1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
|
#include <limits.h>
#include "lua.h"
#include "lauxlib.h"
#include "lptypes.h"
#include "lpcode.h"
#include "lpcset.h"
/* signals a "no-instruction */
#define NOINST -1
static const Charset fullset_ =
{{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}};
static const Charset *fullset = &fullset_;
/*
** {======================================================
** Analysis and some optimizations
** =======================================================
*/
/*
** A few basic operations on Charsets
*/
static void cs_complement (Charset *cs) {
loopset(i, cs->cs[i] = ~cs->cs[i]);
}
static int cs_disjoint (const Charset *cs1, const Charset *cs2) {
loopset(i, if ((cs1->cs[i] & cs2->cs[i]) != 0) return 0;)
return 1;
}
/*
** Visit a TCall node taking care to stop recursion. If node not yet
** visited, return 'f(sib2(tree))', otherwise return 'def' (default
** value)
*/
static int callrecursive (TTree *tree, int f (TTree *t), int def) {
int key = tree->key;
assert(tree->tag == TCall);
assert(sib2(tree)->tag == TRule);
if (key == 0) /* node already visited? */
return def; /* return default value */
else { /* first visit */
int result;
tree->key = 0; /* mark call as already visited */
result = f(sib2(tree)); /* go to called rule */
tree->key = key; /* restore tree */
return result;
}
}
/*
** Check whether a pattern tree has captures
*/
int hascaptures (TTree *tree) {
tailcall:
switch (tree->tag) {
case TCapture: case TRunTime:
return 1;
case TCall:
return callrecursive(tree, hascaptures, 0);
case TRule: /* do not follow siblings */
tree = sib1(tree); goto tailcall;
case TOpenCall: assert(0);
default: {
switch (numsiblings[tree->tag]) {
case 1: /* return hascaptures(sib1(tree)); */
tree = sib1(tree); goto tailcall;
case 2:
if (hascaptures(sib1(tree)))
return 1;
/* else return hascaptures(sib2(tree)); */
tree = sib2(tree); goto tailcall;
default: assert(numsiblings[tree->tag] == 0); return 0;
}
}
}
}
/*
** Checks how a pattern behaves regarding the empty string,
** in one of two different ways:
** A pattern is *nullable* if it can match without consuming any character;
** A pattern is *nofail* if it never fails for any string
** (including the empty string).
** The difference is only for predicates and run-time captures;
** for other patterns, the two properties are equivalent.
** (With predicates, &'a' is nullable but not nofail. Of course,
** nofail => nullable.)
** These functions are all convervative in the following way:
** p is nullable => nullable(p)
** nofail(p) => p cannot fail
** The function assumes that TOpenCall is not nullable;
** this will be checked again when the grammar is fixed.
** Run-time captures can do whatever they want, so the result
** is conservative.
*/
int checkaux (TTree *tree, int pred) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny: case TUTFR:
case TFalse: case TOpenCall:
return 0; /* not nullable */
case TRep: case TTrue:
return 1; /* no fail */
case TNot: case TBehind: /* can match empty, but can fail */
if (pred == PEnofail) return 0;
else return 1; /* PEnullable */
case TAnd: /* can match empty; fail iff body does */
if (pred == PEnullable) return 1;
/* else return checkaux(sib1(tree), pred); */
tree = sib1(tree); goto tailcall;
case TRunTime: /* can fail; match empty iff body does */
if (pred == PEnofail) return 0;
/* else return checkaux(sib1(tree), pred); */
tree = sib1(tree); goto tailcall;
case TSeq:
if (!checkaux(sib1(tree), pred)) return 0;
/* else return checkaux(sib2(tree), pred); */
tree = sib2(tree); goto tailcall;
case TChoice:
if (checkaux(sib2(tree), pred)) return 1;
/* else return checkaux(sib1(tree), pred); */
tree = sib1(tree); goto tailcall;
case TCapture: case TGrammar: case TRule: case TXInfo:
/* return checkaux(sib1(tree), pred); */
tree = sib1(tree); goto tailcall;
case TCall: /* return checkaux(sib2(tree), pred); */
tree = sib2(tree); goto tailcall;
default: assert(0); return 0;
}
}
/*
** number of characters to match a pattern (or -1 if variable)
*/
