // *D=B
case 114: h(d) = c; break; // *D=C
case 115: h(d) = d; break; // *D=D
case 116: h(d) = m(b); break; // *D=*B
case 117: h(d) = m(c); break; // *D=*C
case 118: h(d) = h(d); break; // *D=*D
case 119: h(d) = header[pc++]; break; // *D= N
case 128: a += a; break; // A+=A
case 129: a += b; break; // A+=B
case 130: a += c; break; // A+=C
case 131: a += d; break; // A+=D
case 132: a += m(b); break; // A+=*B
case 133: a += m(c); break; // A+=*C
case 134: a += h(d); break; // A+=*D
case 135: a += header[pc++]; break; // A+= N
case 136: a -= a; break; // A-=A
case 137: a -= b; break; // A-=B
case 138: a -= c; break; // A-=C
case 139: a -= d; break; // A-=D
case 140: a -= m(b); break; // A-=*B
case 141: a -= m(c); break; // A-=*C
case 142: a -= h(d); break; // A-=*D
case 143: a -= header[pc++]; break; // A-= N
case 144: a *= a; break; // A*=A
case 145: a *= b; break; // A*=B
case 146: a *= c; break; // A*=C
case 147: a *= d; break; // A*=D
case 148: a *= m(b); break; // A*=*B
case 149: a *= m(c); break; // A*=*C
case 150: a *= h(d); break; // A*=*D
case 151: a *= header[pc++]; break; // A*= N
case 152: div(a); break; // A/=A
case 153: div(b); break; // A/=B
case 154: div(c); break; // A/=C
case 155: div(d); break; // A/=D
case 156: div(m(b)); break; // A/=*B
case 157: div(m(c)); break; // A/=*C
case 158: div(h(d)); break; // A/=*D
case 159: div(header[pc++]); break; // A/= N
case 160: mod(a); break; // A%=A
case 161: mod(b); break; // A%=B
case 162: mod(c); break; // A%=C
case 163: mod(d); break; // A%=D
case 164: mod(m(b)); break; // A%=*B
case 165: mod(m(c)); break; // A%=*C
case 166: mod(h(d)); break; // A%=*D
case 167: mod(header[pc++]); break; // A%= N
case 168: a &= a; break; // A&=A
case 169: a &= b; break; // A&=B
case 170: a &= c; break; // A&=C
case 171: a &= d; break; // A&=D
case 172: a &= m(b); break; // A&=*B
case 173: a &= m(c); break; // A&=*C
case 174: a &= h(d); break; // A&=*D
case 175: a &= header[pc++]; break; // A&= N
case 176: a &= ~ a; break; // A&~A
case 177: a &= ~ b; break; // A&~B
case 178: a &= ~ c; break; // A&~C
case 179: a &= ~ d; break; // A&~D
case 180: a &= ~ m(b); break; // A&~*B
case 181: a &= ~ m(c); break; // A&~*C
case 182: a &= ~ h(d); break; // A&~*D
case 183: a &= ~ header[pc++]; break; // A&~ N
case 184: a |= a; break; // A|=A
case 185: a |= b; break; // A|=B
case 186: a |= c; break; // A|=C
case 187: a |= d; break; // A|=D
case 188: a |= m(b); break; // A|=*B
case 189: a |= m(c); break; // A|=*C
case 190: a |= h(d); break; // A|=*D
case 191: a |= header[pc++]; break; // A|= N
case 192: a ^= a; break; // A^=A
case 193: a ^= b; break; // A^=B
case 194: a ^= c; break; // A^=C
case 195: a ^= d; break; // A^=D
case 196: a ^= m(b); break; // A^=*B
case 197: a ^= m(c); break; // A^=*C
case 198: a ^= h(d); break; // A^=*D
case 199: a ^= header[pc++]; break; // A^= N
case 200: a <<= (a&31); break; // A<<=A
case 201: a <<= (b&31); break; // A<<=B
case 202: a <<= (c&31); break; // A<<=C
case 203: a <<= (d&31); break; // A<<=D
case 204: a <<= (m(b)&31); break; // A<<=*B
case 205: a <<= (m(c)&31); break; // A<<=*C
case 206: a <<= (h(d)&31); break; // A<<=*D
case 207: a <<= (header[pc++]&31); break; // A<<= N
case 208: a >>= (a&31); break; // A>>=A
case 209: a >>= (b&31); break; // A>>=B
case 210: a >>= (c&31); break; // A>>=C
case 211: a >>= (d&31); break; // A>>=D
case 212: a >>= (m(b)&31); break; // A>>=*B
case 213: a >>= (m(c)&31); break; // A>>=*C
case 214: a >>= (h(d)&31); break; // A>>=*D
case 215: a >>= (header[pc++]&31); break; // A>>= N
case 216: f = (true); break; // A==A
case 217: f = (a == b); break; // A==B
case 218: f = (a == c); break; // A==C
case 219: f = (a == d); break; // A==D
case 220: f = (a == U32(m(b))); break; // A==*B
case 221: f = (a == U32(m(c))); break; // A==*C
case 222: f = (a == h(d)); break; // A==*D
case 223: f = (a == U32(header[pc++])); break; // A== N
case 224: f = (false); break; // A<A
case 225: f = (a < b); break; // A<B
case 226: f = (a < c); break; // A<C
case 227: f = (a < d); break; // A<D
case 228: f = (a < U32(m(b))); break; // A<*B
case 229: f = (a < U32(m(c))); break; // A<*C
case 230: f = (a < h(d)); break; // A<*D
case 231: f = (a < U32(header[pc++])); break; // A< N
case 232: f = (false); break; // A>A
case 233: f = (a > b); break; // A>B
case 234: f = (a > c); break; // A>C
case 235: f = (a > d); break; // A>D
case 236: f = (a > U32(m(b))); break; // A>*B
case 237: f = (a > U32(m(c))); break; // A>*C
case 238: f = (a > h(d)); break; // A>*D
case 239: f = (a > U32(header[pc++])); break; // A> N
case 255: if((pc=hbegin+header[pc]+256*header[pc+1])>=hend)err();break;//LJ
default: err();
}
return 1;
}
// Print illegal instruction error message and exit
void ZPAQL::err() {
error("ZPAQL execution error");
}
///////////////////////// Predictor /////////////////////////
// Initailize model-independent tables
Predictor::Predictor(ZPAQL& zr):
c8(1), hmap4(1), z(zr) {
assert(sizeof(U8)==1);
assert(sizeof(U16)==2);
assert(sizeof(U32)==4);
assert(sizeof(U64)==8);
assert(sizeof(short)==2);
assert(sizeof(int)==4);
// Initialize tables
dt2k[0]=0;
for (int i=1; i<256; ++i)
dt2k[i]=2048/i;
for (int i=0; i<1024; ++i)
dt[i]=(1<<17)/(i*2+3)*2;
for (int i=0; i<32768; ++i)
stretcht[i]=int(log((i+0.5)/(32767.5-i))*64+0.5+100000)-100000;
for (int i=0; i<4096; ++i)
squasht[i]=int(32768.0/(1+exp((i-2048)*(-1.0/64))));
// Verify floating point math for squash() and stretch()
U32 sqsum=0, stsum=0;
for (int i=32767; i>=0; --i)
stsum=stsum*3+stretch(i);
for (int i=4095; i>=0; --i)
sqsum=sqsum*3+squash(i-2048);
assert(stsum==3887533746u);
assert(sqsum==2278286169u);
pcode=0;
pcode_size=0;
}
Predictor::~Predictor() {
allocx(pcode, pcode_size, 0); // free executable memory
}
// Initialize the predictor with a new model in z
void Predictor::init() {
// Clear old JIT code if any
allocx(pcode, pcode_size, 0);
// Initialize context hash function
z.inith();
// Initialize predictions
for (int i=0; i<256; ++i) h[i]=p[i]=0;
// Initialize components
for (int i=0; i<256; ++i) // clear old model
comp[i].init();
int n=z.header[6]; // hsize[0..1] hh hm ph pm n (comp)[n] END 0[128] (hcomp) END
const U8* cp=&z.header[7]; // start of component list
for (int i=0; i<n; ++i) {
assert(cp<&z.header[z.cend]);
assert(cp>&z.header[0] && cp<&z.header[z.header.isize()-8]);
Component& cr=comp[i];
switch(cp[0]) {
case CONS: // c
p[i]=(cp[1]-128)*4;
break;
case CM: // sizebits limit
if (cp[1]>32) error("max size for CM is 32");
cr.cm.resize(1, cp[1]); // packed CM (22 bits) + CMCOUNT (10 bits)
cr.limit=cp[2]*4;
for (size_t j=0; j<cr.cm.size(); ++j)
cr.cm[j]=0x80000000;
break;
case ICM: // sizebits
if (cp[1]>26) error("max size for ICM is 26");
cr.limit=1023;
cr.cm.resize(256);
cr.ht.resize(64, cp[1]);
for (size_t j=0; j<cr.cm.size(); ++j)
cr.cm[j]=st.cminit(j);
break;
case MATCH: // sizebits
if (cp[1]>32 || cp[2]>32) error("max size for MATCH is 32 32");
cr.cm.resize(1, cp[1]); // index
cr.ht.resize(1, cp[2]); // buf
cr.ht(0)=1;
break;
case AVG: // j k wt
if (cp[1]>=i) error("AVG j >= i");
if (cp[2]>=i) error("AVG k >= i");
break;
case MIX2: // sizebits j k rate mask
if (cp[1]>32) error("max size for MIX2 is 32");
if (cp[3]>=i) error("MIX2 k >= i");
if (cp[2]>=i) error("MIX2 j >= i");
cr.c=(size_t(1)<<cp[1]); // size (number of contexts)
cr.a16.resize(1, cp[1]); // wt[size][m]
for (size_t j=0; j<cr.a16.size(); ++j)
cr.a16[j]=32768;
break;
case MIX: { // sizebits j m rate mask
if (cp[1]>32) error("max size for MIX is 32");
if (cp[2]>=i) error("MIX j >= i");
if (cp[3]<1 || cp[3]>i-cp[2]) error("MIX m not in 1..i-j");
int m=cp[3]; // number of inputs
assert(m>=1);
cr.c=(size_t(1)<<cp[1]); // size (number of contexts)
cr.cm.resize(m, cp[1]); // wt[size][m]
for (size_t j=0; j<cr.cm.size(); ++j)
cr.cm[j]=65536/m;
break;
}
case ISSE: // sizebits j
if (cp[1]>32) error("max size for ISSE is 32");
if (cp[2]>=i) error("ISSE j >= i");
cr.ht.resize(64, cp[1]);
cr.cm.resize(512);
for (int j=0; j<256; ++j) {
cr.cm[j*2]=1<<15;
// Left shift of negative values is undefined strictly speaking so
// cast it back and forth to safely perform left shift and avoid
// compiler issues. Original code:
// cr.cm[j*2+1]=clamp512k(stretch(st.cminit(j)>>8)<<10);
cr.cm[j*2+1]=clamp512k(static_cast<int>(static_cast<unsigned int>(stretch(st.cminit(j) >> 8)) << 10));
}
break;
case SSE: // sizebits j start limit
if (cp[1]>32) error("max size for SSE is 32");
if (cp[2]>=i) error("SSE j >= i");
if (cp[3]>cp[4]*4) error("SSE start > limit*4");
cr.cm.resize(32, cp[1]);
cr.limit=cp[4]*4;
for (size_t j=0; j<cr.cm.size(); ++j)
cr.cm[j]=squash((j&31)*64-992)<<17|cp[3];
break;
default: error("unknown component type");
}
assert(compsize[*cp]>0);
cp+=compsize[*cp];
assert(cp>=&z.header[7] && cp<&z.header[z.cend]);
}
}
// Return next bit prediction using interpreted COMP code
int Predictor::predict0() {
assert(c8>=1 && c8<=255);
// Predict next bit
int n=z.header[6];
assert(n>0 && n<=255);
const U8* cp=&z.header[7];
assert(cp[-1]==n);
for (int i=0; i<n; ++i) {
assert(cp>&z.header[0] && cp<&z.header[z.header.isize()-8]);
Component& cr=comp[i];
switch(cp[0]) {
case CONS: // c
break;
case CM: // sizebits limit
cr.cxt=h[i]^hmap4;
p[i]=stretch(cr.cm(cr.cxt)>>17);
break;
case ICM: // sizebits
assert((hmap4&15)>0);
if (c8==1 || (c8&0xf0)==16) cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8);
cr.cxt=cr.ht[cr.c+(hmap4&15)];
p[i]=stretch(cr.cm(cr.cxt)>>8);
break;
case MATCH: // sizebits bufbits: a=len, b=offset, c=bit, cxt=bitpos,
// ht=buf, limit=pos
assert(cr.cm.size()==(size_t(1)<<cp[1]));
assert(cr.ht.size()==(size_t(1)<<cp[2]));
assert(cr.a<=255);
assert(cr.c==0 || cr.c==1);
assert(cr.cxt<8);
assert(cr.limit<cr.ht.size());
if (cr.a==0) p[i]=0;
else {
cr.c=(cr.ht(cr.limit-cr.b)>>(7-cr.cxt))&1; // predicted bit
p[i]=stretch(dt2k[cr.a]*(cr.c*-2+1)&32767);
}
break;
case AVG: // j k wt
p[i]=(p[cp[1]]*cp[3]+p[cp[2]]*(256-cp[3]))>>8;
break;
case MIX2: { // sizebits j k rate mask
// c=size cm=wt[size] cxt=input
cr.cxt=((h[i]+(c8&cp[5]))&(cr.c-1));
assert(cr.cxt<cr.a16.size());
int w=cr.a16[cr.cxt];
assert(w>=0 && w<65536);
p[i]=(w*p[cp[2]]+(65536-w)*p[cp[3]])>>16;
assert(p[i]>=-2048 && p[i]<2048);
}
break;
case MIX: { // sizebits j m rate mask
// c=size cm=wt[size][m] cxt=index of wt in cm
int m=cp[3];
assert(m>=1 && m<=i);
cr.cxt=h[i]+(c8&cp[5]);
cr.cxt=(cr.cxt&(cr.c-1))*m; // pointer to row of weights
assert(cr.cxt<=cr.cm.size()-m);
int* wt=(int*)&cr.cm[cr.cxt];
p[i]=0;
for (int j=0; j<m; ++j)
p[i]+=(wt[j]>>8)*p[cp[2]+j];
p[i]=clamp2k(p[i]>>8);
}
break;
case ISSE: { // sizebits j -- c=hi, cxt=bh
assert((hmap4&15)>0);
if (c8==1 || (c8&0xf0)==16)
cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8);
cr.cxt=cr.ht[cr.c+(hmap4&15)]; // bit history
int *wt=(int*)&cr.cm[cr.cxt*2];
p[i]=clamp2k((wt[0]*p[cp[2]]+wt[1]*64)>>16);
}
break;
case SSE: { // sizebits j start limit
cr.cxt=(h[i]+c8)*32;
int pq=p[cp[2]]+992;
if (pq<0) pq=0;
if (pq>1983) pq=1983;
int wt=pq&63;
pq>>=6;
assert(pq>=0 && pq<=30);
cr.cxt+=pq;
p[i]=stretch(((cr.cm(cr.cxt)>>10)*(64-wt)+(cr.cm(cr.cxt+1)>>10)*wt)>>13);
cr.cxt+=wt>>5;
}
break;
default:
error("component predict not implemented");
}
cp+=compsize[cp[0]];
assert(cp<&z.header[z.cend]);
assert(p[i]>=-2048 && p[i]<2048);
}
assert(cp[0]==NONE);
return squash(p[n-1]);
}
// Update model with decoded bit y (0...1)
void Predictor::update0(int y) {
assert(y==0 || y==1);
assert(c8>=1 && c8<=255);
assert(hmap4>=1 && hmap4<=511);
// Update components
const U8* cp=&z.header[7];
int n=z.header[6];
assert(n>=1 && n<=255);
assert(cp[-1]==n);
for (int i=0; i<n; ++i) {
Component& cr=comp[i];
switch(cp[0]) {
case CONS: // c
break;
case CM: // sizebits limit
train(cr, y);
break;
case ICM: { // sizebits: cxt=ht[b]=bh, ht[c][0..15]=bh row, cxt=bh
cr.ht[cr.c+(hmap4&15)]=st.next(cr.ht[cr.c+(hmap4&15)], y);
U32& pn=cr.cm(cr.cxt);
pn+=int(y*32767-(pn>>8))>>2;
}
break;
case MATCH: // sizebits bufbits:
// a=len, b=offset, c=bit, cm=index, cxt=bitpos
// ht=buf, limit=pos
{
assert(cr.a<=255);
assert(cr.c==0 || cr.c==1);
assert(cr.cxt<8);
assert(cr.cm.size()==(size_t(1)<<cp[1]));
assert(cr.ht.size()==(size_t(1)<<cp[2]));
assert(cr.limit<cr.ht.size());
if (int(cr.c)!=y) cr.a=0; // mismatch?
