File: SyncChirpProcessor.h

package info (click to toggle)
lsp-plugins 1.2.5-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 91,856 kB
  • sloc: cpp: 427,831; xml: 57,779; makefile: 9,961; php: 1,005; sh: 18
file content (882 lines) | stat: -rw-r--r-- 41,702 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/*
 * Copyright (C) 2020 Linux Studio Plugins Project <https://lsp-plug.in/>
 *           (C) 2020 Stefano Tronci <stefano.tronci@protonmail.com>
 *
 * This file is part of lsp-dsp-units
 * Created on: 12 Jul 2017
 *
 * lsp-dsp-units is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * any later version.
 *
 * lsp-dsp-units is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with lsp-dsp-units. If not, see <https://www.gnu.org/licenses/>.
 */

#ifndef LSP_PLUG_IN_DSP_UNITS_UTIL_SYNCCHIRPPROCESSOR_H_
#define LSP_PLUG_IN_DSP_UNITS_UTIL_SYNCCHIRPPROCESSOR_H_

#include <lsp-plug.in/dsp-units/version.h>
#include <lsp-plug.in/dsp-units/iface/IStateDumper.h>
#include <lsp-plug.in/dsp-units/util/Oversampler.h>
#include <lsp-plug.in/dsp-units/sampling/Sample.h>
#include <lsp-plug.in/dsp-units/misc/windows.h>
#include <lsp-plug.in/common/status.h>
#include <lsp-plug.in/runtime/LSPString.h>
#include <lsp-plug.in/io/Path.h>

namespace lsp
{
    namespace dspu
    {
        enum scp_method_t
        {
            SCP_SYNTH_SIMPLE,                           // Pure math chirp and inverse filter
            SCP_SYNTH_CHIRPBANDLIMITED,                 // Band limited chirp, pure math inverse filter
            SCP_SYNTH_BANDLIMITED,                      // Band limited chirp and inverse filter
            SCP_SYNTH_MAX
        };

        enum scp_fade_t
        {
            SCP_FADE_NONE,                              // No fade in - fade out
            SCP_FADE_RAISED_COSINES,                    // Raised cosine like shapes for fade in and fade out
            SCP_FADE_MAX
        };

        enum scp_rtcalc_t
        {
            SCP_RT_EDT_0,                               // Early Decay Time with 0 dB upper limit
            SCP_RT_EDT_1,                               // Early Decay Time with 1 dB upper limit
            SCP_RT_T_10,                                // T 19
            SCP_RT_T_20,                                // T 20
            SCP_RT_T_30,                                // T 30
            SCP_RT_MAX,

            SCP_RT_DEFAULT          = SCP_RT_EDT_0
        };

        class LSP_DSP_UNITS_PUBLIC SyncChirpProcessor
        {
            private:
                SyncChirpProcessor & operator = (const SyncChirpProcessor &);
                SyncChirpProcessor(const SyncChirpProcessor &);

            protected:

                // Chirp parameters:
                typedef struct chirp_t
                {
                    // Tunable properties:
                    scp_method_t    enMethod;           // Synthesis method
                    double          initialFrequency;   // Initial chirp frequency [Hz]
                    double          finalFrequency;     // Final chirp frequency [Hz]
                    float           fDuration;          // Chirp duration [s]
                    float           fAlpha;             // Chirp amplitude. This parameter is here as the inverse filter needs scaling too to be matched to the chirp.

                    // Calculated properties:
                    float           fDurationCoarse;    // Pre-optimisation value of fDuration [s]
                    size_t          nDuration;          // Chirp duration [samples]
                    size_t          nTimeLags;          // Number of higher order responses time lags calculated
                    size_t          nOrder;             // Number of harmonics of the initial frequency covered by the chirp
                    double          beta;               // Initial angular frequency [rad /s]
                    double          gamma;              // Exponential time constant [1 / s]
                    double          delta;              // Chirp constant
                    float           fConvScale;         // Scale factor for convolution

                    bool            bAsymptotic;        // True if the chirp is asymptotic. The theory of nonlinear profiling holds for asymptotic chirps.

                    bool            bRecalculate;       // If true, recalculate the chirp related parameters
                    bool            bReconfigure;       // If true, reconfigure all the time series
                } chirp_t;

                // Fader parameters:
                typedef struct fader_t
                {
                    // Tunable properties:
                    scp_fade_t      enMethod;           // Fading method
                    float           fFadeIn;            // Fade in time [s]
                    float           fFadeOut;           // Fade out time [s]