int fixedlen (TTree *tree) {
int len = 0; /* to accumulate in tail calls */
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny:
return len + 1;
case TUTFR:
return (tree->cap == sib1(tree)->cap) ? len + tree->cap : -1;
case TFalse: case TTrue: case TNot: case TAnd: case TBehind:
return len;
case TRep: case TRunTime: case TOpenCall:
return -1;
case TCapture: case TRule: case TGrammar: case TXInfo:
/* return fixedlen(sib1(tree)); */
tree = sib1(tree); goto tailcall;
case TCall: {
int n1 = callrecursive(tree, fixedlen, -1);
if (n1 < 0)
return -1;
else
return len + n1;
}
case TSeq: {
int n1 = fixedlen(sib1(tree));
if (n1 < 0)
return -1;
/* else return fixedlen(sib2(tree)) + len; */
len += n1; tree = sib2(tree); goto tailcall;
}
case TChoice: {
int n1 = fixedlen(sib1(tree));
int n2 = fixedlen(sib2(tree));
if (n1 != n2 || n1 < 0)
return -1;
else
return len + n1;
}
default: assert(0); return 0;
};
}
/*
** Computes the 'first set' of a pattern.
** The result is a conservative aproximation:
** match p ax -> x (for some x) ==> a belongs to first(p)
** or
** a not in first(p) ==> match p ax -> fail (for all x)
**
** The set 'follow' is the first set of what follows the
** pattern (full set if nothing follows it).
**
** The function returns 0 when this resulting set can be used for
** test instructions that avoid the pattern altogether.
** A non-zero return can happen for two reasons:
** 1) match p '' -> '' ==> return has bit 1 set
** (tests cannot be used because they would always fail for an empty input);
** 2) there is a match-time capture ==> return has bit 2 set
** (optimizations should not bypass match-time captures).
*/
static int getfirst (TTree *tree, const Charset *follow, Charset *firstset) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny: case TFalse: {
tocharset(tree, firstset);
return 0;
}
case TUTFR: {
int c;
clearset(firstset->cs); /* erase all chars */
for (c = tree->key; c <= sib1(tree)->key; c++)
setchar(firstset->cs, c);
return 0;
}
case TTrue: {
loopset(i, firstset->cs[i] = follow->cs[i]);
return 1; /* accepts the empty string */
}
case TChoice: {
Charset csaux;
int e1 = getfirst(sib1(tree), follow, firstset);
int e2 = getfirst(sib2(tree), follow, &csaux);
loopset(i, firstset->cs[i] |= csaux.cs[i]);
return e1 | e2;
}
case TSeq: {
if (!nullable(sib1(tree))) {
/* when p1 is not nullable, p2 has nothing to contribute;
return getfirst(sib1(tree), fullset, firstset); */
tree = sib1(tree); follow = fullset; goto tailcall;
}
else { /* FIRST(p1 p2, fl) = FIRST(p1, FIRST(p2, fl)) */
Charset csaux;
int e2 = getfirst(sib2(tree), follow, &csaux);
int e1 = getfirst(sib1(tree), &csaux, firstset);
if (e1 == 0) return 0; /* 'e1' ensures that first can be used */
else if ((e1 | e2) & 2) /* one of the children has a matchtime? */
return 2; /* pattern has a matchtime capture */
else return e2; /* else depends on 'e2' */
}
}
case TRep: {
getfirst(sib1(tree), follow, firstset);
loopset(i, firstset->cs[i] |= follow->cs[i]);
return 1; /* accept the empty string */
}
case TCapture: case TGrammar: case TRule: case TXInfo: {
/* return getfirst(sib1(tree), follow, firstset); */
tree = sib1(tree); goto tailcall;
}
case TRunTime: { /* function invalidates any follow info. */
int e = getfirst(sib1(tree), fullset, firstset);
if (e) return 2; /* function is not "protected"? */
else return 0; /* pattern inside capture ensures first can be used */
}
case TCall: {
/* return getfirst(sib2(tree), follow, firstset); */
tree = sib2(tree); goto tailcall;
}
case TAnd: {
int e = getfirst(sib1(tree), follow, firstset);
loopset(i, firstset->cs[i] &= follow->cs[i]);
return e;
}
case TNot: {
if (tocharset(sib1(tree), firstset)) {
cs_complement(firstset);
return 1;
} /* else */
} /* FALLTHROUGH */
case TBehind: { /* instruction gives no new information */
/* call 'getfirst' only to check for math-time captures */
int e = getfirst(sib1(tree), follow, firstset);
loopset(i, firstset->cs[i] = follow->cs[i]); /* uses follow */
return e | 1; /* always can accept the empty string */
}
default: assert(0); return 0;
