1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
local data = require 'pl.data'
local List = require 'pl.List'
local array = require 'pl.array2d'
local func = require 'pl.func'
local seq = require 'pl.seq'
local stringio = require 'pl.stringio'
local open = stringio. open
local asserteq = require 'pl.test' . asserteq
local T = require 'pl.test'. tuple
--[=[
dat,err = data.read(open [[
1.0 0.1
0.2 1.3
]])
if err then print(err) end
require 'pl.pretty'.dump(dat)
os.exit(0)
--]=]
-- tab-separated data, explicit column names
local t1f = open [[
EventID Magnitude LocationX LocationY LocationZ LocationError EventDate DataFile
981124001 2.0 18988.4 10047.1 4149.7 33.8 24/11/1998 11:18:05 981124DF.AAB
981125001 0.8 19104.0 9970.4 5088.7 3.0 25/11/1998 05:44:54 981125DF.AAB
981127003 0.5 19012.5 9946.9 3831.2 46.0 27/11/1998 17:15:17 981127DF.AAD
981127005 0.6 18676.4 10606.2 3761.9 4.4 27/11/1998 17:46:36 981127DF.AAF
981127006 0.2 19109.9 9716.5 3612.0 11.8 27/11/1998 19:29:51 981127DF.AAG
]]
local t1 = data.read (t1f)
-- column_by_name returns a List
asserteq(t1:column_by_name 'Magnitude',List{2,0.8,0.5,0.6,0.2})
-- can use array.column as well
asserteq(array.column(t1,2),{2,0.8,0.5,0.6,0.2})
-- only numerical columns (deduced from first data row) are converted by default
-- can look up indices in the list fieldnames.
local EDI = t1.fieldnames:index 'EventDate'
assert(type(t1[1][EDI]) == 'string')
-- select method returns a sequence, in this case single-valued.
-- (Note that seq.copy returns a List)
asserteq(seq(t1:select 'LocationX where Magnitude > 0.5'):copy(),List{18988.4,19104,18676.4})
--[[
--a common select usage pattern:
for event,mag in t1:select 'EventID,Magnitude sort by Magnitude desc' do
print(event,mag)
end
--]]
-- space-separated, but with last field containing spaces.
local t2f = open [[
USER PID %MEM %CPU COMMAND
sdonovan 2333 0.3 0.1 background --n=2
root 2332 0.4 0.2 fred --start=yes
root 2338 0.2 0.1 backyard-process
]]
local t2,err = data.read(t2f,{last_field_collect=true})
if not t2 then return print (err) end
-- the last_field_collect option is useful with space-delimited data where the last
-- field may contain spaces. Otherwise, a record count mismatch should be an error!
local lt2 = List(t2[2])
asserteq(lt2:join ',','root,2332,0.4,0.2,fred --start=yes')
-- fieldnames are converted into valid identifiers by substituting _
-- (we do this to make select queries parseable by Lua)
asserteq(t2.fieldnames,List{'USER','PID','_MEM','_CPU','COMMAND'})
-- select queries are NOT SQL so remember to use == ! (and no 'between' operator, sorry)
--s,err = t2:select('_MEM where USER="root"')
--assert(err == [[[string "tmp"]:9: unexpected symbol near '=']])
local s = t2:select('_MEM where USER=="root"')
assert(s() == 0.4)
assert(s() == 0.2)
assert(s() == nil)
-- CSV, Excel style. Double-quoted fields are allowed, and they may contain commas!
local t3f = open [[
"Department Name","Employee ID",Project,"Hours Booked"
sales,1231,overhead,4
sales,1255,overhead,3
engineering,1501,development,5
engineering,1501,maintenance,3
engineering,1433,maintenance,10
]]
local t3 = data.read(t3f,{csv=true})
-- although fieldnames are turned in valid Lua identifiers, there is always `original_fieldnames`
asserteq(t3.fieldnames,List{'Department_Name','Employee_ID','Project','Hours_Booked'})
asserteq(t3.original_fieldnames,List{'Department Name','Employee ID','Project','Hours Booked'})
-- a common operation is to select using a given list of columns, and each row
-- on some explicit condition. The select() method can take a table with these
-- parameters
local keepcols = {'Employee_ID','Hours_Booked'}
local q = t3:select { fields = keepcols,
where = function(row) return row[1]=='engineering' end
}
asserteq(seq.copy2(q),{{1501,5},{1501,3},{1433,10}})
-- another pattern is doing a select to restrict rows & columns, process some
-- fields and write out the modified rows.