                    // Calculated properties:
                    size_t          nFadeIn;            // Fade in time [samples]
                    size_t          nFadeIn_Over;       // Fade in time, oversampled [samples]
                    size_t          nFadeOut;           // Fade out time [samples]
                    size_t          nFadeOut_Over;      // Fade out time, oversampled [samples]
                } fader_t;

                // Convolution Parameters
                typedef struct conv_t
                {
                    size_t          nChannels;          // Number of channels of convolution result
                    size_t          nPartitionSize;     // Size of the partition used to compute convolution [samples]
                    size_t 			nConvRank; 			// Rank of single partition convolution
                    size_t 			nImage; 			// Size of single partition convolution images [samples]

                    size_t 			nAllocationSize; 	// Number of samples to allocate for convolution result AudioFile object [samples]
                    size_t 		   *vPartitions; 		// Number of partitions used to cover each single padded input time series for each channel
                    size_t 		   *vPaddedLengths;     // Length of each input time series for each channel, padded with zeros so to be long an integer number of partition sizes [samples] - The zero pad is not real (allocated), but convolution happens as if it was.
                    size_t 		   *vInversePrepends; 	// Length of the zero prepending at the inverse filter, so that the total length of prepend + filter is the same as the padded channel length [samples] - The zero prepend is not real (allocated), but convolution happens as if it was.
                    size_t 		   *vConvLengths;       // For each channel in the convolution result, the length of the result stored therein, counted from the beginning [samples]
                    size_t         *vAlignOffsets;      // For each channel in the convolution result, the offset with which the result has to be stored so that all the origins of times are aligned [samples]
                    uint8_t        *pData;

                    float 		   *vInPart; 			// Holds a single input time series partition
                    float          *vInvPart; 			// Holds a single inverse filter partition
                    float          *vInImage; 			// Holds a single input time series FFT image
                    float 	       *vInvImage; 			// Holds a single inverse filter FFT image
                    float 		   *vTemp; 				// Holds temporary data
                    uint8_t 	   *pTempData;
                    bool 			bReallocateTemp;
                } conv_t;

                // Convolution Result Post-processing values:
                typedef struct crpostproc_t
                {
                    // Background Noise Properties
                    double          noiseLevel;        // Background noise level [dB]
                    double          noiseValue;        // Background noise level [linear scale]

                    // Optimal Convolution Result Positive Time Backwards Integration limit
                    float           fIrLimit;           // Integration Limit [s]
                    size_t          nIrLimit;           // Integration Limit [samples]

                    // Background Noise Properties, normalised by Positive Time Convolution Result Total Energy
                    // (energy within origin of time and the optimal limit)
                    double          noiseLevelNorm;
                    double          noiseValueNorm;

                    bool            bLowNoise;          // If true, the noise was low enough for the requested RT calculation

                    // Reverberation time, through Convolution Result Positive Time Backwards Integration
                    size_t          nRT;                // Reverberation time [samples]
                    float           fRT;                // Reverberation time [s]
                    float           fCorrelation;       // Reverberation regression line correlation coefficient

                    // Matrices for nonlinear identification procedure:
                    size_t          nHamOrder;          // Order of the Hammerstain model to identify
                    size_t          nHwinSize;          // Size of the window to separate higher order responses
                    size_t          nWinRank;           // Rank of the window (power of two expressing the window size)
                    double          mCoeffsReDet;       // Determinant of matrix of Linear System Coefficients (Real Part)
                    double          mCoeffsImDet;       // Determinant of matrix of Linear System Coefficients (Imaginary Part)
                    float          *mCoeffsRe;          // Matrix of real parts of Linear System Coefficients
                    float          *mCoeffsIm;          // Matrix of imag parts of Linear System Coefficients
                    float          *mHigherRe;          // Matrix of real parts of higher order frequency responses
                    float          *mHigherIm;          // Matrix of imag parts of higher order frequency responses
                    float          *mKernelsRe;         // Matrix of real parts of model kernels
                    float          *mKernelsIm;         // Matrix of imag parts of model kernels
                    float          *vTemprow1Re;        // Temporary rows for kernel matrix calculation
                    float          *vTemprow1Im;
                    float          *vTemprow2Re;
                    float          *vTemprow2Im;
                    uint8_t        *pData;
                } crpostproc_t;

            private:

                size_t              nSampleRate;

                chirp_t             sChirpParams;
                fader_t             sFader;
                conv_t 				sConvParams;
                crpostproc_t        sCRPostProc;