}
}
/*
** If 'headfail(tree)' true, then 'tree' can fail only depending on the
** next character of the subject.
*/
static int headfail (TTree *tree) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny: case TFalse:
return 1;
case TTrue: case TRep: case TRunTime: case TNot:
case TBehind: case TUTFR:
return 0;
case TCapture: case TGrammar: case TRule: case TXInfo: case TAnd:
tree = sib1(tree); goto tailcall; /* return headfail(sib1(tree)); */
case TCall:
tree = sib2(tree); goto tailcall; /* return headfail(sib2(tree)); */
case TSeq:
if (!nofail(sib2(tree))) return 0;
/* else return headfail(sib1(tree)); */
tree = sib1(tree); goto tailcall;
case TChoice:
if (!headfail(sib1(tree))) return 0;
/* else return headfail(sib2(tree)); */
tree = sib2(tree); goto tailcall;
default: assert(0); return 0;
}
}
/*
** Check whether the code generation for the given tree can benefit
** from a follow set (to avoid computing the follow set when it is
** not needed)
*/
static int needfollow (TTree *tree) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny: case TUTFR:
case TFalse: case TTrue: case TAnd: case TNot:
case TRunTime: case TGrammar: case TCall: case TBehind:
return 0;
case TChoice: case TRep:
return 1;
case TCapture:
tree = sib1(tree); goto tailcall;
case TSeq:
tree = sib2(tree); goto tailcall;
default: assert(0); return 0;
}
}
/* }====================================================== */
/*
** {======================================================
** Code generation
** =======================================================
*/
/*
** size of an instruction
*/
int sizei (const Instruction *i) {
switch((Opcode)i->i.code) {
case ISet: case ISpan: return 1 + i->i.aux2.set.size;
case ITestSet: return 2 + i->i.aux2.set.size;
case ITestChar: case ITestAny: case IChoice: case IJmp: case ICall:
case IOpenCall: case ICommit: case IPartialCommit: case IBackCommit:
case IUTFR:
return 2;
default: return 1;
}
}
/*
** state for the compiler
*/
typedef struct CompileState {
Pattern *p; /* pattern being compiled */
int ncode; /* next position in p->code to be filled */
lua_State *L;
} CompileState;
/*
** code generation is recursive; 'opt' indicates that the code is being
** generated as the last thing inside an optional pattern (so, if that
** code is optional too, it can reuse the 'IChoice' already in place for
** the outer pattern). 'tt' points to a previous test protecting this
** code (or NOINST). 'fl' is the follow set of the pattern.
*/
static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
const Charset *fl);
static void finishrelcode (lua_State *L, Pattern *p, Instruction *block,
int size) {
if (block == NULL)
luaL_error(L, "not enough memory");
block->codesize = size;
p->code = (Instruction *)block + 1;
}
/*
** Initialize array 'p->code'
*/
static void newcode (lua_State *L, Pattern *p, int size) {
void *ud;
Instruction *block;
lua_Alloc f = lua_getallocf(L, &ud);
size++; /* slot for 'codesize' */
block = (Instruction*) f(ud, NULL, 0, size * sizeof(Instruction));
finishrelcode(L, p, block, size);
}
void freecode (lua_State *L, Pattern *p) {
if (p->code != NULL) {
void *ud;
lua_Alloc f = lua_getallocf(L, &ud);
uint osize = p->code[-1].codesize;