cr.ht(cr.limit)+=cr.ht(cr.limit)+y;
if (++cr.cxt==8) {
cr.cxt=0;
++cr.limit;
cr.limit&=(1<<cp[2])-1;
if (cr.a==0) { // look for a match
cr.b=cr.limit-cr.cm(h[i]);
if (cr.b&(cr.ht.size()-1))
while (cr.a<255
&& cr.ht(cr.limit-cr.a-1)==cr.ht(cr.limit-cr.a-cr.b-1))
++cr.a;
}
else cr.a+=cr.a<255;
cr.cm(h[i])=cr.limit;
}
}
break;
case AVG: // j k wt
break;
case MIX2: { // sizebits j k rate mask
// cm=wt[size], cxt=input
assert(cr.a16.size()==cr.c);
assert(cr.cxt<cr.a16.size());
int err=(y*32767-squash(p[i]))*cp[4]>>5;
int w=cr.a16[cr.cxt];
w+=(err*(p[cp[2]]-p[cp[3]])+(1<<12))>>13;
if (w<0) w=0;
if (w>65535) w=65535;
cr.a16[cr.cxt]=w;
}
break;
case MIX: { // sizebits j m rate mask
// cm=wt[size][m], cxt=input
int m=cp[3];
assert(m>0 && m<=i);
assert(cr.cm.size()==m*cr.c);
assert(cr.cxt+m<=cr.cm.size());
int err=(y*32767-squash(p[i]))*cp[4]>>4;
int* wt=(int*)&cr.cm[cr.cxt];
for (int j=0; j<m; ++j)
wt[j]=clamp512k(wt[j]+((err*p[cp[2]+j]+(1<<12))>>13));
}
break;
case ISSE: { // sizebits j -- c=hi, cxt=bh
assert(cr.cxt==cr.ht[cr.c+(hmap4&15)]);
int err=y*32767-squash(p[i]);
int *wt=(int*)&cr.cm[cr.cxt*2];
wt[0]=clamp512k(wt[0]+((err*p[cp[2]]+(1<<12))>>13));
wt[1]=clamp512k(wt[1]+((err+16)>>5));
cr.ht[cr.c+(hmap4&15)]=st.next(cr.cxt, y);
}
break;
case SSE: // sizebits j start limit
train(cr, y);
break;
default:
assert(0);
}
cp+=compsize[cp[0]];
assert(cp>=&z.header[7] && cp<&z.header[z.cend]
&& cp<&z.header[z.header.isize()-8]);
}
assert(cp[0]==NONE);
// Save bit y in c8, hmap4
c8+=c8+y;
if (c8>=256) {
z.run(c8-256);
hmap4=1;
c8=1;
for (int i=0; i<n; ++i) h[i]=z.H(i);
}
else if (c8>=16 && c8<32)
hmap4=(hmap4&0xf)<<5|y<<4|1;
else
hmap4=(hmap4&0x1f0)|(((hmap4&0xf)*2+y)&0xf);
}
// Find cxt row in hash table ht. ht has rows of 16 indexed by the
// low sizebits of cxt with element 0 having the next higher 8 bits for
// collision detection. If not found after 3 adjacent tries, replace the
// row with lowest element 1 as priority. Return index of row.
size_t Predictor::find(Array<U8>& ht, int sizebits, U32 cxt) {
assert(ht.size()==size_t(16)<<sizebits);
int chk=cxt>>sizebits&255;
size_t h0=(cxt*16)&(ht.size()-16);
if (ht[h0]==chk) return h0;
size_t h1=h0^16;
if (ht[h1]==chk) return h1;
size_t h2=h0^32;
if (ht[h2]==chk) return h2;
if (ht[h0+1]<=ht[h1+1] && ht[h0+1]<=ht[h2+1])
return memset(&ht[h0], 0, 16), ht[h0]=chk, h0;
else if (ht[h1+1]<ht[h2+1])
return memset(&ht[h1], 0, 16), ht[h1]=chk, h1;
else
return memset(&ht[h2], 0, 16), ht[h2]=chk, h2;
}
/////////////////////// Decoder ///////////////////////
Decoder::Decoder(ZPAQL& z):
in(0), low(1), high(0xFFFFFFFF), curr(0), pr(z), buf(BUFSIZE) {
}
void Decoder::init() {
pr.init();
if (pr.isModeled()) low=1, high=0xFFFFFFFF, curr=0;
else low=high=curr=0;
}
// Read un-modeled input into buf[low=0..high-1]
// with curr remaining in subblock to read.
void Decoder::loadbuf() {
assert(!pr.isModeled());
assert(low==high);
if (curr==0) {
for (int i=0; i<4; ++i) {
int c=in->get();
if (c<0) error("unexpected end of input");
curr=curr<<8|c;
}
}
U32 n=buf.size();
if (n>curr) n=curr;
high=in->read(&buf[0], n);
curr-=high;
low=0;
}
// Return next bit of decoded input, which has 16 bit probability p of being 1
int Decoder::decode(int p) {
assert(p>=0 && p<65536);
assert(high>low && low>0);
if (curr<low || curr>high) error("archive corrupted");
assert(curr>=low && curr<=high);
U32 mid=low+U32(((high-low)*U64(U32(p)))>>16); // split range
assert(high>mid && mid>=low);
int y=curr<=mid;
if (y) high=mid; else low=mid+1; // pick half
while ((high^low)<0x1000000) { // shift out identical leading bytes
high=high<<8|255;
low=low<<8;
low+=(low==0);
int c=in->get();
if (c<0) error("unexpected end of file");
curr=curr<<8|c;
}
return y;
}
// Decompress 1 byte or -1 at end of input
int Decoder::decompress() {
if (pr.isModeled()) { // n>0 components?
if (curr==0) { // segment initialization
for (int i=0; i<4; ++i)
curr=curr<<8|in->get();
}
if (decode(0)) {
if (curr!=0) error("decoding end of stream");
return -1;
}
else {
int c=1;
while (c<256) { // get 8 bits
int p=pr.predict()*2+1;
c+=c+decode(p);
pr.update(c&1);
}
return c-256;
}
}
else {
if (low==high) loadbuf();
if (low==high) return -1;
return buf[low++]&255;
}
}
// Find end of compressed data and return next byte
int Decoder::skip() {
int c=-1;
if (pr.isModeled()) {
while (curr==0) // at start?
curr=in->get();
while (curr && (c=in->get())>=0) // find 4 zeros
curr=curr<<8|c;
while ((c=in->get())==0) ; // might be more than 4
return c;
}
else {
if (curr==0) // at start?
for (int i=0; i<4 && (c=in->get())>=0; ++i) curr=curr<<8|c;
while (curr>0) {
U32 n=BUFSIZE;
if (n>curr) n=curr;
U32 n1=in->read(&buf[0], n);
curr-=n1;
if (n1!=n) return -1;
if (curr==0)
for (int i=0; i<4 && (c=in->get())>=0; ++i) curr=curr<<8|c;
}
if (c>=0) c=in->get();
return c;
}
}
////////////////////// PostProcessor //////////////////////
// Copy ph, pm from block header
void PostProcessor::init(int h, int m) {
state=hsize=0;
ph=h;
pm=m;
z.clear();
}
// (PASS=0 | PROG=1 psize[0..1] pcomp[0..psize-1]) data... EOB=-1
// Return state: 1=PASS, 2..4=loading PROG, 5=PROG loaded
int PostProcessor::write(int c) {
assert(c>=-1 && c<=255);
switch (state) {
case 0: // initial state
if (c<0) error("Unexpected EOS");
state=c+1; // 1=PASS, 2=PROG
if (state>2) error("unknown post processing type");
if (state==1) z.clear();
break;
case 1: // PASS
z.outc(c);
break;
case 2: // PROG
if (c<0) error("Unexpected EOS");
hsize=c; // low byte of size
state=3;
break;
case 3: // PROG psize[0]
if (c<0) error("Unexpected EOS");
hsize+=c*256; // high byte of psize
if (hsize<1) error("Empty PCOMP");
z.header.resize(hsize+300);
z.cend=8;
z.hbegin=z.hend=z.cend+128;
z.header[4]=ph;
z.header[5]=pm;
state=4;
break;
case 4: // PROG psize[0..1] pcomp[0...]
if (c<0) error("Unexpected EOS");
assert(z.hend<z.header.isize());
z.header[z.hend++]=c; // one byte of pcomp
if (z.hend-z.hbegin==hsize) { // last byte of pcomp?
hsize=z.cend-2+z.hend-z.hbegin;
z.header[0]=hsize&255; // header size with empty COMP
z.header[1]=hsize>>8;
z.initp();
state=5;
}
break;
case 5: // PROG ... data
z.run(c);
if (c<0) z.flush();
break;
}
return state;
}
/////////////////////// Decompresser /////////////////////
// Find the start of a block and return true if found. Set memptr
// to memory used.
bool Decompresser::findBlock(double* memptr) {
assert(state==BLOCK);
// Find start of block
U32 h1=0x3D49B113, h2=0x29EB7F93, h3=0x2614BE13, h4=0x3828EB13;
// Rolling hashes initialized to hash of first 13 bytes
int c;
while ((c=dec.in->get())!=-1) {
h1=h1*12+c;
h2=h2*20+c;
h3=h3*28+c;
h4=h4*44+c;
if (h1==0xB16B88F1 && h2==0xFF5376F1 && h3==0x72AC5BF1 && h4==0x2F909AF1)
break; // hash of 16 byte string
}
if (c==-1) return false;
// Read header
if ((c=dec.in->get())!=1 && c!=2) error("unsupported ZPAQ level");
if (dec.in->get()!=1) error("unsupported ZPAQL type");
z.read(dec.in);
if (c==1 && z.header.isize()>6 && z.header[6]==0)
error("ZPAQ level 1 requires at least 1 component");
if (memptr) *memptr=z.memory();
state=FILENAME;
decode_state=FIRSTSEG;
return true;
}
// Read the start of a segment (1) or end of block code (255).