                Sample             *pChirp;
                Sample             *pInverseFilter;
                Sample             *pConvResult;

                Oversampler         sOver1;             // Oversampler for Band Limited chirp synthesis.
                Oversampler         sOver2;             // Oversampler for Band Limited inverse filter synthesis.
                over_mode_t         enOverMode;         // Oversampler mode.
                size_t              nOversampling;      // Hold oversampling factor. This assumes all the oversamples used here will have the same factor.

                float              *vOverBuffer1;       // Temporary buffer for oversampled synthesis
                float              *vOverBuffer2;       // Temporary buffer for oversampled synthesis
                float              *vEnvelopeBuffer;    // Buffer for Convolution Result Envelope processing
                uint8_t            *pData;

                bool                bSync;

            public:

                explicit SyncChirpProcessor();
                ~SyncChirpProcessor();

                void                construct();


                /** Initialise SynchronizedChirp
                 *
                 */
                bool                init();

                /** Destroy SynchronizedChirp
                 *
                 */
                void                destroy();

            protected:

                /** Calculate the best partition size for convolution. Also computes rank and image size.
                 *
                 * @param partSizeLimit max partition size
                 */
                void calculateConvolutionPartitionSize(size_t partSizeLimit);

                /** Allocate arrays for channel dependent properties.
                 *
                 * @param nchannels number of channels in the convolution result.
                 */
                status_t allocateConvolutionParameters(size_t nchannels);

                /** Destroy arrays for channel dependent properties.
                 *
                 */
                void destroyConvolutionParameters();

                /** Calculate convolution parameters from convolution operation input.
                 *
                 * @param data array of pointers to mono Sample objects, as many as the allocated number of channels for the result.
                 * @param offset 0 time index for the time series
                 */
                void calculateConvolutionParameters(Sample **data, size_t *offset);

                /** Allocate temporary arrays for convolution.
                 *
                 */
                status_t allocateConvolutionTempArrays();

                /** Destroy temporary arrays for convolution.
                 *
                 */
                void destroyConvolutionTempArrays();

                /** Allocate memory for the convolution result
                 *
                 * @param size_t sampleRate sample rate of the convolution result
                 * @param size_t nchannels number of channels of the convolution result
                 * @param size_t count number of samples to be allocated
                 * @return status
                 */
                status_t allocateConvolutionResult(size_t sampleRate, size_t nchannels, size_t count);

                /** Convolve a time series with the inverse filter
                 *
                 * @param data pointer to Sample object containing the time series
                 * @param offset 0 time index for the time series
                 * @param channel channel destination in the multichannel convolution result
                 * @return status
                 */
                status_t do_linear_convolution(Sample *data, size_t offset, size_t channel);

                /** Allocate memory for the nonlinear identification matrices
                 *
                 * @param size_t order order of the Hammerstein model
                 * @param size_t windowSize size of the window to isolate the higher order responses
                 * @return status
                 */
                status_t allocateIdentificationMatrices(size_t order, size_t windowSize);

                /** Destroy the nonlinear identification matrices
                 *
                 */
                void destroyIdentificationMatrices();

                /** Convert from matrix subscript to allocated memory index for coefficients matrices
                 *
                 *  @param size_t r row subscript
                 *  @param size_t c column subscript
                 */
                inline size_t sub2ind_Coeffs(size_t r, size_t c);

                /** Convert from matrix subscript to allocated memory index for data matrices (Higher and Kernels)
                 *
                 *  @param size_t r row subscript
                 *  @param size_t c column subscript
                 */
                inline size_t sub2ind_Data(size_t r, size_t c);

                /** Fill matrices of coefficients with their values
                 *
                 */
                void fillCoefficientsMatrices();

                /** Solve identification problem
                 *
                 */
                void solve();

                /** Force DC Blocking in identified Hammerstein Kernels.
                 *
                 */
                void force_kernels_DC_block();

                /** Window Higher Order Responses
                 *
                 * @param channel channel in the convolution result
                 * @param doInnerSmoothing if true, it will apply a fade in and fadeout to the the higher order response
                 * @param nFadeIn number of samples for the inner fade in
                 * @param nFadeOut number of samples for the inner fade out
                 * @param windowType type of smoothing window to be applied to the whole of the higher order response vector
                 */
                void windowHigherOrderResponses(size_t channel, bool doInnerSmoothing, size_t nFadeIn, size_t nFadeOut, windows::window_t windowType);