f(ud, p->code - 1, osize * sizeof(Instruction), 0); /* free block */
}
}
/*
** Assume that 'nsize' is not zero and that 'p->code' already exists.
*/
static void realloccode (lua_State *L, Pattern *p, int nsize) {
void *ud;
lua_Alloc f = lua_getallocf(L, &ud);
Instruction *block = p->code - 1;
uint osize = block->codesize;
nsize++; /* add the 'codesize' slot to size */
block = (Instruction*) f(ud, block, osize * sizeof(Instruction),
nsize * sizeof(Instruction));
finishrelcode(L, p, block, nsize);
}
/*
** Add space for an instruction with 'n' slots and return its index.
*/
static int nextinstruction (CompileState *compst, int n) {
int size = compst->p->code[-1].codesize - 1;
int ncode = compst->ncode;
if (ncode > size - n) {
uint nsize = size + (size >> 1) + n;
if (nsize >= INT_MAX)
luaL_error(compst->L, "pattern code too large");
realloccode(compst->L, compst->p, nsize);
}
compst->ncode = ncode + n;
return ncode;
}
#define getinstr(cs,i) ((cs)->p->code[i])
static int addinstruction (CompileState *compst, Opcode op, int aux) {
int i = nextinstruction(compst, 1);
getinstr(compst, i).i.code = op;
getinstr(compst, i).i.aux1 = aux;
return i;
}
/*
** Add an instruction followed by space for an offset (to be set later)
*/
static int addoffsetinst (CompileState *compst, Opcode op) {
int i = addinstruction(compst, op, 0); /* instruction */
addinstruction(compst, (Opcode)0, 0); /* open space for offset */
assert(op == ITestSet || sizei(&getinstr(compst, i)) == 2);
return i;
}
/*
** Set the offset of an instruction
*/
static void setoffset (CompileState *compst, int instruction, int offset) {
getinstr(compst, instruction + 1).offset = offset;
}
static void codeutfr (CompileState *compst, TTree *tree) {
int i = addoffsetinst(compst, IUTFR);
int to = sib1(tree)->u.n;
assert(sib1(tree)->tag == TXInfo);
getinstr(compst, i + 1).offset = tree->u.n;
getinstr(compst, i).i.aux1 = to & 0xff;
getinstr(compst, i).i.aux2.key = to >> 8;
}
/*
** Add a capture instruction:
** 'op' is the capture instruction; 'cap' the capture kind;
** 'key' the key into ktable; 'aux' is the optional capture offset
**
*/
static int addinstcap (CompileState *compst, Opcode op, int cap, int key,
int aux) {
int i = addinstruction(compst, op, joinkindoff(cap, aux));
getinstr(compst, i).i.aux2.key = key;
return i;
}
#define gethere(compst) ((compst)->ncode)
#define target(code,i) ((i) + code[i + 1].offset)
/*
** Patch 'instruction' to jump to 'target'
*/
static void jumptothere (CompileState *compst, int instruction, int target) {
if (instruction >= 0)
setoffset(compst, instruction, target - instruction);
}
/*
** Patch 'instruction' to jump to current position
*/
static void jumptohere (CompileState *compst, int instruction) {
jumptothere(compst, instruction, gethere(compst));
}
/*
** Code an IChar instruction, or IAny if there is an equivalent
** test dominating it
*/
static void codechar (CompileState *compst, int c, int tt) {
if (tt >= 0 && getinstr(compst, tt).i.code == ITestChar &&
getinstr(compst, tt).i.aux1 == c)
addinstruction(compst, IAny, 0);
else
addinstruction(compst, IChar, c);
}
/*
** Add a charset posfix to an instruction.
*/
static void addcharset (CompileState *compst, int inst, charsetinfo *info) {
int p;
Instruction *I = &getinstr(compst, inst);
byte *charset;
int isize = instsize(info->size); /* size in instructions */
int i;
I->i.aux2.set.offset = info->offset * 8; /* offset in bits */
I->i.aux2.set.size = isize;
I->i.aux1 = info->deflt;
p = nextinstruction(compst, isize); /* space for charset */
charset = getinstr(compst, p).buff; /* charset buffer */
for (i = 0; i < isize * (int)sizeof(Instruction); i++)
charset[i] = getbytefromcharset(info, i); /* copy the buffer */
}
/*
** Check whether charset 'info' is dominated by instruction 'p'
*/
static int cs_equal (Instruction *p, charsetinfo *info) {
if (p->i.code != ITestSet)
return 0;
else if (p->i.aux2.set.offset != info->offset * 8 ||
p->i.aux2.set.size != instsize(info->size) ||
p->i.aux1 != info->deflt)
return 0;
else {
int i;
for (i = 0; i < instsize(info->size) * (int)sizeof(Instruction); i++) {
if ((p + 2)->buff[i] != getbytefromcharset(info, i))
return 0;
}
}
return 1;