// If a segment is found, write the filename and return true, else false.
bool Decompresser::findFilename(Writer* filename) {
assert(state==FILENAME);
int c=dec.in->get();
if (c==1) { // segment found
while (true) {
c=dec.in->get();
if (c==-1) error("unexpected EOF");
if (c==0) {
state=COMMENT;
return true;
}
if (filename) filename->put(c);
}
}
else if (c==255) { // end of block found
state=BLOCK;
return false;
}
else
error("missing segment or end of block");
return false;
}
// Read the comment from the segment header
void Decompresser::readComment(Writer* comment) {
assert(state==COMMENT);
state=DATA;
while (true) {
int c=dec.in->get();
if (c==-1) error("unexpected EOF");
if (c==0) break;
if (comment) comment->put(c);
}
if (dec.in->get()!=0) error("missing reserved byte");
}
// Decompress n bytes, or all if n < 0. Return false if done
bool Decompresser::decompress(int n) {
assert(state==DATA);
assert(decode_state!=SKIP);
// Initialize models to start decompressing block
if (decode_state==FIRSTSEG) {
dec.init();
assert(z.header.size()>5);
pp.init(z.header[4], z.header[5]);
decode_state=SEG;
}
// Decompress and load PCOMP into postprocessor
while ((pp.getState()&3)!=1)
pp.write(dec.decompress());
// Decompress n bytes, or all if n < 0
while (n) {
int c=dec.decompress();
pp.write(c);
if (c==-1) {
state=SEGEND;
return false;
}
if (n>0) --n;
}
return true;
}
// Read end of block. If a SHA1 checksum is present, write 1 and the
// 20 byte checksum into sha1string, else write 0 in first byte.
// If sha1string is 0 then discard it.
void Decompresser::readSegmentEnd(char* sha1string) {
assert(state==DATA || state==SEGEND);
// Skip remaining data if any and get next byte
int c=0;
if (state==DATA) {
c=dec.skip();
decode_state=SKIP;
}
else if (state==SEGEND)
c=dec.in->get();
state=FILENAME;
// Read checksum
if (c==254) {
if (sha1string) sha1string[0]=0; // no checksum
}
else if (c==253) {
if (sha1string) sha1string[0]=1;
for (int i=1; i<=20; ++i) {
c=dec.in->get();
if (sha1string) sha1string[i]=c;
}
}
else
error("missing end of segment marker");
}
/////////////////////////// decompress() /////////////////////
void decompress(Reader* in, Writer* out) {
Decompresser d;
d.setInput(in);
d.setOutput(out);
while (d.findBlock()) { // don't calculate memory
while (d.findFilename()) { // discard filename
d.readComment(); // discard comment
d.decompress(); // to end of segment
d.readSegmentEnd(); // discard sha1string
}
}
}
////////////////////// Encoder ////////////////////
// Initialize for start of block
void Encoder::init() {
low=1;
high=0xFFFFFFFF;
pr.init();
if (!pr.isModeled()) low=0, buf.resize(1<<16);
}
// compress bit y having probability p/64K
void Encoder::encode(int y, int p) {
assert(out);
assert(p>=0 && p<65536);
assert(y==0 || y==1);
assert(high>low && low>0);
U32 mid=low+U32(((high-low)*U64(U32(p)))>>16); // split range
assert(high>mid && mid>=low);
if (y) high=mid; else low=mid+1; // pick half
while ((high^low)<0x1000000) { // write identical leading bytes
out->put(high>>24); // same as low>>24
high=high<<8|255;
low=low<<8;
low+=(low==0); // so we don't code 4 0 bytes in a row
}
}
// compress byte c (0..255 or -1=EOS)
void Encoder::compress(int c) {
assert(out);
if (pr.isModeled()) {
if (c==-1)
encode(1, 0);
else {
assert(c>=0 && c<=255);
encode(0, 0);
for (int i=7; i>=0; --i) {
int p=pr.predict()*2+1;
assert(p>0 && p<65536);
int y=c>>i&1;
encode(y, p);
pr.update(y);
}
}
}
else {
if (c<0 || low==buf.size()) {
out->put((low>>24)&255);
out->put((low>>16)&255);
out->put((low>>8)&255);
out->put(low&255);
out->write(&buf[0], low);
low=0;
}
if (c>=0) buf[low++]=c;
}
}
///////////////////// Compressor //////////////////////
// Write 13 byte start tag
// "\x37\x6B\x53\x74\xA0\x31\x83\xD3\x8C\xB2\x28\xB0\xD3"
void Compressor::writeTag() {
assert(state==INIT);
enc.out->put(0x37);
enc.out->put(0x6b);
enc.out->put(0x53);
enc.out->put(0x74);
enc.out->put(0xa0);
enc.out->put(0x31);
enc.out->put(0x83);
enc.out->put(0xd3);
enc.out->put(0x8c);
enc.out->put(0xb2);
enc.out->put(0x28);
enc.out->put(0xb0);
enc.out->put(0xd3);
}
void Compressor::startBlock(int level) {
// Model 1 - min.cfg
static const char models[]={
26,0,1,2,0,0,2,3,16,8,19,0,0,96,4,28,
59,10,59,112,25,10,59,10,59,112,56,0,
// Model 2 - mid.cfg
69,0,3,3,0,0,8,3,5,8,13,0,8,17,1,8,
18,2,8,18,3,8,19,4,4,22,24,7,16,0,7,24,
(char)-1,0,17,104,74,4,95,1,59,112,10,25,59,112,10,25,
59,112,10,25,59,112,10,25,59,112,10,25,59,10,59,112,
25,69,(char)-49,8,112,56,0,
// Model 3 - max.cfg
(char)-60,0,5,9,0,0,22,1,(char)-96,3,5,8,13,1,8,16,
2,8,18,3,8,19,4,8,19,5,8,20,6,4,22,24,
3,17,8,19,9,3,13,3,13,3,13,3,14,7,16,0,
15,24,(char)-1,7,8,0,16,10,(char)-1,6,0,15,16,24,0,9,
8,17,32,(char)-1,6,8,17,18,16,(char)-1,9,16,19,32,(char)-1,6,
0,19,20,16,0,0,17,104,74,4,95,2,59,112,10,25,
59,112,10,25,59,112,10,25,59,112,10,25,59,112,10,25,
59,10,59,112,10,25,59,112,10,25,69,(char)-73,32,(char)-17,64,47,
14,(char)-25,91,47,10,25,60,26,48,(char)-122,(char)-105,20,112,63,9,70,
(char)-33,0,39,3,25,112,26,52,25,25,74,10,4,59,112,25,
10,4,59,112,25,10,4,59,112,25,65,(char)-113,(char)-44,72,4,59,
112,8,(char)-113,(char)-40,8,68,(char)-81,60,60,25,69,(char)-49,9,112,25,25,
25,25,25,112,56,0,
0,0}; // 0,0 = end of list
if (level<1) error("compression level must be at least 1");
const char* p=models;
int i;
for (i=1; i<level && toU16(p); ++i)
p+=toU16(p)+2;
if (toU16(p)<1) error("compression level too high");
startBlock(p);
}
// Memory reader
class MemoryReader: public Reader {
const char* p;
public:
MemoryReader(const char* p_): p(p_) {}
int get() {return *p++&255;}
};
// Write a block header
void Compressor::startBlock(const char* hcomp) {
assert(state==INIT);
assert(hcomp);
int len=toU16(hcomp)+2;
enc.out->put('z');
enc.out->put('P');
enc.out->put('Q');
enc.out->put(1+(len>6 && hcomp[6]==0)); // level 1 or 2
enc.out->put(1);
for (int i=0; i<len; ++i) // write compression model hcomp
enc.out->put(hcomp[i]);
MemoryReader m(hcomp);
z.read(&m);
state=BLOCK1;
}
// Write a segment header
void Compressor::startSegment(const char* filename, const char* comment) {
assert(state==BLOCK1 || state==BLOCK2);
enc.out->put(1);
while (filename && *filename)
enc.out->put(*filename++);
enc.out->put(0);
while (comment && *comment)
enc.out->put(*comment++);
enc.out->put(0);
enc.out->put(0);
if (state==BLOCK1) state=SEG1;
if (state==BLOCK2) state=SEG2;
}
// Initialize encoding and write pcomp to first segment
// If len is 0 then length is encoded in pcomp[0..1]
void Compressor::postProcess(const char* pcomp, int len) {
assert(state==SEG1);
enc.init();
if (pcomp) {
enc.compress(1);
if (len<=0) {
len=toU16(pcomp);
pcomp+=2;
}
enc.compress(len&255);
enc.compress((len>>8)&255);
for (int i=0; i<len; ++i)
enc.compress(pcomp[i]&255);
}
else
enc.compress(0);
state=SEG2;
}
// Compress n bytes, or to EOF if n <= 0
bool Compressor::compress(int n) {
assert(state==SEG2);
int ch=0;
while (n && (ch=in->get())>=0) {
enc.compress(ch);
if (n>0) --n;
}
return ch>=0;
}
// End segment, write sha1string if present
void Compressor::endSegment(const char* sha1string) {
assert(state==SEG2);
enc.compress(-1);
enc.out->put(0);
enc.out->put(0);
enc.out->put(0);
enc.out->put(0);
if (sha1string) {
enc.out->put(253);
for (int i=0; i<20; ++i)
enc.out->put(sha1string[i]);
}
else
enc.out->put(254);
state=BLOCK2;
}
// End block
void Compressor::endBlock() {
assert(state==BLOCK2);
enc.out->put(255);
state=INIT;
}
/////////////////////////// compress() ///////////////////////
void compress(Reader* in, Writer* out, int level) {
assert(level>=1);
Compressor c;
c.setInput(in);
c.setOutput(out);
c.startBlock(level);
c.startSegment();
c.postProcess();
c.compress();
c.endSegment();
c.endBlock();
}
//////////////////////// ZPAQL::assemble() ////////////////////
#ifndef NOJIT
/*
assemble();
Assembles the ZPAQL code in hcomp[0..hlen-1] and stores x86-32 or x86-64
code in rcode[0..rcode_size-1]. Execution begins at rcode[0]. It will not
write beyond the end of rcode, but in any case it returns the number of
bytes that would have been written. It returns 0 in case of error.
The assembled code implements run() and returns 1 if successful or
0 if the ZPAQL code executes an invalid instruction or jumps out of
bounds.
A ZPAQL virtual machine has the following state. All values are
unsigned and initially 0:
a, b, c, d: 32 bit registers (pointed to by their respective parameters)
f: 1 bit flag register (pointed to)
r[0..255]: 32 bit registers
m[0..msize-1]: 8 bit registers, where msize is a power of 2
h[0..hsize-1]: 32 bit registers, where hsize is a power of 2
out: pointer to a Writer
sha1: pointer to a SHA1
Generally a ZPAQL machine is used to compute contexts which are
placed in h. A second machine might post-process, and write its
output to out and sha1. In either case, a machine is called with
its input in a, representing a single byte (0..255) or
(for a postprocessor) EOF (0xffffffff). Execution returs after a
ZPAQL halt instruction.
ZPAQL instructions are 1 byte unless the last 3 bits are 1.
In this case, a second operand byte follows. Opcode 255 is
the only 3 byte instruction. They are organized:
00dddxxx = unary opcode xxx on destination ddd (ddd < 111)
00111xxx = special instruction xxx
01dddsss = assignment: ddd = sss (ddd < 111)
1xxxxsss = operation sxxx from sss to a
The meaning of sss and ddd are as follows:
000 = a (accumulator)
001 = b
010 = c
011 = d
100 = *b (means m[b mod msize])
101 = *c (means m[c mod msize])
110 = *d (means h[d mod hsize])
111 = n (constant 0..255 in second byte of instruction)
For example, 01001110 assigns *d to b. The other instructions xxx
are as follows:
Group 00dddxxx where ddd < 111 and xxx is:
000 = ddd<>a, swap with a (except 00000000 is an error, and swap
with *b or *c leaves the high bits of a unchanged)
001 = ddd++, increment
010 = ddd--, decrement
011 = ddd!, not (invert all bits)
100 = ddd=0, clear (set all bits of ddd to 0)
101 = not used (error)
110 = not used
111 = ddd=r n, assign from r[n] to ddd, n=0..255 in next opcode byte
Except:
00100111 = jt n, jump if f is true (n = -128..127, relative to next opcode)
00101111 = jf n, jump if f is false (n = -128..127)
00110111 = r=a n, assign r[n] = a (n = 0..255)
Group 00111xxx where xxx is:
000 = halt (return)
001 = output a
010 = not used
011 = hash: a = (a + *b + 512) * 773
100 = hashd: *d = (*d + a + 512) * 773
101 = not used
110 = not used
111 = unconditional jump (n = -128 to 127, relative to next opcode)
Group 1xxxxsss where xxxx is:
0000 = a += sss (add, subtract, multiply, divide sss to a)
0001 = a -= sss
0010 = a *= sss
0011 = a /= sss (unsigned, except set a = 0 if sss is 0)
0100 = a %= sss (remainder, except set a = 0 if sss is 0)
0101 = a &= sss (bitwise AND)
0110 = a &= ~sss (bitwise AND with complement of sss)
0111 = a |= sss (bitwise OR)
1000 = a ^= sss (bitwise XOR)
1001 = a <<= (sss % 32) (left shift by low 5 bits of sss)
1010 = a >>= (sss % 32) (unsigned, zero bits shifted in)
1011 = a == sss (compare, set f = true if equal or false otherwise)
1100 = a < sss (unsigned compare, result in f)
1101 = a > sss (unsigned compare)
1110 = not used
1111 = not used except 11111111 is a 3 byte jump to the absolute address
in the next 2 bytes in little-endian (LSB first) order.
assemble() translates ZPAQL to 32 bit x86 code to be executed by run().