                /** Calculate a sample of a synchronized chirp wave
                 *
                 * @param size_t sampleRate sample rate of the chirp wave
                 * @param size_t chirpIdx index (sample number)
                 * @return sample number [chirpIdx] of the chirp wave
                 */
                inline double calculate_chirp_sample(size_t sampleRate, size_t chirpIdx);

                /** Calculate a sample of a matched synchronized chirp inverse filter (uses sample from generating chirp)
                 *
                 * @param sampleRate sample rate of the generating chirp wave (same as sample rate of the inverse filter)
                 * @param chirpValue value of the generating chirp wave sample
                 * @param chirpIdx index (sample number) of the generating chirp wave sample
                 * @return sample number [L - chirpIdx - 1] of the inverse filter, where L is the length of the generating chirp
                 */
                inline double calculate_inverse_filter_sample(size_t sampleRate, double chirpValue, size_t chirpIdx);

                /** Calculate a sample of the fade-out fade-in window
                 *
                 * @param windowIdx index (sample number)
                 * @return sample number [windowIdx] of the fade-out fade-in window
                 */
                float calculate_fading_window_sample(size_t windowIdx);

                /** Profile Convolution Result Background Noise (by looking at the negative times of the Convolution Result)
                 *
                 * @param head sample of the convolution result at which start analysis [samples]
                 * @param count number of samples to process [samples]
                 * @param limit number of negative time samples to use in the assessment [samples]
                 * @return status
                 */
                status_t profile_background_noise(size_t channel, size_t head, size_t count);

                /** Calibrate backwards integration limit. This will calculate the limit for a backwards integration which starts
                 *  at the supplied head parameter
                 *
                 * @param channel channel in the convolution result
                 * @param head sample of the convolution result from which to start analysis [samples]
                 * @oaram windowSize size of the window used for the envelope follower [samples]
                 * @param tolerance level above background noise below which, even if convolution result peaks are found, the convolution result is considered faded into noise [dB]
                 * @return status
                 */
                status_t calibrate_backwards_integration_limit(size_t channel, size_t head, size_t windowSize, double tolerance);

                /** Calculate reverberation time of the positive time response by backward integration, relative to head.
                 *
                 * @param channel channel in the convolution result
                 * @param head sample of the convolution result from which to start analysis [samples]
                 * @param decayThreshold IR level threshold below which reverberation is considered complete [dB]
                 * @param highRegLevel higher level of the limits at which regression line fitting is to be performed [dB]
                 * @param lowRegLevel lower level of the limits at which regression line fitting is to be performed [dB]
                 * @param limit limit sample up to which the squared impulse response is summed, with respect head [samples]
                 * @return status
                 */
                status_t calculate_reverberation_time(size_t channel, size_t head, double decayThreshold, double highRegLevel, double lowRegLevel, size_t limit);

                /** Calculate reverberation time of the positive time response by backward integration, relative to head.
                 *
                 * @param channel channel in the convolution result
                 * @param head sample of the convolution result from which to start analysis [samples]
                 * @param rtCalc reverberation time calculation method
                 * @param limit integration limit [samples]
                 * @return status
                 */
                status_t calculate_reverberation_time(size_t channel, size_t head, scp_rtcalc_t rtCalc, size_t limit);

                /** Calculate the binomial coefficient n over k (n choose k)
                 *
                 * @param n top integer or set size
                 * @param k bottom integer or subset size
                 * @return value of the binomial coefficient given an and k
                 */
                double nchoosek(size_t n, size_t k);

            public:

                /** Allocate and calculate time series
                 *
                 * @return status
                 */
                status_t reconfigure();

                /** Do multiple convolutions, each for each channel in the convolution result
                 *
                 * @param data array of pointers to mono Sample objects, as many as the allocated number of channels for the result.
                 * @param offset 0 time index for the time series
                 * @param nchannels number of channels in the convolution result
                 * @param partSizeLimit maximum size for convolution partision size
                 */
                status_t do_linear_convolutions(Sample **data, size_t *offset, size_t nchannels, size_t partSizeLimit);