}
/*
** Code a char set, using IAny when instruction is dominated by an
** equivalent test.
*/
static void codecharset (CompileState *compst, TTree *tree, int tt) {
charsetinfo info;
tree2cset(tree, &info);
if (tt >= 0 && cs_equal(&getinstr(compst, tt), &info))
addinstruction(compst, IAny, 0);
else {
int i = addinstruction(compst, ISet, 0);
addcharset(compst, i, &info);
}
}
/*
** Code a test set, optimizing unit sets for ITestChar, "complete"
** sets for ITestAny, and empty sets for IJmp (always fails).
** 'e' is true iff test should accept the empty string. (Test
** instructions in the current VM never accept the empty string.)
*/
static int codetestset (CompileState *compst, Charset *cs, int e) {
if (e) return NOINST; /* no test */
else {
charsetinfo info;
Opcode op = charsettype(cs->cs, &info);
switch (op) {
case IFail: return addoffsetinst(compst, IJmp); /* always jump */
case IAny: return addoffsetinst(compst, ITestAny);
case IChar: {
int i = addoffsetinst(compst, ITestChar);
getinstr(compst, i).i.aux1 = info.offset;
return i;
}
default: { /* regular set */
int i = addoffsetinst(compst, ITestSet);
addcharset(compst, i, &info);
assert(op == ISet);
return i;
}
}
}
}
/*
** Find the final destination of a sequence of jumps
*/
static int finaltarget (Instruction *code, int i) {
while (code[i].i.code == IJmp)
i = target(code, i);
return i;
}
/*
** final label (after traversing any jumps)
*/
static int finallabel (Instruction *code, int i) {
return finaltarget(code, target(code, i));
}
/*
** <behind(p)> == behind n; <p> (where n = fixedlen(p))
*/
static void codebehind (CompileState *compst, TTree *tree) {
if (tree->u.n > 0)
addinstruction(compst, IBehind, tree->u.n);
codegen(compst, sib1(tree), 0, NOINST, fullset);