Registers are mapped as follows:
eax = source sss from *b, *c, *d or sometimes n
ecx = pointer to destination *b, *c, *d, or spare
edx = a
ebx = f (1 for true, 0 for false)
esp = stack pointer
ebp = d
esi = b
edi = c
run() saves non-volatile registers (ebp, esi, edi, ebx) on the stack,
loads a, b, c, d, f, and executes the translated instructions.
A halt instruction saves a, b, c, d, f, pops the saved registers
and returns. Invalid instructions or jumps outside of the range
of the ZPAQL code call libzpaq::error().
In 64 bit mode, the following additional registers are used:
r12 = h
r14 = r
r15 = m
*/
// Called by out
static void flush1(ZPAQL* z) {
z->flush();
}
// return true if op is an undefined ZPAQL instruction
static bool iserr(int op) {
return op==0 || (op>=120 && op<=127) || (op>=240 && op<=254)
|| op==58 || (op<64 && (op%8==5 || op%8==6));
}
// Write k bytes of x to rcode[o++] MSB first
static void put(U8* rcode, int n, int& o, U32 x, int k) {
while (k-->0) {
if (o<n) rcode[o]=(x>>(k*8))&255;
++o;
}
}
// Write 4 bytes of x to rcode[o++] LSB first
static void put4lsb(U8* rcode, int n, int& o, U32 x) {
for (int k=0; k<4; ++k) {
if (o<n) rcode[o]=(x>>(k*8))&255;
++o;
}
}
// Write a 1-4 byte x86 opcode without or with an 4 byte operand
// to rcode[o...]
#define put1(x) put(rcode, rcode_size, o, (x), 1)
#define put2(x) put(rcode, rcode_size, o, (x), 2)
#define put3(x) put(rcode, rcode_size, o, (x), 3)
#define put4(x) put(rcode, rcode_size, o, (x), 4)
#define put5(x,y) put4(x), put1(y)
#define put6(x,y) put4(x), put2(y)
#define put4r(x) put4lsb(rcode, rcode_size, o, x)
#define puta(x) t=U32(size_t(x)), put4r(t)
#define put1a(x,y) put1(x), puta(y)
#define put2a(x,y) put2(x), puta(y)
#define put3a(x,y) put3(x), puta(y)
#define put4a(x,y) put4(x), puta(y)
#define put5a(x,y,z) put4(x), put1(y), puta(z)
#define put2l(x,y) put2(x), t=U32(size_t(y)), put4r(t), \
t=U32(size_t(y)>>(S*4)), put4r(t)
// Assemble ZPAQL in in the HCOMP section of header to rcode,
// but do not write beyond rcode_size. Return the number of
// bytes output or that would have been output.
// Execution starts at rcode[0] and returns 1 if successful or 0
// in case of a ZPAQL execution error.
int ZPAQL::assemble() {
// x86? (not foolproof)
const int S=sizeof(char*); // 4 = x86, 8 = x86-64
U32 t=0x12345678;
if (*(char*)&t!=0x78 || (S!=4 && S!=8))
error("JIT supported only for x86-32 and x86-64");
const U8* hcomp=&header[hbegin];
const int hlen=hend-hbegin+1;
const int msize=m.size();
const int hsize=h.size();
const int regcode[8]={2,6,7,5}; // a,b,c,d.. -> edx,esi,edi,ebp,eax..
Array<int> it(hlen); // hcomp -> rcode locations
int done=0; // number of instructions assembled (0..hlen)
int o=5; // rcode output index, reserve space for jmp
// Code for the halt instruction (restore registers and return)
const int halt=o;
if (S==8) {
put2l(0x48b9, &a); // mov rcx, a
put2(0x8911); // mov [rcx], edx
put2l(0x48b9, &b); // mov rcx, b
put2(0x8931); // mov [rcx], esi
put2l(0x48b9, &c); // mov rcx, c
put2(0x8939); // mov [rcx], edi
put2l(0x48b9, &d); // mov rcx, d
put2(0x8929); // mov [rcx], ebp
put2l(0x48b9, &f); // mov rcx, f
put2(0x8919); // mov [rcx], ebx
put4(0x4883c438); // add rsp, 56
put2(0x415f); // pop r15
put2(0x415e); // pop r14
put2(0x415d); // pop r13
put2(0x415c); // pop r12
}
else {
put2a(0x8915, &a); // mov [a], edx
put2a(0x8935, &b); // mov [b], esi
put2a(0x893d, &c); // mov [c], edi
put2a(0x892d, &d); // mov [d], ebp
put2a(0x891d, &f); // mov [f], ebx
put3(0x83c43c); // add esp, 60
}
put1(0x5d); // pop ebp
put1(0x5b); // pop ebx
put1(0x5f); // pop edi
put1(0x5e); // pop esi
put1(0xc3); // ret
// Code for the out instruction.
// Store a=edx at outbuf[bufptr++]. If full, call flush1().
const int outlabel=o;
if (S==8) {
put2l(0x48b8, &outbuf[0]);// mov rax, outbuf.p
put2l(0x49ba, &bufptr); // mov r10, &bufptr
put3(0x418b0a); // mov ecx, [r10]
put3(0x891408); // mov [rax+rcx], edx
put2(0xffc1); // inc ecx
put3(0x41890a); // mov [r10], ecx
put2a(0x81f9, outbuf.size()); // cmp ecx, outbuf.size()
put2(0x7401); // jz L1
put1(0xc3); // ret
put4(0x4883ec30); // L1: sub esp, 48 ; call flush1(this)
put4(0x48893c24); // mov [rsp], rdi
put5(0x48897424,8); // mov [rsp+8], rsi
put5(0x48895424,16); // mov [rsp+16], rdx
put5(0x48894c24,24); // mov [rsp+24], rcx
#ifndef _WIN32
put2l(0x48bf, this); // mov rdi, this
#else // Windows
put2l(0x48b9, this); // mov rcx, this
#endif
put2l(0x49bb, &flush1); // mov r11, &flush1
put3(0x41ffd3); // call r11
put5(0x488b4c24,24); // mov rcx, [rsp+24]
put5(0x488b5424,16); // mov rdx, [rsp+16]
put5(0x488b7424,8); // mov rsi, [rsp+8]
put4(0x488b3c24); // mov rdi, [rsp]
put4(0x4883c430); // add esp, 48
put1(0xc3); // ret
}
else {
put1a(0xb8, &outbuf[0]); // mov eax, outbuf.p
put2a(0x8b0d, &bufptr); // mov ecx, [bufptr]
put3(0x891408); // mov [eax+ecx], edx
put2(0xffc1); // inc ecx
put2a(0x890d, &bufptr); // mov [bufptr], ecx
put2a(0x81f9, outbuf.size()); // cmp ecx, outbuf.size()
put2(0x7401); // jz L1
put1(0xc3); // ret
put3(0x83ec08); // L1: sub esp, 8
put4(0x89542404); // mov [esp+4], edx
put3a(0xc70424, this); // mov [esp], this
put1a(0xb8, &flush1); // mov eax, &flush1
put2(0xffd0); // call eax
put4(0x8b542404); // mov edx, [esp+4]
put3(0x83c408); // add esp, 8
put1(0xc3); // ret
}
// Set it[i]=1 for each ZPAQL instruction reachable from the previous
// instruction + 2 if reachable by a jump (or 3 if both).
it[0]=2;
assert(hlen>0 && hcomp[hlen-1]==0); // ends with error
do {
done=0;
const int NONE=0x80000000;
for (int i=0; i<hlen; ++i) {
int op=hcomp[i];
if (it[i]) {
int next1=i+1+(op%8==7), next2=NONE; // next and jump targets
if (iserr(op)) next1=NONE; // error
if (op==56) next1=NONE, next2=0; // halt
if (op==255) next1=NONE, next2=hcomp[i+1]+256*hcomp[i+2]; // lj
if (op==39||op==47||op==63)next2=i+2+(hcomp[i+1]<<24>>24);// jt,jf,jmp
if (op==63) next1=NONE; // jmp
if ((next2<0 || next2>=hlen) && next2!=NONE) next2=hlen-1; // error
if (next1!=NONE && !(it[next1]&1)) it[next1]|=1, ++done;
if (next2!=NONE && !(it[next2]&2)) it[next2]|=2, ++done;
}
}
} while (done>0);
// Set it[i] bits 2-3 to 4, 8, or 12 if a comparison
// (<, >, == respectively) does not need to save the result in f,
// or if a conditional jump (jt, jf) does not need to read f.
// This is true if a comparison is followed directly by a jt/jf,
// the jt/jf is not a jump target, the byte before is not a jump
// target (for a 2 byte comparison), and for the comparison instruction
// if both paths after the jt/jf lead to another comparison or error
// before another jt/jf. At most hlen steps are traced because after
// that it must be an infinite loop.
for (int i=0; i<hlen; ++i) {
const int op1=hcomp[i]; // 216..239 = comparison
const int i2=i+1+(op1%8==7); // address of next instruction
const int op2=hcomp[i2]; // 39,47 = jt,jf
if (it[i] && op1>=216 && op1<240 && (op2==39 || op2==47)
&& it[i2]==1 && (i2==i+1 || it[i+1]==0)) {
int code=(op1-208)/8*4; // 4,8,12 is ==,<,>
it[i2]+=code; // OK to test CF, ZF instead of f
for (int j=0; j<2 && code; ++j) { // trace each path from i2
int k=i2+2; // branch not taken
if (j==1) k=i2+2+(hcomp[i2+1]<<24>>24); // branch taken
for (int l=0; l<hlen && code; ++l) { // trace at most hlen steps
if (k<0 || k>=hlen) break; // out of bounds, pass
const int op=hcomp[k];
if (op==39 || op==47) code=0; // jt,jf, fail
else if (op>=216 && op<240) break; // ==,<,>, pass
else if (iserr(op)) break; // error, pass
else if (op==255) k=hcomp[k+1]+256*hcomp[k+2]; // lj
else if (op==63) k=k+2+(hcomp[k+1]<<24>>24); // jmp
else if (op==56) k=0; // halt
else k=k+1+(op%8==7); // ordinary instruction
}
}
it[i]+=code; // if > 0 then OK to not save flags in f (bl)
}
}
// Start of run(): Save x86 and load ZPAQL registers
const int start=o;
assert(start>=16);
put1(0x56); // push esi/rsi
put1(0x57); // push edi/rdi
put1(0x53); // push ebx/rbx
put1(0x55); // push ebp/rbp
if (S==8) {
put2(0x4154); // push r12
put2(0x4155); // push r13
put2(0x4156); // push r14
put2(0x4157); // push r15
put4(0x4883ec38); // sub rsp, 56
put2l(0x48b8, &a); // mov rax, a
put2(0x8b10); // mov edx, [rax]
put2l(0x48b8, &b); // mov rax, b
put2(0x8b30); // mov esi, [rax]
put2l(0x48b8, &c); // mov rax, c
put2(0x8b38); // mov edi, [rax]
put2l(0x48b8, &d); // mov rax, d
put2(0x8b28); // mov ebp, [rax]
put2l(0x48b8, &f); // mov rax, f
put2(0x8b18); // mov ebx, [rax]
put2l(0x49bc, &h[0]); // mov r12, h
put2l(0x49bd, &outbuf[0]); // mov r13, outbuf.p
put2l(0x49be, &r[0]); // mov r14, r
put2l(0x49bf, &m[0]); // mov r15, m
}
else {
put3(0x83ec3c); // sub esp, 60
put2a(0x8b15, &a); // mov edx, [a]
put2a(0x8b35, &b); // mov esi, [b]
put2a(0x8b3d, &c); // mov edi, [c]
put2a(0x8b2d, &d); // mov ebp, [d]
put2a(0x8b1d, &f); // mov ebx, [f]
}
// Assemble in multiple passes until every byte of hcomp has a translation
for (int istart=0; istart<hlen; ++istart) {
for (int i=istart; i<hlen&&it[i]; i=i+1+(hcomp[i]%8==7)+(hcomp[i]==255)) {
const int code=it[i];
// If already assembled, then assemble a jump to it
U32 t;
assert(it.isize()>i);
assert(i>=0 && i<hlen);
if (code>=16) {
if (i>istart) {
int a=code-o;
if (a>-120 && a<120)
put2(0xeb00+((a-2)&255)); // jmp short o
else
put1a(0xe9, a-5); // jmp near o
}
break;
}
// Else assemble the instruction at hcode[i] to rcode[o]
else {
assert(i>=0 && i<it.isize());
assert(it[i]>0 && it[i]<16);
assert(o>=16);
it[i]=o;
++done;
const int op=hcomp[i];
const int arg=hcomp[i+1]+((op==255)?256*hcomp[i+2]:0);
const int ddd=op/8%8;
const int sss=op%8;
// error instruction: return 0
if (iserr(op)) {
put2(0x31c0); // xor eax, eax
put1a(0xe9, halt-o-4); // jmp near halt
continue;
}
// Load source *b, *c, *d, or hash (*b) into eax except:
// {a,b,c,d}=*d, a{+,-,*,&,|,^,=,==,>,>}=*d: load address to eax
// {a,b,c,d}={*b,*c}: load source into ddd
if (op==59 || (op>=64 && op<240 && op%8>=4 && op%8<7)) {
put2(0x89c0+8*regcode[sss-3+(op==59)]); // mov eax, {esi,edi,ebp}
const int sz=(sss==6?hsize:msize)-1;
if (sz>=128) put1a(0x25, sz); // and eax, dword msize-1
else put3(0x83e000+sz); // and eax, byte msize-1
const int move=(op>=64 && op<112); // = or else ddd is eax
if (sss<6) { // ddd={a,b,c,d,*b,*c}
if (S==8) put5(0x410fb604+8*move*regcode[ddd],0x07);
// movzx ddd, byte [r15+rax]
else put3a(0x0fb680+8*move*regcode[ddd], &m[0]);
// movzx ddd, byte [m+eax]
}
else if ((0x06587000>>(op/8))&1) {// {*b,*c,*d,a/,a%,a&~,a<<,a>>}=*d
if (S==8) put4(0x418b0484); // mov eax, [r12+rax*4]
else put3a(0x8b0485, &h[0]); // mov eax, [h+eax*4]
}
}
// Load destination address *b, *c, *d or hashd (*d) into ecx
if ((op>=32 && op<56 && op%8<5) || (op>=96 && op<120) || op==60) {
put2(0x89c1+8*regcode[op/8%8-3-(op==60)]);// mov ecx,{esi,edi,ebp}
const int sz=(ddd==6||op==60?hsize:msize)-1;
if (sz>=128) put2a(0x81e1, sz); // and ecx, dword sz
else put3(0x83e100+sz); // and ecx, byte sz
if (op/8%8==6 || op==60) { // *d
if (S==8) put4(0x498d0c8c); // lea rcx, [r12+rcx*4]
else put3a(0x8d0c8d, &h[0]); // lea ecx, [ecx*4+h]
}
else { // *b, *c
if (S==8) put4(0x498d0c0f); // lea rcx, [r15+rcx]
else put2a(0x8d89, &m[0]); // lea ecx, [ecx+h]
}
}
// Translate by opcode
switch((op/8)&31) {
case 0: // ddd = a
case 1: // ddd = b
case 2: // ddd = c
case 3: // ddd = d
switch(sss) {
case 0: // ddd<>a (swap)
put2(0x87d0+regcode[ddd]); // xchg edx, ddd
break;
case 1: // ddd++
put2(0xffc0+regcode[ddd]); // inc ddd
break;
case 2: // ddd--
put2(0xffc8+regcode[ddd]); // dec ddd
break;
case 3: // ddd!