                /** Postprocess the Linear Convolution result
                 *
                 * @param channel channel in the convolution result
                 * @param offset samples offset from the middle of the convolution result [samples]
                 * @param rtCalc reverberation time calculation method
                 * @oaram windowSize size of the window used for the envelope follower [s]
                 * @param tolerance level above background noise below which, even if convolution result peaks are found, the convolution result is considered faded into noise [dB]
                 *
                 */
                status_t postprocess_linear_convolution(size_t channel, ssize_t offset, scp_rtcalc_t rtCalc, float windowSize, double tolerance);

                /** Postprocess the Nonlinear Convolution result
                 *
                 * @param channel channel in the convolution result
                 * @param order order of the model
                 * @param nFadeIn number of samples for the inner fade in
                 * @param nFadeOut number of samples for the inner fade out
                 * @param windowType type of smoothing window to be applied to the whole of the higher order response vector
                 * @param nWindowRank rank of resulting FIR responses kernels (exponent of 2 defining their length: 2^nWindowRank)
                 * @return status
                 */
                status_t postprocess_nonlinear_convolution(size_t channel, size_t order, bool doInnerSmoothing, size_t nFadeIn, size_t nFadeOut, windows::window_t windowType, size_t nWindowRank);

                /** Save linear convolution result to file, any wanted interval
                 *
                 * @param path to file
                 * @param head number of the first frame to be saved
                 * @param count number of frames to be saved
                 * @return status
                 */
                status_t save_linear_convolution(const char *path, size_t head, size_t count);
                status_t save_linear_convolution(const LSPString *path, size_t head, size_t count);
                status_t save_linear_convolution(const io::Path *path, size_t head, size_t count);

                /** Save linear convolution result to file, any wanted interval, starting point specified
                 * as offset from middle of convolution result.
                 *
                 * @param path to file
                 * @param offset frames offset from the middle frame
                 * @param count number of frames to be saved
                 * @return status
                 */
                status_t save_linear_convolution(const char *path, ssize_t offset, size_t count);
                status_t save_linear_convolution(const LSPString *path, ssize_t offset, size_t count);
                status_t save_linear_convolution(const io::Path *path, ssize_t offset, size_t count);

                /** Save linear convolution result to file, positive time only
                 *
                 * @param path to file
                 * @param count number of frames to be saved
                 * @return status
                 */
                status_t save_linear_convolution(const char *path, size_t count);
                status_t save_linear_convolution(const LSPString *path, size_t count);
                status_t save_linear_convolution(const io::Path *path, size_t count);

                /** Save nonlinear convolution result to file
                 *
                 * @path path to file
                 * @param offset frames offset from the middle frame (stored as a value only)
                 * @return status
                 */
                status_t save_to_lspc(const char *path, ssize_t offset = 0);
                status_t save_to_lspc(const LSPString *path, ssize_t offset = 0);
                status_t save_to_lspc(const io::Path *path, ssize_t offset = 0);

                /** Load convolution result and chirp parameters from lspc file
                 *
                 * @path path to file
                 * @return status
                 */
                status_t load_from_lspc(const char *path);
                status_t load_from_lspc(const LSPString *path);
                status_t load_from_lspc(const io::Path *path);

            public:

                /** Check that SynchronizedChirp needs settings update
                 *
                 * @return true if SynchronizedChirp needs setting update
                 */
                inline bool needs_update() const
                {
                    return bSync;
                }

                /** Update SynchronizedChirp stateful settings
                 *
                 */
                void update_settings();

                /** Set sample rate for SynchronizedChirp
                 *
                 * @param sr sample rate
                 */
                inline void set_sample_rate(size_t sr)
                {
                    if (nSampleRate == sr)
                        return;

                    nSampleRate                     = sr;
                    sChirpParams.bRecalculate       = true;
                    sChirpParams.bReconfigure       = true;
                    bSync                           = true;
                }

                /** Set chirp synthesis method
                 *
                 * @param method synthesis method
                 */
                inline void set_chirp_synthesis_method(scp_method_t method)
                {
                    if ((method < SCP_SYNTH_SIMPLE) || (method >= SCP_SYNTH_MAX))
                        return;

                    sChirpParams.enMethod           = method;
                    sChirpParams.bReconfigure       = true;
                }

                /** Set chirp initial frequency
                 *
                 * @param initialFrequency initial frequency in Hertz
                 */
                inline void set_chirp_initial_frequency(double initialFrequency)
                {
                    if (sChirpParams.initialFrequency == initialFrequency)
                        return;

                    sChirpParams.initialFrequency   = initialFrequency;
                    sChirpParams.bRecalculate       = true;
                    sChirpParams.bReconfigure       = true;
                    bSync                           = true;
                }

