1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/*
* Copyright (C) 2020 Linux Studio Plugins Project <https://lsp-plug.in/>
* (C) 2020 Vladimir Sadovnikov <sadko4u@gmail.com>
*
* This file is part of lsp-dsp-units
* Created on: 14 авг. 2016 г.
*
* lsp-dsp-units is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* lsp-dsp-units is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with lsp-dsp-units. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef LSP_PLUG_IN_DSP_UNITS_UTIL_ANALYZER_H_
#define LSP_PLUG_IN_DSP_UNITS_UTIL_ANALYZER_H_
#include <lsp-plug.in/dsp-units/version.h>
#include <lsp-plug.in/dsp-units/iface/IStateDumper.h>
namespace lsp
{
namespace dspu
{
enum freq_analyzer_flags_t
{
// Frequency list flags
FRQA_SCALE_LOGARITHMIC = 0x0000,
FRQA_SCALE_LINEAR = 0x0001,
FRQA_SCALE_MASK = 0x000f,
// Function
FRQA_FUNC_NEAREST = 0x0000,
FRQA_FUNC_MAX = 0x0010,
FRQA_FUNC_MIN = 0x0020,
FRQA_FUNC_AVG = 0x0030,
FRQA_FUNC_MASK = 0x00f0,
// Interpolation
FRQA_INT_NONE = 0x0000,
FRQA_INT_LINEAR = 0x0100,
FRQA_INT_CUBIC = 0x0200,
FRQA_INT_MASK = 0x0300
};
class LSP_DSP_UNITS_PUBLIC Analyzer
{
private:
Analyzer & operator = (const Analyzer &);
Analyzer(const Analyzer &);
protected:
enum reconfigure_flags
{
R_ENVELOPE = 1<<0,
R_WINDOW = 1<<1,
R_ANALYSIS = 1<<2,
R_TAU = 1<<3,
R_COUNTERS = 1<<4,
R_ALL = R_ENVELOPE | R_WINDOW | R_ANALYSIS | R_TAU | R_COUNTERS
};
typedef struct channel_t
{
float *vBuffer; // FFT delay buffer
float *vAmp; // FFT amplitude
float *vData; // FFT data
size_t nDelay; // Delay in the delay buffer
bool bFreeze; // Freeze analysis
bool bActive; // Enable analysis
} channel_t;
protected:
size_t nChannels; // Overall number of channels
size_t nMaxRank; // Maximum FFT rank
size_t nRank; // Current FFT rank
size_t nSampleRate; // Sample rate
size_t nMaxSampleRate; // Maximum possible sample rate
size_t nBufSize; // Delay buffer size
size_t nCounter; // Current counter
size_t nPeriod; // FFT transform period
size_t nStep; // FFT transform period
size_t nHead; // Head of each delay buffer
float fReactivity; // FFT reactivity
float fTau; // Smooth coefficient
float fRate; // FFT refresh rate
float fMinRate; // Minimum possible FFT refresh rate
float fShift; // Gain shift
size_t nReconfigure; // Reconfiguration flags
size_t nEnvelope; // Type of spectral envelope
size_t nWindow; // Type of FFT window
bool bActive; // Activity flag
channel_t *vChannels; // List of channels
void *vData; // Allocated floating-point data
float *vSigRe; // Real part of signal
float *vFftReIm; // Buffer for FFT transform (real part)
float *vWindow; // FFT window
float *vEnvelope; // FFT envelope
public:
explicit Analyzer();
~Analyzer();
/**
* Construct analyzer
*/
void construct();
/** Destroy analyzer
*
*/
void destroy();
public:
/** Initialize analyzer
*
* @param channels number of channels for analysis
* @param max_rank maximum FFT rank
* @param max_sr maximum sample rate
* @param min_rate minimum refresh rate
* @return status of operation
*/
bool init(size_t channels, size_t max_rank, size_t max_sr, float min_rate);
/**
* Get overall number of channels
* @return overall number of channels
*/
inline size_t get_channels() const { return nChannels; }
/** Set window for analysis
*
* @param window window
*/
void set_window(size_t window);
/**
* Get analyzer window
* @return analyzer window
*/
inline size_t get_window() const { return nWindow; }
/** Set envelope for analysis
*
* @param envelope envelope type
*/
void set_envelope(size_t envelope);
/**
* Get envelope of analysis
* @return envelope of analysis
*/
inline size_t get_envelope() const { return nEnvelope; }
/** Set shift gain for analysis
*
* @param envelope envelope type
*/
void set_shift(float shift);
/**
* Get gain shift value
* @return gain shift value
*/
inline float get_shift() const { return fShift; }
/** Set sample rate for analysis