put2(0xf7d0+regcode[ddd]); // not ddd
break;
case 4: // ddd=0
put2(0x31c0+9*regcode[ddd]); // xor ddd,ddd
break;
case 7: // ddd=r n
if (S==8)
put3a(0x418b86+8*regcode[ddd], arg*4); // mov ddd, [r14+n*4]
else
put2a(0x8b05+8*regcode[ddd], (&r[arg]));//mov ddd, [r+n]
break;
}
break;
case 4: // ddd = *b
case 5: // ddd = *c
switch(sss) {
case 0: // ddd<>a (swap)
put2(0x8611); // xchg dl, [ecx]
break;
case 1: // ddd++
put2(0xfe01); // inc byte [ecx]
break;
case 2: // ddd--
put2(0xfe09); // dec byte [ecx]
break;
case 3: // ddd!
put2(0xf611); // not byte [ecx]
break;
case 4: // ddd=0
put2(0x31c0); // xor eax, eax
put2(0x8801); // mov [ecx], al
break;
case 7: // jt, jf
{
assert(code>=0 && code<16);
const int jtab[2][4]={{5,4,2,7},{4,5,3,6}};
// jnz,je,jb,ja, jz,jne,jae,jbe
if (code<4) put2(0x84db); // test bl, bl
if (arg>=128 && arg-257-i>=0 && o-it[arg-257-i]<120)
put2(0x7000+256*jtab[op==47][code/4]); // jx short 0
else
put2a(0x0f80+jtab[op==47][code/4], 0); // jx near 0
break;
}
}
break;
case 6: // ddd = *d
switch(sss) {
case 0: // ddd<>a (swap)
put2(0x8711); // xchg edx, [ecx]
break;
case 1: // ddd++
put2(0xff01); // inc dword [ecx]
break;
case 2: // ddd--
put2(0xff09); // dec dword [ecx]
break;
case 3: // ddd!
put2(0xf711); // not dword [ecx]
break;
case 4: // ddd=0
put2(0x31c0); // xor eax, eax
put2(0x8901); // mov [ecx], eax
break;
case 7: // ddd=r n
if (S==8)
put3a(0x418996, arg*4); // mov [r14+n*4], edx
else
put2a(0x8915, &r[arg]); // mov [r+n], edx
break;
}
break;
case 7: // special
switch(op) {
case 56: // halt
put1a(0xb8, 1); // mov eax, 1
put1a(0xe9, halt-o-4); // jmp near halt
break;
case 57: // out
put1a(0xe8, outlabel-o-4);// call outlabel
break;
case 59: // hash: a = (a + *b + 512) * 773
put3a(0x8d8410, 512); // lea edx, [eax+edx+512]
put2a(0x69d0, 773); // imul edx, eax, 773
break;
case 60: // hashd: *d = (*d + a + 512) * 773
put2(0x8b01); // mov eax, [ecx]
put3a(0x8d8410, 512); // lea eax, [eax+edx+512]
put2a(0x69c0, 773); // imul eax, eax, 773
put2(0x8901); // mov [ecx], eax
break;
case 63: // jmp
put1a(0xe9, 0); // jmp near 0 (fill in target later)
break;
}
break;
case 8: // a=
case 9: // b=
case 10: // c=
case 11: // d=
if (sss==7) // n
put1a(0xb8+regcode[ddd], arg); // mov ddd, n
else if (sss==6) { // *d
if (S==8)
put4(0x418b0484+(regcode[ddd]<<11)); // mov ddd, [r12+rax*4]
else
put3a(0x8b0485+(regcode[ddd]<<11),&h[0]);// mov ddd, [h+eax*4]
}
else if (sss<4) // a, b, c, d
put2(0x89c0+regcode[ddd]+8*regcode[sss]);// mov ddd,sss
break;
case 12: // *b=
case 13: // *c=
if (sss==7) put3(0xc60100+arg); // mov byte [ecx], n
else if (sss==0) put2(0x8811); // mov byte [ecx], dl
else {
if (sss<4) put2(0x89c0+8*regcode[sss]);// mov eax, sss
put2(0x8801); // mov byte [ecx], al
}
break;
case 14: // *d=
if (sss<7) put2(0x8901+8*regcode[sss]); // mov [ecx], sss
else put2a(0xc701, arg); // mov dword [ecx], n
break;
case 15: break; // not used
case 16: // a+=
if (sss==6) {
if (S==8) put4(0x41031484); // add edx, [r12+rax*4]
else put3a(0x031485, &h[0]); // add edx, [h+eax*4]
}
else if (sss<7) put2(0x01c2+8*regcode[sss]);// add edx, sss
else if (arg>128) put2a(0x81c2, arg); // add edx, n
else put3(0x83c200+arg); // add edx, byte n
break;
case 17: // a-=
if (sss==6) {
if (S==8) put4(0x412b1484); // sub edx, [r12+rax*4]
else put3a(0x2b1485, &h[0]); // sub edx, [h+eax*4]
}
else if (sss<7) put2(0x29c2+8*regcode[sss]);// sub edx, sss
else if (arg>=128) put2a(0x81ea, arg); // sub edx, n
else put3(0x83ea00+arg); // sub edx, byte n
break;
case 18: // a*=
if (sss==6) {
if (S==8) put5(0x410faf14,0x84); // imul edx, [r12+rax*4]
else put4a(0x0faf1485, &h[0]); // imul edx, [h+eax*4]
}
else if (sss<7) put3(0x0fafd0+regcode[sss]);// imul edx, sss
else if (arg>=128) put2a(0x69d2, arg); // imul edx, n
else put3(0x6bd200+arg); // imul edx, byte n
break;
case 19: // a/=
case 20: // a%=
if (sss<7) put2(0x89c1+8*regcode[sss]); // mov ecx, sss
else put1a(0xb9, arg); // mov ecx, n
put2(0x85c9); // test ecx, ecx
put3(0x0f44d1); // cmovz edx, ecx
put2(0x7408-2*(op/8==20)); // jz (over rest)
put2(0x89d0); // mov eax, edx
put2(0x31d2); // xor edx, edx
put2(0xf7f1); // div ecx
if (op/8==19) put2(0x89c2); // mov edx, eax
break;
case 21: // a&=
if (sss==6) {
if (S==8) put4(0x41231484); // and edx, [r12+rax*4]
else put3a(0x231485, &h[0]); // and edx, [h+eax*4]
}
else if (sss<7) put2(0x21c2+8*regcode[sss]);// and edx, sss
else if (arg>=128) put2a(0x81e2, arg); // and edx, n
else put3(0x83e200+arg); // and edx, byte n
break;
case 22: // a&~
if (sss==7) {
if (arg<128) put3(0x83e200+(~arg&255));// and edx, byte ~n
else put2a(0x81e2, ~arg); // and edx, ~n
}
else {
if (sss<4) put2(0x89c0+8*regcode[sss]);// mov eax, sss
put2(0xf7d0); // not eax
put2(0x21c2); // and edx, eax
}
break;
case 23: // a|=
if (sss==6) {
if (S==8) put4(0x410b1484); // or edx, [r12+rax*4]
else put3a(0x0b1485, &h[0]); // or edx, [h+eax*4]
}
else if (sss<7) put2(0x09c2+8*regcode[sss]);// or edx, sss
else if (arg>=128) put2a(0x81ca, arg); // or edx, n
else put3(0x83ca00+arg); // or edx, byte n
break;
case 24: // a^=
if (sss==6) {
if (S==8) put4(0x41331484); // xor edx, [r12+rax*4]
else put3a(0x331485, &h[0]); // xor edx, [h+eax*4]
}
else if (sss<7) put2(0x31c2+8*regcode[sss]);// xor edx, sss
else if (arg>=128) put2a(0x81f2, arg); // xor edx, byte n
else put3(0x83f200+arg); // xor edx, n
break;
case 25: // a<<=
case 26: // a>>=
if (sss==7) // sss = n
put3(0xc1e200+8*256*(op/8==26)+arg); // shl/shr n
else {
put2(0x89c1+8*regcode[sss]); // mov ecx, sss
put2(0xd3e2+8*(op/8==26)); // shl/shr edx, cl
}
break;
case 27: // a==
case 28: // a<
case 29: // a>
if (sss==6) {
if (S==8) put4(0x413b1484); // cmp edx, [r12+rax*4]
else put3a(0x3b1485, &h[0]); // cmp edx, [h+eax*4]
}
else if (sss==7) // sss = n
put2a(0x81fa, arg); // cmp edx, dword n
else
put2(0x39c2+8*regcode[sss]); // cmp edx, sss
if (code<4) {
if (op/8==27) put3(0x0f94c3); // setz bl
if (op/8==28) put3(0x0f92c3); // setc bl
if (op/8==29) put3(0x0f97c3); // seta bl
}
break;
case 30: // not used
case 31: // 255 = lj
if (op==255) put1a(0xe9, 0); // jmp near
break;
}
}
}
}
// Finish first pass
const int rsize=o;
if (o>rcode_size) return rsize;
// Fill in jump addresses (second pass)
for (int i=0; i<hlen; ++i) {
if (it[i]<16) continue;
int op=hcomp[i];
if (op==39 || op==47 || op==63 || op==255) { // jt, jf, jmp, lj
int target=hcomp[i+1];
if (op==255) target+=hcomp[i+2]*256; // lj
else {
if (target>=128) target-=256;
target+=i+2;
}
if (target<0 || target>=hlen) target=hlen-1; // runtime ZPAQL error
o=it[i];
assert(o>=16 && o<rcode_size);
if ((op==39 || op==47) && rcode[o]==0x84) o+=2; // jt, jf -> skip test
assert(o>=16 && o<rcode_size);
if (rcode[o]==0x0f) ++o; // first byte of jz near, jnz near
assert(o<rcode_size);
op=rcode[o++]; // x86 opcode
target=it[target]-o;
if ((op>=0x72 && op<0x78) || op==0xeb) { // jx, jmp short
--target;
if (target<-128 || target>127)
error("Cannot code x86 short jump");
assert(o<rcode_size);
rcode[o]=target&255;
}
else if ((op>=0x82 && op<0x88) || op==0xe9) // jx, jmp near
{
target-=4;
puta(target);
}
else assert(false); // not a x86 jump
}
}
// Jump to start
o=0;
put1a(0xe9, start-5); // jmp near start
return rsize;
}
//////////////////////// Predictor::assemble_p() /////////////////////
// Assemble the ZPAQL code in the HCOMP section of z.header to pcomp and
// return the number of bytes of x86 or x86-64 code written, or that would
// be written if pcomp were large enough. The code for predict() begins
// at pr.pcomp[0] and update() at pr.pcomp[5], both as jmp instructions.