                /** Set chirp final frequency
                 *
                 * @param finalFrequency final frequency in Hertz
                 */
                inline void set_chirp_final_frequency(double finalFrequency)
                {
                    if (sChirpParams.finalFrequency == finalFrequency)
                        return;

                    sChirpParams.finalFrequency     = finalFrequency;
                    sChirpParams.bRecalculate       = true;
                    sChirpParams.bReconfigure       = true;
                    bSync                           = true;
                }

                /** Set chirp duration in seconds
                 *
                 * @param duration chirp duration in seconds
                 */
                inline void set_chirp_duration(float duration)
                {
                    if ((sChirpParams.fDurationCoarse <= duration) && (sChirpParams.fDuration >= duration)) // Same coarse value => same optimized value
                        return;

                    sChirpParams.fDuration          = duration;
                    sChirpParams.bRecalculate       = true;
                    sChirpParams.bReconfigure       = true;
                    bSync                           = true;
                }

                /** Set chirp amplitude
                 *
                 * @param amplitude chirp amplitude
                 */
                inline void set_chirp_amplitude(float amplitude)
                {
                    if (sChirpParams.fAlpha == amplitude)
                        return;

                    sChirpParams.fAlpha             = amplitude;
                    sChirpParams.bReconfigure       = true;
                    bSync                           = true;
                }

                /** Set fader fading method
                 *
                 * @param method fading method
                 */
                inline void set_fader_fading_method(scp_fade_t method)
                {
                    if ((method < SCP_FADE_NONE) || (method >= SCP_FADE_MAX))
                        return;

                    sFader.enMethod                 = method;
                    sChirpParams.bReconfigure       = true;
                }

                /** Set fader fade in time
                 *
                 * @param fadeIn fading in time [s]
                 */
                inline void set_fader_fadein(float fadeIn)
                {
                    if (sFader.fFadeIn == fadeIn)
                        return;

                    sFader.fFadeIn                  = fadeIn;
                    sChirpParams.bReconfigure       = true;
                    bSync                           = true;
                }

                /** Set fader fade out time
                 *
                 * @param fadeOut fading out time [s]
                 */
                inline void set_fader_fadeout(float fadeOut)
                {
                    if (sFader.fFadeOut == fadeOut)
                        return;

                    sFader.fFadeOut                 = fadeOut;
                    sChirpParams.bReconfigure       = true;
                    bSync                           = true;
                }

                /** Get chirp initial frequency
                 *
                 *  @return chirp initial frequency
                 */
                inline double get_chirp_initial_frequency() const
                {
                    return sChirpParams.initialFrequency;
                }

                /** Get chirp final frequency
                 *
                 * @return chirp final frequency
                 */
                inline double get_chirp_final_frequency() const
                {
                    return sChirpParams.finalFrequency;
                }

                /** Get chirp amplitude
                 *
                 * @return chirp amplitude
                 */
                inline float get_chirp_alpha() const
                {
                    return sChirpParams.fAlpha;
                }

                /** Get chirp gamma factor
                 *
                 * @return chirp gamma
                 */
                inline double get_chirp_gamma() const
                {
                    return sChirpParams.gamma;
                }

                /** Get chirp delta factor
                 *
                 * @return chirp delta
                 */
                inline double get_chirp_delta() const
                {
                    return sChirpParams.delta;
                }

                /** Get chirp duration
                 *
                 * @return chirp duration in seconds
                 */
                inline float get_chirp_duration_seconds() const
                {
                    return sChirpParams.fDuration;
                }

                /** Get integration limit time in seconds
                 *
                 */
                inline float get_integration_limit_seconds() const
                {
                    return sCRPostProc.fIrLimit;
                }

                /** Return whether the background noise was optimal for the requested RT measurement
                 *
                 */
                inline bool get_background_noise_optimality() const
                {
                    return sCRPostProc.bLowNoise;
                }

                /** Get reverberation time in samples
                 *
                 */
                inline size_t get_reverberation_time_samples() const
                {
                    return sCRPostProc.nRT;
                }

                /** Get reverberation time in seconds
                 *
                 */
                inline float get_reverberation_time_seconds() const
                {
                    return sCRPostProc.fRT;
                }