}
/*
** Choice; optimizations:
** - when p1 is headfail or when first(p1) and first(p2) are disjoint,
** than a character not in first(p1) cannot go to p1 and a character
** in first(p1) cannot go to p2, either because p1 will accept
** (headfail) or because it is not in first(p2) (disjoint).
** (The second case is not valid if p1 accepts the empty string,
** as then there is no character at all...)
** - when p2 is empty and opt is true; a IPartialCommit can reuse
** the Choice already active in the stack.
*/
static void codechoice (CompileState *compst, TTree *p1, TTree *p2, int opt,
const Charset *fl) {
int emptyp2 = (p2->tag == TTrue);
Charset cs1, cs2;
int e1 = getfirst(p1, fullset, &cs1);
if (headfail(p1) ||
(!e1 && (getfirst(p2, fl, &cs2), cs_disjoint(&cs1, &cs2)))) {
/* <p1 / p2> == test (fail(p1)) -> L1 ; p1 ; jmp L2; L1: p2; L2: */
int test = codetestset(compst, &cs1, 0);
int jmp = NOINST;
codegen(compst, p1, 0, test, fl);
if (!emptyp2)
jmp = addoffsetinst(compst, IJmp);
jumptohere(compst, test);
codegen(compst, p2, opt, NOINST, fl);
jumptohere(compst, jmp);
}
else if (opt && emptyp2) {
/* p1? == IPartialCommit; p1 */
jumptohere(compst, addoffsetinst(compst, IPartialCommit));
codegen(compst, p1, 1, NOINST, fullset);
}
else {
/* <p1 / p2> ==
test(first(p1)) -> L1; choice L1; <p1>; commit L2; L1: <p2>; L2: */
int pcommit;
int test = codetestset(compst, &cs1, e1);
int pchoice = addoffsetinst(compst, IChoice);
codegen(compst, p1, emptyp2, test, fullset);
pcommit = addoffsetinst(compst, ICommit);
jumptohere(compst, pchoice);
jumptohere(compst, test);
codegen(compst, p2, opt, NOINST, fl);
jumptohere(compst, pcommit);
}
}
/*
** And predicate
** optimization: fixedlen(p) = n ==> <&p> == <p>; behind n
** (valid only when 'p' has no captures)
*/
static void codeand (CompileState *compst, TTree *tree, int tt) {
int n = fixedlen(tree);
if (n >= 0 && n <= MAXBEHIND && !hascaptures(tree)) {
codegen(compst, tree, 0, tt, fullset);
if (n > 0)
addinstruction(compst, IBehind, n);
}
else { /* default: Choice L1; p1; BackCommit L2; L1: Fail; L2: */
int pcommit;
int pchoice = addoffsetinst(compst, IChoice);
codegen(compst, tree, 0, tt, fullset);
pcommit = addoffsetinst(compst, IBackCommit);
jumptohere(compst, pchoice);
addinstruction(compst, IFail, 0);
jumptohere(compst, pcommit);
}
}
/*
** Captures: if pattern has fixed (and not too big) length, and it
** has no nested captures, use a single IFullCapture instruction
** after the match; otherwise, enclose the pattern with OpenCapture -
** CloseCapture.
*/
static void codecapture (CompileState *compst, TTree *tree, int tt,
const Charset *fl) {
int len = fixedlen(sib1(tree));
if (len >= 0 && len <= MAXOFF && !hascaptures(sib1(tree))) {
codegen(compst, sib1(tree), 0, tt, fl);
addinstcap(compst, IFullCapture, tree->cap, tree->key, len);
}
else {
addinstcap(compst, IOpenCapture, tree->cap, tree->key, 0);
codegen(compst, sib1(tree), 0, tt, fl);
addinstcap(compst, ICloseCapture, Cclose, 0, 0);
}
}
static void coderuntime (CompileState *compst, TTree *tree, int tt) {
addinstcap(compst, IOpenCapture, Cgroup, tree->key, 0);
codegen(compst, sib1(tree), 0, tt, fullset);
addinstcap(compst, ICloseRunTime, Cclose, 0, 0);
}
/*
** Create a jump to 'test' and fix 'test' to jump to next instruction
*/
static void closeloop (CompileState *compst, int test) {
int jmp = addoffsetinst(compst, IJmp);
jumptohere(compst, test);
jumptothere(compst, jmp, test);
}
/*
** Try repetition of charsets:
** For an empty set, repetition of fail is a no-op;
** For any or char, code a tight loop;
** For generic charset, use a span instruction.
*/
static int coderepcharset (CompileState *compst, TTree *tree) {
switch (tree->tag) {
case TFalse: return 1; /* 'fail*' is a no-op */
case TAny: { /* L1: testany -> L2; any; jmp L1; L2: */
int test = addoffsetinst(compst, ITestAny);
addinstruction(compst, IAny, 0);
closeloop(compst, test);
return 1;
}
case TChar: { /* L1: testchar c -> L2; any; jmp L1; L2: */
int test = addoffsetinst(compst, ITestChar);
getinstr(compst, test).i.aux1 = tree->u.n;
addinstruction(compst, IAny, 0);
closeloop(compst, test);
return 1;
}
case TSet: { /* regular set */
charsetinfo info;
int i = addinstruction(compst, ISpan, 0);
tree2cset(tree, &info);
addcharset(compst, i, &info);
return 1;