// The assembled code is equivalent to int predict(Predictor*)
// and void update(Predictor*, int y); The Preditor address is placed in
// edi/rdi. The update bit y is placed in ebp/rbp.
int Predictor::assemble_p() {
Predictor& pr=*this;
U8* rcode=pr.pcode; // x86 output array
int rcode_size=pcode_size; // output size
int o=0; // output index in pcode
const int S=sizeof(char*); // 4 or 8
U8* hcomp=&pr.z.header[0]; // The code to translate
#define off(x) ((char*)&(pr.x)-(char*)&pr)
#define offc(x) ((char*)&(pr.comp[i].x)-(char*)&pr)
// test for little-endian (probably x86)
U32 t=0x12345678;
if (*(char*)&t!=0x78 || (S!=4 && S!=8))
error("JIT supported only for x86-32 and x86-64");
// Initialize for predict(). Put predictor address in edi/rdi
put1a(0xe9, 5); // jmp predict
put1a(0, 0x90909000); // reserve space for jmp update
put1(0x53); // push ebx/rbx
put1(0x55); // push ebp/rbp
put1(0x56); // push esi/rsi
put1(0x57); // push edi/rdi
if (S==4)
put4(0x8b7c2414); // mov edi,[esp+0x14] ; pr
else {
#ifdef _WIN32
put3(0x4889cf); // mov rdi, rcx (1st arg in Win64)
#endif
}
// Code predict() for each component
const int n=hcomp[6]; // number of components
U8* cp=hcomp+7;
for (int i=0; i<n; ++i, cp+=compsize[cp[0]]) {
if (cp-hcomp>=pr.z.cend) error("comp too big");
if (cp[0]<1 || cp[0]>9) error("invalid component");
assert(compsize[cp[0]]>0 && compsize[cp[0]]<8);
switch (cp[0]) {
case CONS: // c
break;
case CM: // sizebits limit
// Component& cr=comp[i];
// cr.cxt=h[i]^hmap4;
// p[i]=stretch(cr.cm(cr.cxt)>>17);
put2a(0x8b87, off(h[i])); // mov eax, [edi+&h[i]]
put2a(0x3387, off(hmap4)); // xor eax, [edi+&hmap4]
put1a(0x25, (1<<cp[1])-1); // and eax, size-1
put2a(0x8987, offc(cxt)); // mov [edi+cxt], eax
if (S==8) put1(0x48); // rex.w (esi->rsi)
put2a(0x8bb7, offc(cm)); // mov esi, [edi+&cm]
put3(0x8b0486); // mov eax, [esi+eax*4]
put3(0xc1e811); // shr eax, 17
put4a(0x0fbf8447, off(stretcht)); // movsx eax,word[edi+eax*2+..]
put2a(0x8987, off(p[i])); // mov [edi+&p[i]], eax
break;
case ISSE: // sizebits j -- c=hi, cxt=bh
// assert((hmap4&15)>0);
// if (c8==1 || (c8&0xf0)==16)
// cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8);
// cr.cxt=cr.ht[cr.c+(hmap4&15)]; // bit history
// int *wt=(int*)&cr.cm[cr.cxt*2];
// p[i]=clamp2k((wt[0]*p[cp[2]]+wt[1]*64)>>16);
case ICM: // sizebits
// assert((hmap4&15)>0);
// if (c8==1 || (c8&0xf0)==16) cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8);
// cr.cxt=cr.ht[cr.c+(hmap4&15)];
// p[i]=stretch(cr.cm(cr.cxt)>>8);
//
// Find cxt row in hash table ht. ht has rows of 16 indexed by the low
// sizebits of cxt with element 0 having the next higher 8 bits for
// collision detection. If not found after 3 adjacent tries, replace
// row with lowest element 1 as priority. Return index of row.
//
// size_t Predictor::find(Array<U8>& ht, int sizebits, U32 cxt) {
// assert(ht.size()==size_t(16)<<sizebits);
// int chk=cxt>>sizebits&255;
// size_t h0=(cxt*16)&(ht.size()-16);
// if (ht[h0]==chk) return h0;
// size_t h1=h0^16;
// if (ht[h1]==chk) return h1;
// size_t h2=h0^32;
// if (ht[h2]==chk) return h2;
// if (ht[h0+1]<=ht[h1+1] && ht[h0+1]<=ht[h2+1])
// return memset(&ht[h0], 0, 16), ht[h0]=chk, h0;
// else if (ht[h1+1]<ht[h2+1])
// return memset(&ht[h1], 0, 16), ht[h1]=chk, h1;
// else
// return memset(&ht[h2], 0, 16), ht[h2]=chk, h2;
// }
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(ht)); // mov esi, [edi+&ht]
put2(0x8b07); // mov eax, edi ; c8
put2(0x89c1); // mov ecx, eax ; c8
put3(0x83f801); // cmp eax, 1
put2(0x740a); // je L1
put1a(0x25, 240); // and eax, 0xf0
put3(0x83f810); // cmp eax, 16
put2(0x7576); // jne L2 ; skip find()
// L1: ; find cxt in ht, return index in eax
put3(0xc1e104); // shl ecx, 4
put2a(0x038f, off(h[i])); // add [edi+&h[i]]
put2(0x89c8); // mov eax, ecx ; cxt
put3(0xc1e902+cp[1]); // shr ecx, sizebits+2
put2a(0x81e1, 255); // and eax, 255 ; chk
put3(0xc1e004); // shl eax, 4
put1a(0x25, (64<<cp[1])-16); // and eax, ht.size()-16 = h0
put3(0x3a0c06); // cmp cl, [esi+eax] ; ht[h0]
put2(0x744d); // je L3 ; match h0
put3(0x83f010); // xor eax, 16 ; h1
put3(0x3a0c06); // cmp cl, [esi+eax]
put2(0x7445); // je L3 ; match h1
put3(0x83f030); // xor eax, 48 ; h2
put3(0x3a0c06); // cmp cl, [esi+eax]
put2(0x743d); // je L3 ; match h2
// No checksum match, so replace the lowest priority among h0,h1,h2
put3(0x83f021); // xor eax, 33 ; h0+1
put3(0x8a1c06); // mov bl, [esi+eax] ; ht[h0+1]
put2(0x89c2); // mov edx, eax ; h0+1
put3(0x83f220); // xor edx, 32 ; h2+1
put3(0x3a1c16); // cmp bl, [esi+edx]
put2(0x7708); // ja L4 ; test h1 vs h2
put3(0x83f230); // xor edx, 48 ; h1+1
put3(0x3a1c16); // cmp bl, [esi+edx]
put2(0x7611); // jbe L7 ; replace h0
// L4: ; h0 is not lowest, so replace h1 or h2
put3(0x83f010); // xor eax, 16 ; h1+1
put3(0x8a1c06); // mov bl, [esi+eax]
put3(0x83f030); // xor eax, 48 ; h2+1
put3(0x3a1c06); // cmp bl, [esi+eax]
put2(0x7303); // jae L7
put3(0x83f030); // xor eax, 48 ; h1+1
// L7: ; replace row pointed to by eax = h0,h1,h2
put3(0x83f001); // xor eax, 1
put3(0x890c06); // mov [esi+eax], ecx ; chk
put2(0x31c9); // xor ecx, ecx
put4(0x894c0604); // mov [esi+eax+4], ecx
put4(0x894c0608); // mov [esi+eax+8], ecx
put4(0x894c060c); // mov [esi+eax+12], ecx
// L3: ; save nibble context (in eax) in c
put2a(0x8987, offc(c)); // mov [edi+c], eax
put2(0xeb06); // jmp L8
// L2: ; get nibble context
put2a(0x8b87, offc(c)); // mov eax, [edi+c]
// L8: ; nibble context is in eax
put2a(0x8b97, off(hmap4)); // mov edx, [edi+&hmap4]
put3(0x83e20f); // and edx, 15 ; hmap4
put2(0x01d0); // add eax, edx ; c+(hmap4&15)
put4(0x0fb61406); // movzx edx, byte [esi+eax]
put2a(0x8997, offc(cxt)); // mov [edi+&cxt], edx ; cxt=bh
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(cm)); // mov esi, [edi+&cm] ; cm
// esi points to cm[256] (ICM) or cm[512] (ISSE) with 23 bit
// prediction (ICM) or a pair of 20 bit signed weights (ISSE).
// cxt = bit history bh (0..255) is in edx.
if (cp[0]==ICM) {
put3(0x8b0496); // mov eax, [esi+edx*4];cm[bh]
put3(0xc1e808); // shr eax, 8
put4a(0x0fbf8447, off(stretcht)); // movsx eax,word[edi+eax*2+..]
}
else { // ISSE
put2a(0x8b87, off(p[cp[2]])); // mov eax, [edi+&p[j]]
put4(0x0faf04d6); // imul eax, [esi+edx*8] ;wt[0]
put4(0x8b4cd604); // mov ecx, [esi+edx*8+4];wt[1]
put3(0xc1e106); // shl ecx, 6
put2(0x01c8); // add eax, ecx
put3(0xc1f810); // sar eax, 16
put1a(0xb9, 2047); // mov ecx, 2047
put2(0x39c8); // cmp eax, ecx
put3(0x0f4fc1); // cmovg eax, ecx
put1a(0xb9, -2048); // mov ecx, -2048
put2(0x39c8); // cmp eax, ecx
put3(0x0f4cc1); // cmovl eax, ecx
}
put2a(0x8987, off(p[i])); // mov [edi+&p[i]], eax
break;
case MATCH: // sizebits bufbits: a=len, b=offset, c=bit, cxt=bitpos,
// ht=buf, limit=pos
// assert(cr.cm.size()==(size_t(1)<<cp[1]));
// assert(cr.ht.size()==(size_t(1)<<cp[2]));
// assert(cr.a<=255);
// assert(cr.c==0 || cr.c==1);
// assert(cr.cxt<8);
// assert(cr.limit<cr.ht.size());
// if (cr.a==0) p[i]=0;
// else {
// cr.c=(cr.ht(cr.limit-cr.b)>>(7-cr.cxt))&1; // predicted bit
// p[i]=stretch(dt2k[cr.a]*(cr.c*-2+1)&32767);
// }
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(ht)); // mov esi, [edi+&ht]
// If match length (a) is 0 then p[i]=0
put2a(0x8b87, offc(a)); // mov eax, [edi+&a]
put2(0x85c0); // test eax, eax
put2(0x7449); // jz L2 ; p[i]=0
// Else put predicted bit in c
put1a(0xb9, 7); // mov ecx, 7
put2a(0x2b8f, offc(cxt)); // sub ecx, [edi+&cxt]
put2a(0x8b87, offc(limit)); // mov eax, [edi+&limit]
put2a(0x2b87, offc(b)); // sub eax, [edi+&b]
put1a(0x25, (1<<cp[2])-1); // and eax, ht.size()-1
put4(0x0fb60406); // movzx eax, byte [esi+eax]
put2(0xd3e8); // shr eax, cl
put3(0x83e001); // and eax, 1 ; predicted bit
put2a(0x8987, offc(c)); // mov [edi+&c], eax ; c
// p[i]=stretch(dt2k[cr.a]*(cr.c*-2+1)&32767);
put2a(0x8b87, offc(a)); // mov eax, [edi+&a]
put3a(0x8b8487, off(dt2k)); // mov eax, [edi+eax*4+&dt2k] ; weight
put2(0x7402); // jz L1 ; z if c==0
put2(0xf7d8); // neg eax
put1a(0x25, 0x7fff); // L1: and eax, 32767
put4a(0x0fbf8447, off(stretcht)); //movsx eax, word [edi+eax*2+...]