*
* @param sr sample rate
*/
void set_sample_rate(size_t sr);
/**
* Get sample rate
* @return sample rate
*/
inline size_t get_sample_rate() const { return nSampleRate; }
/**
* Get maximum possible sample rate
* @return maximum possible sample rate
*/
inline size_t get_max_sample_rate() const { return nMaxSampleRate; }
/** Set-up FFT analysis rate
*
* @param rate FFT rate
*/
void set_rate(float rate);
/**
* Get current refresh rate
* @return current refresh rate
*/
inline float get_rate() const { return fRate; }
/**
* Get minimum possible rate
* @return minimum possible rate
*/
inline float get_min_rate() const { return fMinRate; }
/** Set-up FFT analysis reactivity
*
* @param reactivity reactivity (msec)
*/
void set_reactivity(float reactivity);
/**
* Get reactivity of the analysis
* @return reactivivy of the analysis
*/
inline float get_reactivity() const { return fReactivity; }
/** Set rank of the analysis
*
* @param rank analysis rank
* @return analysis rank
*/
bool set_rank(size_t rank);
/**
* Return current rank of analyzer
* @return current rank of analyzer
*/
inline size_t get_rank() const { return nRank; }
/** Set analyzer activity
*
* @param active activity flag
*/
inline void set_activity(bool active) { bActive = active; }
/**
* Get analyzer activity
* @return analyzer activity
*/
inline bool activity() const { return bActive; }
/** Freeze channel
*
* @param channel channel to freeze
* @param freeze freeze flag
* @return status of operation
*/
bool freeze_channel(size_t channel, bool freeze);
/** Enable channel
*
* @param channel channel to enable
* @param enable enable flag
* @return status of operation
*/
bool enable_channel(size_t channel, bool enable);
/** Check if channel is active
*
* @param channel channel to check
* @return true if channel is active
*/
inline bool channel_active(size_t channel) const { return (channel < nChannels) ? vChannels[channel].bActive : false; }
/**
* Reset the FFT data of analyzer
*/
inline void reset() { nReconfigure |= R_ANALYSIS; }
/**
* Process input signal
* @param in array of pointers to buffers for all channels
* if pointer is NULL or the pointer to buffer is NULL, it is considered to be zero-filled
* @param samples number of samples to process
*/
void process(const float * const *in, size_t samples);
/** Read spectrum data
*
* @param channel channel
* @param out output buffer
* @param idx array of frequency numbers
* @param count size of input and output arrays
*/
bool get_spectrum(size_t channel, float *out, const uint32_t *idx, size_t count);
/**
* Get level of one frequency
* @param channel channel number
* @param idx frequency index
* @return level
*/
float get_level(size_t channel, const uint32_t idx);
/** Get list of frequencies
*
* @param f frequency list
* @param idx frequency indexes containing frequency numbers for future get_spectrum() call
* @param start start frequency
* @param stop stop frequency
* @param count number of elements
*/
void get_frequencies(float *frq, uint32_t *idx, float start, float stop, size_t count);
/** Read the frequencies of the analyzer
*
* @param frq target array to store frequency value
* @param channel channel ID of input channel
* @param start start frequency
* @param stop end frequency
* @param count number of items to store in frq and amp arrays
* @param flags additional flags
* @return true on success
*/
bool read_frequencies(float *frq, float start, float stop, size_t count, size_t flags = FRQA_SCALE_LOGARITHMIC);
/** Reconfigure analyzer
*
*/
void reconfigure();
/** Check that analyzer needs reconfiguration
*
* @return true if needs reconfiguration
*/
inline bool needs_reconfiguration() const { return nReconfigure; }
/**
* Dump the state
* @param dumper dumper
*/
void dump(IStateDumper *v) const;
};
}
} /* namespace lsp */
#endif /* LSP_PLUG_IN_DSP_UNITS_UTIL_ANALYZER_H_ */
|