}
default: return 0; /* not a charset */
}
}
/*
** Repetion; optimizations:
** When pattern is a charset, use special code.
** When pattern is head fail, or if it starts with characters that
** are disjoint from what follows the repetions, a simple test
** is enough (a fail inside the repetition would backtrack to fail
** again in the following pattern, so there is no need for a choice).
** When 'opt' is true, the repetion can reuse the Choice already
** active in the stack.
*/
static void coderep (CompileState *compst, TTree *tree, int opt,
const Charset *fl) {
if (!coderepcharset(compst, tree)) {
Charset st;
int e1 = getfirst(tree, fullset, &st);
if (headfail(tree) || (!e1 && cs_disjoint(&st, fl))) {
/* L1: test (fail(p1)) -> L2; <p>; jmp L1; L2: */
int test = codetestset(compst, &st, 0);
codegen(compst, tree, 0, test, fullset);
closeloop(compst, test);
}
else {
/* test(fail(p1)) -> L2; choice L2; L1: <p>; partialcommit L1; L2: */
/* or (if 'opt'): partialcommit L1; L1: <p>; partialcommit L1; */
int commit, l2;
int test = codetestset(compst, &st, e1);
int pchoice = NOINST;
if (opt)
jumptohere(compst, addoffsetinst(compst, IPartialCommit));
else
pchoice = addoffsetinst(compst, IChoice);
l2 = gethere(compst);
codegen(compst, tree, 0, NOINST, fullset);
commit = addoffsetinst(compst, IPartialCommit);
jumptothere(compst, commit, l2);
jumptohere(compst, pchoice);
jumptohere(compst, test);
}
}
}
/*
** Not predicate; optimizations:
** In any case, if first test fails, 'not' succeeds, so it can jump to
** the end. If pattern is headfail, that is all (it cannot fail
** in other parts); this case includes 'not' of simple sets. Otherwise,
** use the default code (a choice plus a failtwice).
*/
static void codenot (CompileState *compst, TTree *tree) {
Charset st;
int e = getfirst(tree, fullset, &st);
int test = codetestset(compst, &st, e);
if (headfail(tree)) /* test (fail(p1)) -> L1; fail; L1: */
addinstruction(compst, IFail, 0);
else {
/* test(fail(p))-> L1; choice L1; <p>; failtwice; L1: */
int pchoice = addoffsetinst(compst, IChoice);
codegen(compst, tree, 0, NOINST, fullset);
addinstruction(compst, IFailTwice, 0);
jumptohere(compst, pchoice);
}
jumptohere(compst, test);
}
/*
** change open calls to calls, using list 'positions' to find
** correct offsets; also optimize tail calls
*/
static void correctcalls (CompileState *compst, int *positions,
int from, int to) {
int i;
Instruction *code = compst->p->code;
for (i = from; i < to; i += sizei(&code[i])) {
if (code[i].i.code == IOpenCall) {
int n = code[i].i.aux2.key; /* rule number */
int rule = positions[n]; /* rule position */
assert(rule == from || code[rule - 1].i.code == IRet);
if (code[finaltarget(code, i + 2)].i.code == IRet) /* call; ret ? */
code[i].i.code = IJmp; /* tail call */
else
code[i].i.code = ICall;
jumptothere(compst, i, rule); /* call jumps to respective rule */
}
}
assert(i == to);
}
/*
** Code for a grammar:
** call L1; jmp L2; L1: rule 1; ret; rule 2; ret; ...; L2:
*/
static void codegrammar (CompileState *compst, TTree *grammar) {
int positions[MAXRULES];
int rulenumber = 0;
TTree *rule;
int firstcall = addoffsetinst(compst, ICall); /* call initial rule */
int jumptoend = addoffsetinst(compst, IJmp); /* jump to the end */
int start = gethere(compst); /* here starts the initial rule */
jumptohere(compst, firstcall);
for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) {
TTree *r = sib1(rule);
assert(r->tag == TXInfo);
positions[rulenumber++] = gethere(compst); /* save rule position */
codegen(compst, sib1(r), 0, NOINST, fullset); /* code rule */
addinstruction(compst, IRet, 0);
}
assert(rule->tag == TTrue);
jumptohere(compst, jumptoend);
correctcalls(compst, positions, start, gethere(compst));
}
static void codecall (CompileState *compst, TTree *call) {
int c = addoffsetinst(compst, IOpenCall); /* to be corrected later */
assert(sib1(sib2(call))->tag == TXInfo);
getinstr(compst, c).i.aux2.key = sib1(sib2(call))->u.n; /* rule number */
}
/*
** Code first child of a sequence
** (second child is called in-place to allow tail call)
** Return 'tt' for second child
*/
static int codeseq1 (CompileState *compst, TTree *p1, TTree *p2,
int tt, const Charset *fl) {
if (needfollow(p1)) {
Charset fl1;
getfirst(p2, fl, &fl1); /* p1 follow is p2 first */
codegen(compst, p1, 0, tt, &fl1);
}
else /* use 'fullset' as follow */
codegen(compst, p1, 0, tt, fullset);