put2a(0x8987, off(p[i])); // L2: mov [edi+&p[i]], eax
break;
case AVG: // j k wt
// p[i]=(p[cp[1]]*cp[3]+p[cp[2]]*(256-cp[3]))>>8;
put2a(0x8b87, off(p[cp[1]])); // mov eax, [edi+&p[j]]
put2a(0x2b87, off(p[cp[2]])); // sub eax, [edi+&p[k]]
put2a(0x69c0, cp[3]); // imul eax, wt
put3(0xc1f808); // sar eax, 8
put2a(0x0387, off(p[cp[2]])); // add eax, [edi+&p[k]]
put2a(0x8987, off(p[i])); // mov [edi+&p[i]], eax
break;
case MIX2: // sizebits j k rate mask
// c=size cm=wt[size] cxt=input
// cr.cxt=((h[i]+(c8&cp[5]))&(cr.c-1));
// assert(cr.cxt<cr.a16.size());
// int w=cr.a16[cr.cxt];
// assert(w>=0 && w<65536);
// p[i]=(w*p[cp[2]]+(65536-w)*p[cp[3]])>>16;
// assert(p[i]>=-2048 && p[i]<2048);
put2(0x8b07); // mov eax, [edi] ; c8
put1a(0x25, cp[5]); // and eax, mask
put2a(0x0387, off(h[i])); // add eax, [edi+&h[i]]
put1a(0x25, (1<<cp[1])-1); // and eax, size-1
put2a(0x8987, offc(cxt)); // mov [edi+&cxt], eax ; cxt
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(a16)); // mov esi, [edi+&a16]
put4(0x0fb70446); // movzx eax, word [edi+eax*2] ; w
put2a(0x8b8f, off(p[cp[2]])); // mov ecx, [edi+&p[j]]
put2a(0x8b97, off(p[cp[3]])); // mov edx, [edi+&p[k]]
put2(0x29d1); // sub ecx, edx
put3(0x0fafc8); // imul ecx, eax
put3(0xc1e210); // shl edx, 16
put2(0x01d1); // add ecx, edx
put3(0xc1f910); // sar ecx, 16
put2a(0x898f, off(p[i])); // mov [edi+&p[i]]
break;
case MIX: // sizebits j m rate mask
// c=size cm=wt[size][m] cxt=index of wt in cm
// int m=cp[3];
// assert(m>=1 && m<=i);
// cr.cxt=h[i]+(c8&cp[5]);
// cr.cxt=(cr.cxt&(cr.c-1))*m; // pointer to row of weights
// assert(cr.cxt<=cr.cm.size()-m);
// int* wt=(int*)&cr.cm[cr.cxt];
// p[i]=0;
// for (int j=0; j<m; ++j)
// p[i]+=(wt[j]>>8)*p[cp[2]+j];
// p[i]=clamp2k(p[i]>>8);
put2(0x8b07); // mov eax, [edi] ; c8
put1a(0x25, cp[5]); // and eax, mask
put2a(0x0387, off(h[i])); // add eax, [edi+&h[i]]
put1a(0x25, (1<<cp[1])-1); // and eax, size-1
put2a(0x69c0, cp[3]); // imul eax, m
put2a(0x8987, offc(cxt)); // mov [edi+&cxt], eax ; cxt
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(cm)); // mov esi, [edi+&cm]
if (S==8) put1(0x48); // rex.w
put3(0x8d3486); // lea esi, [esi+eax*4] ; wt
// Unroll summation loop: esi=wt[0..m-1]
for (int k=0; k<cp[3]; k+=8) {
const int tail=cp[3]-k; // number of elements remaining
// pack 8 elements of wt in xmm1, 8 elements of p in xmm3
put4a(0xf30f6f8e, k*4); // movdqu xmm1, [esi+k*4]
if (tail>3) put4a(0xf30f6f96, k*4+16);//movdqu xmm2, [esi+k*4+16]
put5(0x660f72e1,0x08); // psrad xmm1, 8
if (tail>3) put5(0x660f72e2,0x08); // psrad xmm2, 8
put4(0x660f6bca); // packssdw xmm1, xmm2
put4a(0xf30f6f9f, off(p[cp[2]+k])); // movdqu xmm3, [edi+&p[j+k]]
if (tail>3)
put4a(0xf30f6fa7,off(p[cp[2]+k+4]));//movdqu xmm4, [edi+&p[j+k+4]]
put4(0x660f6bdc); // packssdw, xmm3, xmm4
if (tail>0 && tail<8) { // last loop, mask extra weights
put4(0x660f76ed); // pcmpeqd xmm5, xmm5 ; -1
put5(0x660f73dd, 16-tail*2); // psrldq xmm5, 16-tail*2
put4(0x660fdbcd); // pand xmm1, xmm5
}
if (k==0) { // first loop, initialize sum in xmm0
put4(0xf30f6fc1); // movdqu xmm0, xmm1
put4(0x660ff5c3); // pmaddwd xmm0, xmm3
}
else { // accumulate sum in xmm0
put4(0xf30f6fd1); // movdqu xmm2, xmm1
put4(0x660ff5d3); // pmaddwd xmm2, xmm3
put4(0x660ffec2); // paddd, xmm0, xmm2
}
}
// Add up the 4 elements of xmm0 = p[i] in the first element
put4(0xf30f6fc8); // movdqu xmm1, xmm0
put5(0x660f73d9,0x08); // psrldq xmm1, 8
put4(0x660ffec1); // paddd xmm0, xmm1
put4(0xf30f6fc8); // movdqu xmm1, xmm0
put5(0x660f73d9,0x04); // psrldq xmm1, 4
put4(0x660ffec1); // paddd xmm0, xmm1
put4(0x660f7ec0); // movd eax, xmm0 ; p[i]
put3(0xc1f808); // sar eax, 8
put1a(0xb9, 2047); // mov ecx, 2047 ; clamp2k
put2(0x39c8); // cmp eax, ecx
put3(0x0f4fc1); // cmovg eax, ecx
put2(0xf7d1); // not ecx ; -2048
put2(0x39c8); // cmp eax, ecx
put3(0x0f4cc1); // cmovl eax, ecx
put2a(0x8987, off(p[i])); // mov [edi+&p[i]], eax
break;
case SSE: // sizebits j start limit
// cr.cxt=(h[i]+c8)*32;
// int pq=p[cp[2]]+992;
// if (pq<0) pq=0;
// if (pq>1983) pq=1983;
// int wt=pq&63;
// pq>>=6;
// assert(pq>=0 && pq<=30);
// cr.cxt+=pq;
// p[i]=stretch(((cr.cm(cr.cxt)>>10)*(64-wt) // p0
// +(cr.cm(cr.cxt+1)>>10)*wt)>>13); // p1
// // p = p0*(64-wt)+p1*wt = (p1-p0)*wt + p0*64
// cr.cxt+=wt>>5;
put2a(0x8b8f, off(h[i])); // mov ecx, [edi+&h[i]]
put2(0x030f); // add ecx, [edi] ; c0
put2a(0x81e1, (1<<cp[1])-1); // and ecx, size-1
put3(0xc1e105); // shl ecx, 5 ; cxt in 0..size*32-32
put2a(0x8b87, off(p[cp[2]])); // mov eax, [edi+&p[j]] ; pq
put1a(0x05, 992); // add eax, 992
put2(0x31d2); // xor edx, edx ; 0
put2(0x39d0); // cmp eax, edx
put3(0x0f4cc2); // cmovl eax, edx
put1a(0xba, 1983); // mov edx, 1983
put2(0x39d0); // cmp eax, edx
put3(0x0f4fc2); // cmovg eax, edx ; pq in 0..1983
put2(0x89c2); // mov edx, eax
put3(0x83e23f); // and edx, 63 ; wt in 0..63
put3(0xc1e806); // shr eax, 6 ; pq in 0..30
put2(0x01c1); // add ecx, eax ; cxt in 0..size*32-2
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(cm)); // mov esi, [edi+cm]
put3(0x8b048e); // mov eax, [esi+ecx*4] ; cm[cxt]
put4(0x8b5c8e04); // mov ebx, [esi+ecx*4+4] ; cm[cxt+1]
put3(0x83fa20); // cmp edx, 32 ; wt
put3(0x83d9ff); // sbb ecx, -1 ; cxt+=wt>>5
put2a(0x898f, offc(cxt)); // mov [edi+cxt], ecx ; cxt saved
put3(0xc1e80a); // shr eax, 10 ; p0 = cm[cxt]>>10
put3(0xc1eb0a); // shr ebx, 10 ; p1 = cm[cxt+1]>>10
put2(0x29c3); // sub ebx, eax, ; p1-p0
put3(0x0fafda); // imul ebx, edx ; (p1-p0)*wt
put3(0xc1e006); // shr eax, 6
put2(0x01d8); // add eax, ebx ; p in 0..2^28-1
put3(0xc1e80d); // shr eax, 13 ; p in 0..32767
put4a(0x0fbf8447, off(stretcht)); // movsx eax, word [edi+eax*2+...]
put2a(0x8987, off(p[i])); // mov [edi+&p[i]], eax
break;
default:
error("invalid ZPAQ component");
}
}
// return squash(p[n-1])
put2a(0x8b87, off(p[n-1])); // mov eax, [edi+...]
put1a(0x05, 0x800); // add eax, 2048
put4a(0x0fbf8447, off(squasht[0])); // movsx eax, word [edi+eax*2+...]
put1(0x5f); // pop edi
put1(0x5e); // pop esi
put1(0x5d); // pop ebp
put1(0x5b); // pop ebx
put1(0xc3); // ret
// Initialize for update() Put predictor address in edi/rdi
// and bit y=0..1 in ebp
int save_o=o;
o=5;
put1a(0xe9, save_o-10); // jmp update
o=save_o;
put1(0x53); // push ebx/rbx
put1(0x55); // push ebp/rbp
put1(0x56); // push esi/rsi
put1(0x57); // push edi/rdi
if (S==4) {
put4(0x8b7c2414); // mov edi,[esp+0x14] ; (1st arg = pr)
put4(0x8b6c2418); // mov ebp,[esp+0x18] ; (2nd arg = y)
}
else {
#ifndef _WIN32
put3(0x4889f5); // mov rbp, rsi (2nd arg in Linux-64)
#else
put3(0x4889cf); // mov rdi, rcx (1st arg in Win64)
put3(0x4889d5); // mov rbp, rdx (2nd arg)
#endif
}
// Code update() for each component
cp=hcomp+7;
for (int i=0; i<n; ++i, cp+=compsize[cp[0]]) {
assert(cp-hcomp<pr.z.cend);
assert (cp[0]>=1 && cp[0]<=9);
assert(compsize[cp[0]]>0 && compsize[cp[0]]<8);
switch (cp[0]) {
case CONS: // c
break;
case SSE: // sizebits j start limit
case CM: // sizebits limit
// train(cr, y);
//
// reduce prediction error in cr.cm
// void train(Component& cr, int y) {
// assert(y==0 || y==1);
// U32& pn=cr.cm(cr.cxt);
// U32 count=pn&0x3ff;
// int error=y*32767-(cr.cm(cr.cxt)>>17);
// pn+=(error*dt[count]&-1024)+(count<cr.limit);
if (S==8) put1(0x48); // rex.w (esi->rsi)
put2a(0x8bb7, offc(cm)); // mov esi,[edi+cm] ; cm
put2a(0x8b87, offc(cxt)); // mov eax,[edi+cxt] ; cxt
put1a(0x25, pr.comp[i].cm.size()-1); // and eax, size-1
if (S==8) put1(0x48); // rex.w
put3(0x8d3486); // lea esi,[esi+eax*4] ; &cm[cxt]
put2(0x8b06); // mov eax,[esi] ; cm[cxt]
put2(0x89c2); // mov edx, eax ; cm[cxt]
put3(0xc1e811); // shr eax, 17 ; cm[cxt]>>17
put2(0x89e9); // mov ecx, ebp ; y
put3(0xc1e10f); // shl ecx, 15 ; y*32768
put2(0x29e9); // sub ecx, ebp ; y*32767
put2(0x29c1); // sub ecx, eax ; error
put2a(0x81e2, 0x3ff); // and edx, 1023 ; count
put3a(0x8b8497, off(dt)); // mov eax,[edi+edx*4+dt] ; dt[count]
put3(0x0fafc8); // imul ecx, eax ; error*dt[count]
put2a(0x81e1, 0xfffffc00); // and ecx, -1024
put2a(0x81fa, cp[2+2*(cp[0]==SSE)]*4); // cmp edx, limit*4
put2(0x110e); // adc [esi], ecx ; pn+=...
break;
case ICM: // sizebits: cxt=bh, ht[c][0..15]=bh row
// cr.ht[cr.c+(hmap4&15)]=st.next(cr.ht[cr.c+(hmap4&15)], y);
// U32& pn=cr.cm(cr.cxt);
// pn+=int(y*32767-(pn>>8))>>2;
case ISSE: // sizebits j -- c=hi, cxt=bh
// assert(cr.cxt==cr.ht[cr.c+(hmap4&15)]);
// int err=y*32767-squash(p[i]);
// int *wt=(int*)&cr.cm[cr.cxt*2];
// wt[0]=clamp512k(wt[0]+((err*p[cp[2]]+(1<<12))>>13));
// wt[1]=clamp512k(wt[1]+((err+16)>>5));
// cr.ht[cr.c+(hmap4&15)]=st.next(cr.cxt, y);
// update bit history bh to next(bh,y=ebp) in ht[c+(hmap4&15)]
put3(0x8b4700+off(hmap4)); // mov eax, [edi+&hmap4]
put3(0x83e00f); // and eax, 15
put2a(0x0387, offc(c)); // add eax [edi+&c] ; cxt
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(ht)); // mov esi, [edi+&ht]
put4(0x0fb61406); // movzx edx, byte [esi+eax] ; bh
put4(0x8d5c9500); // lea ebx, [ebp+edx*4] ; index to st
put4a(0x0fb69c1f, off(st)); // movzx ebx,byte[edi+ebx+st]; next bh
put3(0x881c06); // mov [esi+eax], bl ; save next bh
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(cm)); // mov esi, [edi+&cm]
// ICM: update cm[cxt=edx=bit history] to reduce prediction error
// esi = &cm
if (cp[0]==ICM) {
if (S==8) put1(0x48); // rex.w
put3(0x8d3496); // lea esi, [esi+edx*4] ; &cm[bh]
put2(0x8b06); // mov eax, [esi] ; pn
put3(0xc1e808); // shr eax, 8 ; pn>>8
put2(0x89e9); // mov ecx, ebp ; y
put3(0xc1e10f); // shl ecx, 15
put2(0x29e9); // sub ecx, ebp ; y*32767
put2(0x29c1); // sub ecx, eax
put3(0xc1f902); // sar ecx, 2
put2(0x010e); // add [esi], ecx
}
// ISSE: update weights. edx=cxt=bit history (0..255), esi=cm[512]
else {
put2a(0x8b87, off(p[i])); // mov eax, [edi+&p[i]]
put1a(0x05, 2048); // add eax, 2048
put4a(0x0fb78447, off(squasht)); // movzx eax, word [edi+eax*2+..]