                /** Get reverberation regression line correlation coefficient
                 *
                 */
                inline float get_reverberation_correlation() const
                {
                    return sCRPostProc.fCorrelation;
                }

                /** Get coefficients matrix real part
                 *
                 */
                inline float * get_coefficients_matrix_real_part() const
                {
                    return sCRPostProc.mCoeffsRe;
                }

                /** Get coefficients matrix imaginary part
                 *
                 */
                inline float * get_coefficients_matrix_imaginary_part() const
                {
                    return sCRPostProc.mCoeffsIm;
                }

                /** Get higher order responses matrix real part
                 *
                 */
                inline float * get_higher_matrix_real_part() const
                {
                    return sCRPostProc.mHigherRe;
                }

                /** Get higher order responses matrix imaginary part
                 *
                 */
                inline float * get_higher_matrix_imaginary_part() const
                {
                    return sCRPostProc.mHigherIm;
                }

                /** Get kernels matrix real part
                 *
                 */
                inline float * get_kernels_matrix_real_part() const
                {
                    return sCRPostProc.mKernelsRe;
                }

                /** Get kernels matrix imaginary part
                 *
                 */
                inline float * get_kernels_matrix_imaginary_part() const
                {
                    return sCRPostProc.mKernelsIm;
                }

                /** Fill a matrix with kernel FIR taps
                 *
                 * dst destination matrix. Must be size of order by windowSize.
                 * return status
                 */
                status_t fill_with_kernel_taps(float *dst);

                /** Get a single kernel FIR taps
                 * dst destination buffer. Must be at least windowSize long.
                 * order requested order.
                 * return status
                 */
                status_t get_kernel_fir(float *dst, size_t order);

                /** Get chirp
                 *
                 * @return pointer to chirp Sample object
                 */
                inline Sample * get_chirp() const
                {
                    return pChirp;
                }

                /** Get inverse filter
                 *
                 * @return pointer to inverse filter Sample object
                 */
                inline Sample * get_inverse_filter() const
                {
                    return pInverseFilter;
                }

                /** Get convolution result
                 *
                 * @return pointer to convolution result Sample object
                 */
                inline Sample * get_convolution_result() const
                {
                    return pConvResult;
                }

                /** Get convolution result positive time length in seconds
                 *
                 * @return length convolution result positive time length in seconds
                 */
                float get_convolution_result_positive_time_length() const;

                /** Get convolution result samples for plots, arbitrary initial head
                 *
                 * @param channel channel in the convolution result
                 * @param dst pointer to destination data
                 * @param head sample of the convolution result from which to start collecting plot data
                 * @param convLimit sample of the convolution result up to which the plot data are extracted, relative to head
                 * @param plotCount requested samples for plot
                 */
                void get_convolution_result_plottable_samples(size_t channel, float *dst, size_t head, size_t convLimit, size_t plotCount, bool normalize = true);

                /** Get convolution result samples for plots, arbitrary initial offset
                 *
                 * @param channel channel in the convolution result
                 * @param dst pointer to destination data
                 * @param offset samples offset from the middle of the convolution result from which to start collecting plot data
                 * @param convLimit sample of the convolution result up to which the plot data are extracted, relative to head
                 * @param plotCount requested samples for plot
                 * @param normalize if true, normalise the plot samples with respect convolution result peak
                 */
                void get_convolution_result_plottable_samples(size_t channel, float *dst, ssize_t offset, size_t convLimit, size_t plotCount, bool normalize = true);

                /** Get convolution result samples for plots, starting from middle of convolution result
                 *
                 * @param channel channel in the convolution result
                 * @param dst pointer to destination data
                 * @param convLimit sample of the convolution result up to which the plot data are extracted, relative to middle
                 * @param plotCount requested samples for plot
                 */
                void get_convolution_result_plottable_samples(size_t channel, float *dst, size_t convLimit, size_t plotCount, bool normalize = true);

                /** Set Oversampler mode
                 *
                 * @param mode oversampler mode
                 */
                inline void set_oversampler_mode(over_mode_t mode)
                {
                    if (mode == enOverMode)
                        return;

                    enOverMode                      = mode;
                    sChirpParams.bReconfigure       = true;
                    bSync                           = true;
                }

                /**
                 * Dump the state
                 * @param dumper dumper
                 */
                void            dump(IStateDumper *v) const;
        };
    }
}

#endif /* LSP_PLUG_IN_DSP_UNITS_UTIL_SYNCCHIRPPROCESSOR_H_ */