local outf = stringio.create()
local names = {[1501]='don',[1433]='dilbert'}
t3:write_row (outf,{'Employee','Hours_Booked'})
q = t3:select_row {fields=keepcols,where=func.Eq(func._1[1],'engineering')}
for row in q do
row[1] = names[row[1]]
t3:write_row(outf,row)
end
asserteq(outf:value(),
[[
Employee,Hours_Booked
don,5
don,3
dilbert,10
]])
-- data may not always have column headers. When creating a data object
-- from a two-dimensional array, may specify the fieldnames, as a list or a string.
-- The delimiter is deduced from the fieldname string, so a string just containing
-- the delimiter will set it, and the fieldnames will be empty.
local dat = List()
local row = List.range(1,10)
for i = 1,10 do
dat:append(row:map('*',i))
end
dat = data.new(dat,',')
local out = stringio.create()
dat:write(out,',')
asserteq(out:value(), [[
1,2,3,4,5,6,7,8,9,10
2,4,6,8,10,12,14,16,18,20
3,6,9,12,15,18,21,24,27,30
4,8,12,16,20,24,28,32,36,40
5,10,15,20,25,30,35,40,45,50
6,12,18,24,30,36,42,48,54,60
7,14,21,28,35,42,49,56,63,70
8,16,24,32,40,48,56,64,72,80
9,18,27,36,45,54,63,72,81,90
10,20,30,40,50,60,70,80,90,100
]])
-- you can always use numerical field indices, AWK-style;
-- note how the copy_select method gives you a data object instead of an
-- iterator over the fields
local res = dat:copy_select '$1,$3 where $1 > 5'
local L = List
asserteq(L(res),L{
L{6, 18},
L{7,21},
L{8,24},
L{9,27},
L{10,30},
})
-- the column_by_name method may take a fieldname or an index
asserteq(dat:column_by_name(2), L{2,4,6,8,10,12,14,16,18,20})
-- the field list may contain expressions or even constants
local q = dat:select '$3,2*$4 where $1 == 8'
asserteq(T(q()),T(24,64))
dat,err = data.read(open [[
1.0 0.1
0.2 1.3
]])
if err then print(err) end
-- if a method cannot be found, then we look up in array2d
-- array2d.flatten(t) makes a 1D list out of a 2D array,
-- and then List.minmax() gets the extrema.
asserteq(T(dat:flatten():minmax()),T(0.1,1.3))
local f = open [[
Time Message
1266840760 +# EE7C0600006F0D00C00F06010302054000000308010A00002B00407B00
1266840760 closure data 0.000000 1972 1972 0
1266840760 ++ 1266840760 EE 1
1266840760 +# EE7C0600006F0D00C00F06010302054000000408020A00002B00407B00
1266840764 closure data 0.000000 1972 1972 0
1266840764 ++ 1266840764 EE 1
1266840764 +# EE7C0600006F0D00C00F06010302054000000508030A00002B00407B00
1266840768 duplicate?
1266840768 +# EE7C0600006F0D00C00F06010302054000000508030A00002B00407B00
1266840768 closure data 0.000000 1972 1972 0
]]
-- the `convert` option provides custom converters for each specified column.
-- Here we convert the timestamps into Date objects and collect everything
-- else into one field
local Date = require 'pl.Date'
local function date_convert (ds)
return Date(tonumber(ds))
end
local d = data.read(f,{convert={[1]=date_convert},last_field_collect=true})
asserteq(#d[1],2)
asserteq(d[2][1]:year(),2010)
d = {{1,2,3},{10,20,30}}
out = stringio.create()
data.write(d,out,{'A','B','C'},',')
asserteq(out:value(),
[[
A,B,C
1,2,3
10,20,30
]])
out = stringio.create()
d.fieldnames = {'A','B','C'}
data.write(d,out)
asserteq(out:value(),
[[
A B C
1 2 3
10 20 30
]])
d = data.read(stringio.open 'One,Two\n1,\n,20\n',{csv=true})
asserteq(d,{
{1,0},{0,20},
original_fieldnames={"One","Two"},fieldnames={"One","Two"},delim=","
})
|