put2(0x89e9); // mov ecx, ebp ; y
put3(0xc1e10f); // shl ecx, 15
put2(0x29e9); // sub ecx, ebp ; y*32767
put2(0x29c1); // sub ecx, eax ; err
put2a(0x8b87, off(p[cp[2]]));// mov eax, [edi+&p[j]]
put3(0x0fafc1); // imul eax, ecx
put1a(0x05, (1<<12)); // add eax, 4096
put3(0xc1f80d); // sar eax, 13
put3(0x0304d6); // add eax, [esi+edx*8] ; wt[0]
put1a(0xbb, (1<<19)-1); // mov ebx, 524287
put2(0x39d8); // cmp eax, ebx
put3(0x0f4fc3); // cmovg eax, ebx
put2(0xf7d3); // not ebx ; -524288
put2(0x39d8); // cmp eax, ebx
put3(0x0f4cc3); // cmovl eax, ebx
put3(0x8904d6); // mov [esi+edx*8], eax
put3(0x83c110); // add ecx, 16 ; err
put3(0xc1f905); // sar ecx, 5
put4(0x034cd604); // add ecx, [esi+edx*8+4] ; wt[1]
put1a(0xb8, (1<<19)-1); // mov eax, 524287
put2(0x39c1); // cmp ecx, eax
put3(0x0f4fc8); // cmovg ecx, eax
put2(0xf7d0); // not eax ; -524288
put2(0x39c1); // cmp ecx, eax
put3(0x0f4cc8); // cmovl ecx, eax
put4(0x894cd604); // mov [esi+edx*8+4], ecx
}
break;
case MATCH: // sizebits bufbits:
// a=len, b=offset, c=bit, cm=index, cxt=bitpos
// ht=buf, limit=pos
// assert(cr.a<=255);
// assert(cr.c==0 || cr.c==1);
// assert(cr.cxt<8);
// assert(cr.cm.size()==(size_t(1)<<cp[1]));
// assert(cr.ht.size()==(size_t(1)<<cp[2]));
// if (int(cr.c)!=y) cr.a=0; // mismatch?
// cr.ht(cr.limit)+=cr.ht(cr.limit)+y;
// if (++cr.cxt==8) {
// cr.cxt=0;
// ++cr.limit;
// cr.limit&=(1<<cp[2])-1;
// if (cr.a==0) { // look for a match
// cr.b=cr.limit-cr.cm(h[i]);
// if (cr.b&(cr.ht.size()-1))
// while (cr.a<255
// && cr.ht(cr.limit-cr.a-1)==cr.ht(cr.limit-cr.a-cr.b-1))
// ++cr.a;
// }
// else cr.a+=cr.a<255;
// cr.cm(h[i])=cr.limit;
// }
// Set pointers ebx=&cm, esi=&ht
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(ht)); // mov esi, [edi+&ht]
if (S==8) put1(0x48); // rex.w
put2a(0x8b9f, offc(cm)); // mov ebx, [edi+&cm]
// if (c!=y) a=0;
put2a(0x8b87, offc(c)); // mov eax, [edi+&c]
put2(0x39e8); // cmp eax, ebp ; y
put2(0x7408); // jz L1
put2(0x31c0); // xor eax, eax
put2a(0x8987, offc(a)); // mov [edi+&a], eax
// ht(limit)+=ht(limit)+y (1E)
put2a(0x8b87, offc(limit)); // mov eax, [edi+&limit]
put4(0x0fb60c06); // movzx, ecx, byte [esi+eax]
put2(0x01c9); // add ecx, ecx
put2(0x01e9); // add ecx, ebp
put3(0x880c06); // mov [esi+eax], cl
// if (++cxt==8)
put2a(0x8b87, offc(cxt)); // mov eax, [edi+&cxt]
put2(0xffc0); // inc eax
put3(0x83e007); // and eax,byte +0x7
put2a(0x8987, offc(cxt)); // mov [edi+&cxt],eax
put2a(0x0f85, 0x9b); // jnz L8
// ++limit;
// limit&=bufsize-1;
put2a(0x8b87, offc(limit)); // mov eax,[edi+&limit]
put2(0xffc0); // inc eax
put1a(0x25, (1<<cp[2])-1); // and eax, bufsize-1
put2a(0x8987, offc(limit)); // mov [edi+&limit],eax
// if (a==0)
put2a(0x8b87, offc(a)); // mov eax, [edi+&a]
put2(0x85c0); // test eax,eax
put2(0x755c); // jnz L6
// b=limit-cm(h[i])
put2a(0x8b8f, off(h[i])); // mov ecx,[edi+h[i]]
put2a(0x81e1, (1<<cp[1])-1); // and ecx, size-1
put2a(0x8b87, offc(limit)); // mov eax,[edi-&limit]
put3(0x2b048b); // sub eax,[ebx+ecx*4]
put2a(0x8987, offc(b)); // mov [edi+&b],eax
// if (b&(bufsize-1))
put1a(0xa9, (1<<cp[2])-1); // test eax, bufsize-1
put2(0x7448); // jz L7
// while (a<255 && ht(limit-a-1)==ht(limit-a-b-1)) ++a;
put1(0x53); // push ebx
put2a(0x8b9f, offc(limit)); // mov ebx,[edi+&limit]
put2(0x89da); // mov edx,ebx
put2(0x29c3); // sub ebx,eax ; limit-b
put2(0x31c9); // xor ecx,ecx ; a=0
put2a(0x81f9, 0xff); // L2: cmp ecx,0xff ; while
put2(0x741c); // jz L3 ; break
put2(0xffca); // dec edx
put2(0xffcb); // dec ebx
put2a(0x81e2, (1<<cp[2])-1); // and edx, bufsize-1
put2a(0x81e3, (1<<cp[2])-1); // and ebx, bufsize-1
put3(0x8a0416); // mov al,[esi+edx]
put3(0x3a041e); // cmp al,[esi+ebx]
put2(0x7504); // jnz L3 ; break
put2(0xffc1); // inc ecx
put2(0xebdc); // jmp short L2 ; end while
put1(0x5b); // L3: pop ebx
put2a(0x898f, offc(a)); // mov [edi+&a],ecx
put2(0xeb0e); // jmp short L7
// a+=(a<255)
put1a(0x3d, 0xff); // L6: cmp eax, 0xff ; a
put3(0x83d000); // adc eax, 0
put2a(0x8987, offc(a)); // mov [edi+&a],eax
// cm(h[i])=limit
put2a(0x8b87, off(h[i])); // L7: mov eax,[edi+&h[i]]
put1a(0x25, (1<<cp[1])-1); // and eax, size-1
put2a(0x8b8f, offc(limit)); // mov ecx,[edi+&limit]
put3(0x890c83); // mov [ebx+eax*4],ecx
// L8:
break;
case AVG: // j k wt
break;
case MIX2: // sizebits j k rate mask
// cm=wt[size], cxt=input
// assert(cr.a16.size()==cr.c);
// assert(cr.cxt<cr.a16.size());
// int err=(y*32767-squash(p[i]))*cp[4]>>5;
// int w=cr.a16[cr.cxt];
// w+=(err*(p[cp[2]]-p[cp[3]])+(1<<12))>>13;
// if (w<0) w=0;
// if (w>65535) w=65535;
// cr.a16[cr.cxt]=w;
// set ecx=err
put2a(0x8b87, off(p[i])); // mov eax, [edi+&p[i]]
put1a(0x05, 2048); // add eax, 2048
put4a(0x0fb78447, off(squasht));//movzx eax, word [edi+eax*2+&squasht]
put2(0x89e9); // mov ecx, ebp ; y
put3(0xc1e10f); // shl ecx, 15
put2(0x29e9); // sub ecx, ebp ; y*32767
put2(0x29c1); // sub ecx, eax
put2a(0x69c9, cp[4]); // imul ecx, rate
put3(0xc1f905); // sar ecx, 5 ; err
// Update w
put2a(0x8b87, offc(cxt)); // mov eax, [edi+&cxt]
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(a16)); // mov esi, [edi+&a16]
if (S==8) put1(0x48); // rex.w
put3(0x8d3446); // lea esi, [esi+eax*2] ; &w
put2a(0x8b87, off(p[cp[2]])); // mov eax, [edi+&p[j]]
put2a(0x2b87, off(p[cp[3]])); // sub eax, [edi+&p[k]] ; p[j]-p[k]
put3(0x0fafc1); // imul eax, ecx ; * err
put1a(0x05, 1<<12); // add eax, 4096
put3(0xc1f80d); // sar eax, 13
put3(0x0fb716); // movzx edx, word [esi] ; w
put2(0x01d0); // add eax, edx
put1a(0xba, 0xffff); // mov edx, 65535
put2(0x39d0); // cmp eax, edx
put3(0x0f4fc2); // cmovg eax, edx
put2(0x31d2); // xor edx, edx
put2(0x39d0); // cmp eax, edx
put3(0x0f4cc2); // cmovl eax, edx
put3(0x668906); // mov word [esi], ax
break;
case MIX: // sizebits j m rate mask
// cm=wt[size][m], cxt=input
// int m=cp[3];
// assert(m>0 && m<=i);
// assert(cr.cm.size()==m*cr.c);
// assert(cr.cxt+m<=cr.cm.size());
// int err=(y*32767-squash(p[i]))*cp[4]>>4;
// int* wt=(int*)&cr.cm[cr.cxt];
// for (int j=0; j<m; ++j)
// wt[j]=clamp512k(wt[j]+((err*p[cp[2]+j]+(1<<12))>>13));
// set ecx=err
put2a(0x8b87, off(p[i])); // mov eax, [edi+&p[i]]
put1a(0x05, 2048); // add eax, 2048
put4a(0x0fb78447, off(squasht));//movzx eax, word [edi+eax*2+&squasht]
put2(0x89e9); // mov ecx, ebp ; y
put3(0xc1e10f); // shl ecx, 15
put2(0x29e9); // sub ecx, ebp ; y*32767
put2(0x29c1); // sub ecx, eax
put2a(0x69c9, cp[4]); // imul ecx, rate
put3(0xc1f904); // sar ecx, 4 ; err
// set esi=wt
put2a(0x8b87, offc(cxt)); // mov eax, [edi+&cxt] ; cxt
if (S==8) put1(0x48); // rex.w
put2a(0x8bb7, offc(cm)); // mov esi, [edi+&cm]
if (S==8) put1(0x48); // rex.w
put3(0x8d3486); // lea esi, [esi+eax*4] ; wt
for (int k=0; k<cp[3]; ++k) {
put2a(0x8b87,off(p[cp[2]+k]));//mov eax, [edi+&p[cp[2]+k]
put3(0x0fafc1); // imul eax, ecx
put1a(0x05, 1<<12); // add eax, 1<<12
put3(0xc1f80d); // sar eax, 13
put2(0x0306); // add eax, [esi]
put1a(0xba, (1<<19)-1); // mov edx, (1<<19)-1
put2(0x39d0); // cmp eax, edx
put3(0x0f4fc2); // cmovg eax, edx
put2(0xf7d2); // not edx
put2(0x39d0); // cmp eax, edx
put3(0x0f4cc2); // cmovl eax, edx
put2(0x8906); // mov [esi], eax
if (k<cp[3]-1) {
if (S==8) put1(0x48); // rex.w
put3(0x83c604); // add esi, 4
}
}
break;
default:
error("invalid ZPAQ component");
}
}
// return from update()
put1(0x5f); // pop edi
put1(0x5e); // pop esi
put1(0x5d); // pop ebp
put1(0x5b); // pop ebx
put1(0xc3); // ret
return o;
}
#endif // ifndef NOJIT
// Return a prediction of the next bit in range 0..32767
// Use JIT code starting at pcode[0] if available, or else create it.
int Predictor::predict() {
#ifdef NOJIT
return predict0();
#else
if (!pcode) {
int n=assemble_p();
allocx(pcode, pcode_size, n);
if (!pcode || n!=assemble_p() || n<10 || pcode_size<10)
error("predictor JIT failed");
}
assert(pcode && pcode[0]);
return ((int(*)(Predictor*))&pcode[0])(this);
#endif
}
// Update the model with bit y = 0..1
// Use the JIT code starting at pcode[5].
void Predictor::update(int y) {
#ifdef NOJIT
update0(y);
#else
assert(pcode && pcode[5]);
((void(*)(Predictor*, int))&pcode[5])(this, y);
// Save bit y in c8, hmap4 (not implemented in JIT)
c8+=c8+y;
if (c8>=256) {
z.run(c8-256);
hmap4=1;
c8=1;
for (int i=0; i<z.header[6]; ++i) h[i]=z.H(i);
}
else if (c8>=16 && c8<32)
hmap4=(hmap4&0xf)<<5|y<<4|1;
else
hmap4=(hmap4&0x1f0)|(((hmap4&0xf)*2+y)&0xf);
#endif
}
// Execute the ZPAQL code with input byte or -1 for EOF.
// Use JIT code at rcode if available, or else create it.
void ZPAQL::run(U32 input) {
#ifdef NOJIT
run0(input);
#else
if (!rcode) {
int n=assemble();
allocx(rcode, rcode_size, n);
if (!rcode || n<10 || rcode_size<10 || n!=assemble())
error("run JIT failed");
}
a=input;
if (!((int(*)())(&rcode[0]))())
libzpaq::error("Bad ZPAQL opcode");
#endif
}
} // end namespace libzpaq
|