1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/*
* Copyright (C) 2020 Linux Studio Plugins Project <https://lsp-plug.in/>
* (C) 2020 Stefano Tronci <stefano.tronci@protonmail.com>
*
* This file is part of lsp-dsp-units
* Created on: 30 Jul 2017
*
* lsp-dsp-units is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* lsp-dsp-units is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with lsp-dsp-units. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef LSP_PLUG_IN_DSP_UNITS_UTIL_RESPONSETAKER_H_
#define LSP_PLUG_IN_DSP_UNITS_UTIL_RESPONSETAKER_H_
#include <lsp-plug.in/dsp-units/version.h>
#include <lsp-plug.in/dsp-units/iface/IStateDumper.h>
#include <lsp-plug.in/dsp-units/sampling/Sample.h>
#include <lsp-plug.in/common/status.h>
namespace lsp
{
namespace dspu
{
class LSP_DSP_UNITS_PUBLIC ResponseTaker
{
private:
ResponseTaker & operator = (const ResponseTaker &);
ResponseTaker(const ResponseTaker &);
protected:
// Input processor state enumerator
enum ip_state_t
{
IP_BYPASS, // Bypassing the signal
IP_WAIT, // Bypassing while the Output Processor fades out and emits zeros
IP_ACQUIRE // Receiving input samples and recording input
};
// Output processor state enumerator
enum op_state_t
{
OP_BYPASS, // Bypassing the signal
OP_FADEOUT, // Fading out the signal
OP_PAUSE, // Emitting zeros
OP_TEST_SIG_EMIT, // Emitting the chirp samples
OP_TAIL_EMIT, // Emitting the chirp zeros tail (to allow both latency shift and acquisition of reverberant tail into the capture buffer)
OP_FADEIN // Fading in the signal
};
// Input Processor parameters
typedef struct ip_t
{
ip_state_t nState; // State
size_t ig_time; // Global Time counter
size_t ig_start; // Fix instant at which acquisition starts
size_t ig_stop; // Fix instant at which acquisition ends
float fAcquire; // Acquisition duration (chirp + tail)
size_t nAcquire; // Acquisition length (chirp + tail)
size_t nAcquireTime; // Count samples in input when in IP_ACQUIRE state
} ip_t;
// Output Processor parameters
typedef struct op_t
{
op_state_t nState; // State
size_t og_time; // Global Time counter
size_t og_start; // Fix instant at which emission starts
float fGain; // Fading gain
float fGainDelta; // Fading gain delta
float fFade; // Fade time [s]
size_t nFade; // Fade time [samples]
float fPause; // Pause duration [s]
size_t nPause; // Pause duration [samples]
size_t nPauseTime; // Count samples in output when in OP_PAUSE state
float fTail; // Tail duration [s].
size_t nTail; // Tail duration [samples]
size_t nTailTime; // Count samples when in OP_TAIL_EMIT state
float fTestSig; // Test signal duration [s]
size_t nTestSig; // Test signal duration [samples]
size_t nTestSigTime; // Count samples in output when in OP_TEST_SIG_EMIT state
} op_t;
private:
size_t nSampleRate;
ip_t sInputProcessor;
op_t sOutputProcessor;
Sample *pTestSig;
Sample *pCapture;
size_t nLatency; // Latency of the transmission line under test [samples]. LatencyDetector will supply this.
size_t nTimeWarp; // Entity of the warp between processors at OP_CHIRP_EMIT trigger
size_t nCaptureStart; // Sample in capture buffer at which the recorded chirp actually starts
bool bCycleComplete; // True if the machine operated a whole measurement cycle
bool bSync;
public:
explicit ResponseTaker();
~ResponseTaker();
/** Construct the ResponseTaker
*
*/
void construct();
/** Initialise ResponseTaker
*
*/
void init();
/** Destroy ResponseTaker
*
*/
void destroy();
public:
status_t reconfigure(Sample *testsig);
/** Check that ResponseTaker needs settings update
*
* @return true if ResponseTaker needs setting update
*/
inline bool needs_update() const
{
return bSync;
}
/** Update ResponseTaker stateful settings
*
*/
void update_settings();
/** Set sample rate for ResponseTaker
*
* @param sr sample rate
*/
inline void set_sample_rate(size_t sr)
{
if (nSampleRate == sr)
return;
nSampleRate = sr;
bSync = true;
}
/** Set output processor fading in seconds
*
* @param fading fading duration in seconds
*/
inline void set_op_fading(float fading)
{
if (sOutputProcessor.fFade == fading)
return;
sOutputProcessor.fFade = fading;
bSync = true;
}
/** Set output processor pause in seconds
*
* @param pause pause duration in seconds
*/
inline void set_op_pause(float pause)
{
if (sOutputProcessor.fPause == pause)
return;
sOutputProcessor.fPause = pause;
bSync = true;
}
/** Set output processor tail in seconds
*
* @param tail tail duration in seconds
*/
inline void set_op_tail(float tail)
{
if (sOutputProcessor.fTail == tail)
return;
sOutputProcessor.fTail = tail;
bSync = true;
}
/** Set the latency of the transmission line
*
* @param latency latency in samples
*/
inline void set_latency_samples(ssize_t latency)
{
if (nLatency == size_t(latency))
return;
nLatency = (latency > 0) ? size_t(latency) : 0;
bSync = true;
}
/** Start latency detection process
*
*/
void start_capture();
/** Force the chirp system to reset it's state
*
*/
void reset_capture();
/** Return true if the measurement cycle was completed
*
* @return bCycleComplete value
*/
inline bool cycle_complete() const
{
return bCycleComplete;
}
/** Get the captured data
*
* @return pointer to captured Sample object
*/
inline Sample * get_capture()
{
return pCapture;
}
/** Get sample at which the capture buffer contains data
*
* @return capture start sample
*/
inline size_t get_capture_start()
{
return nCaptureStart;
}
public:
/** Collect input samples:
*
* @param dst samples destination
* @param src input source, allowed to be NULL
* @param count number of samples to process
*/
void process_in(float *dst, const float *src, size_t count);
/** Stream output samples:
*
* @param dst samples destination
* @param src input source, allowed to be NULL
* @param count number of samples to process
*/
void process_out(float *dst, const float *src, size_t count);
/** Stream direct chirp while recording response
*
* @param dst samples destination
* @param src input source, allowed to be NULL
* @param count number of samples to process
*/
void process(float *dst, const float *src, size_t count);
/**
* Dump the state
* @param dumper dumper
*/
void dump(IStateDumper *v) const;
};
}
}
#endif /* LSP_PLUG_IN_DSP_UNITS_UTIL_RESPONSETAKER_H_ */
|