if (fixedlen(p1) != 0) /* can 'p1' consume anything? */
return NOINST; /* invalidate test */
else return tt; /* else 'tt' still protects sib2 */
}
/*
** Main code-generation function: dispatch to auxiliar functions
** according to kind of tree. ('needfollow' should return true
** only for consructions that use 'fl'.)
*/
static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
const Charset *fl) {
tailcall:
switch (tree->tag) {
case TChar: codechar(compst, tree->u.n, tt); break;
case TAny: addinstruction(compst, IAny, 0); break;
case TSet: codecharset(compst, tree, tt); break;
case TTrue: break;
case TFalse: addinstruction(compst, IFail, 0); break;
case TUTFR: codeutfr(compst, tree); break;
case TChoice: codechoice(compst, sib1(tree), sib2(tree), opt, fl); break;
case TRep: coderep(compst, sib1(tree), opt, fl); break;
case TBehind: codebehind(compst, tree); break;
case TNot: codenot(compst, sib1(tree)); break;
case TAnd: codeand(compst, sib1(tree), tt); break;
case TCapture: codecapture(compst, tree, tt, fl); break;
case TRunTime: coderuntime(compst, tree, tt); break;
case TGrammar: codegrammar(compst, tree); break;
case TCall: codecall(compst, tree); break;
case TSeq: {
tt = codeseq1(compst, sib1(tree), sib2(tree), tt, fl); /* code 'p1' */
/* codegen(compst, p2, opt, tt, fl); */
tree = sib2(tree); goto tailcall;
}
default: assert(0);
}
}
/*
** Optimize jumps and other jump-like instructions.
** * Update labels of instructions with labels to their final
** destinations (e.g., choice L1; ... L1: jmp L2: becomes
** choice L2)
** * Jumps to other instructions that do jumps become those
** instructions (e.g., jump to return becomes a return; jump
** to commit becomes a commit)
*/
static void peephole (CompileState *compst) {
Instruction *code = compst->p->code;
int i;
for (i = 0; i < compst->ncode; i += sizei(&code[i])) {
redo:
switch (code[i].i.code) {
case IChoice: case ICall: case ICommit: case IPartialCommit:
case IBackCommit: case ITestChar: case ITestSet:
case ITestAny: { /* instructions with labels */
jumptothere(compst, i, finallabel(code, i)); /* optimize label */
break;
}
case IJmp: {
int ft = finaltarget(code, i);
switch (code[ft].i.code) { /* jumping to what? */
case IRet: case IFail: case IFailTwice:
case IEnd: { /* instructions with unconditional implicit jumps */
code[i] = code[ft]; /* jump becomes that instruction */
code[i + 1].i.code = IEmpty; /* 'no-op' for target position */
break;
}
case ICommit: case IPartialCommit:
case IBackCommit: { /* inst. with unconditional explicit jumps */
int fft = finallabel(code, ft);
code[i] = code[ft]; /* jump becomes that instruction... */
jumptothere(compst, i, fft); /* but must correct its offset */
goto redo; /* reoptimize its label */
}
default: {
jumptothere(compst, i, ft); /* optimize label */
break;
}
}
break;
}
default: break;
}
}
assert(code[i - 1].i.code == IEnd);
}
/*
** Compile a pattern. 'size' is the size of the pattern's tree,
** which gives a hint for the size of the final code.
*/
Instruction *compile (lua_State *L, Pattern *p, uint size) {
CompileState compst;
compst.p = p; compst.ncode = 0; compst.L = L;
newcode(L, p, size/2u + 2); /* set initial size */
codegen(&compst, p->tree, 0, NOINST, fullset);
addinstruction(&compst, IEnd, 0);
realloccode(L, p, compst.ncode); /* set final size */
peephole(&compst);
return p->code;
}
/* }====================================================== */
|