1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
-- additional methods for Storage
local Storage = {}
-- additional methods for Tensor
local Tensor = {}
-- types
local types = {'Byte', 'Char', 'Short', 'Int', 'Long', 'Float', 'Half', 'Double'}
-- Lua 5.2 compatibility
local log10 = math.log10 or function(x) return math.log(x, 10) end
-- tostring() functions for Tensor and Storage
local function Storage__printformat(self)
if self:size() == 0 then
return "", nil, 0
end
local intMode = true
local type = torch.typename(self)
-- if type == 'torch.FloatStorage' or type == 'torch.DoubleStorage' then
for i=1,self:size() do
if self[i] ~= math.ceil(self[i]) then
intMode = false
break
end
end
-- end
local tensor = torch.DoubleTensor(torch.DoubleStorage(self:size()):copy(self), 1, self:size()):abs()
local expMin = tensor:min()
if expMin ~= 0 then
expMin = math.floor(log10(expMin)) + 1
else
expMin = 1
end
local expMax = tensor:max()
if expMax ~= 0 then
expMax = math.floor(log10(expMax)) + 1
else
expMax = 1
end
local format
local scale
local sz
if intMode then
if expMax > 9 then
format = "%11.4e"
sz = 11
else
format = "%SZd"
sz = expMax + 1
end
else
if expMax-expMin > 4 then
format = "%SZ.4e"
sz = 11
if math.abs(expMax) > 99 or math.abs(expMin) > 99 then
sz = sz + 1
end
else
if expMax > 5 or expMax < 0 then
format = "%SZ.4f"
sz = 7
scale = math.pow(10, expMax-1)
else
format = "%SZ.4f"
if expMax == 0 then
sz = 7
else
sz = expMax+6
end
end
end
end
format = string.gsub(format, 'SZ', sz)
if scale == 1 then
scale = nil
end
return format, scale, sz
end
function Storage.__tostring__(self)
local strt = {}
local format,scale = Storage__printformat(self)
if format:sub(2,4) == 'nan' then format = '%f' end
if scale then
table.insert(strt, string.format('%g', scale) .. ' *\n')
for i = 1,self:size() do
table.insert(strt, string.format(format, self[i]/scale) .. '\n')
end
else
for i = 1,self:size() do
table.insert(strt, string.format(format, self[i]) .. '\n')
end
end
table.insert(strt, '[' .. torch.typename(self) .. ' of size ' .. self:size() .. ']\n')
local str = table.concat(strt)
return str
end
for _,type in ipairs(types) do
local metatable = torch.getmetatable('torch.' .. type .. 'Storage')
for funcname, func in pairs(Storage) do
rawset(metatable, funcname, func)
end
end
local function Tensor__printMatrix(self, indent)
local format,scale,sz = Storage__printformat(self:storage())
if format:sub(2,4) == 'nan' then format = '%f' end
-- print('format = ' .. format)
scale = scale or 1
indent = indent or ''
local strt = {indent}
local nColumnPerLine = math.floor((80-#indent)/(sz+1))
-- print('sz = ' .. sz .. ' and nColumnPerLine = ' .. nColumnPerLine)
local firstColumn = 1
local lastColumn = -1
while firstColumn <= self:size(2) do
if firstColumn + nColumnPerLine - 1 <= self:size(2) then
lastColumn = firstColumn + nColumnPerLine - 1
else
lastColumn = self:size(2)
end
if nColumnPerLine < self:size(2) then
if firstColumn ~= 1 then
table.insert(strt, '\n')
end
table.insert(strt, 'Columns ' .. firstColumn .. ' to ' .. lastColumn .. '\n' .. indent)
end
if scale ~= 1 then
table.insert(strt, string.format('%g', scale) .. ' *\n ' .. indent)
end
for l=1,self:size(1) do
local row = self:select(1, l)
for c=firstColumn,lastColumn do
table.insert(strt, string.format(format, row[c]/scale))
if c == lastColumn then
table.insert(strt, '\n')
if l~=self:size(1) then
if scale ~= 1 then
table.insert(strt, indent .. ' ')
else
table.insert(strt, indent)
end
end
else
table.insert(strt, ' ')
end
end
end
firstColumn = lastColumn + 1
end
local str = table.concat(strt)
return str
end
local function Tensor__printTensor(self)
local counter = torch.LongStorage(self:nDimension()-2)
local strt = {''}
local finished
counter:fill(1)
counter[1] = 0
while true do
for i=1,self:nDimension()-2 do
counter[i] = counter[i] + 1
if counter[i] > self:size(i) then
if i == self:nDimension()-2 then
finished = true
break
end
counter[i] = 1
else
break
end
end
if finished then
break
end
-- print(counter)
if #strt > 1 then
table.insert(strt, '\n')
end
table.insert(strt, '(')
local tensor = self
for i=1,self:nDimension()-2 do
tensor = tensor:select(1, counter[i])
table.insert(strt, counter[i] .. ',')
end
table.insert(strt, '.,.) = \n')
table.insert(strt, Tensor__printMatrix(tensor, ' '))
end
return table.concat(strt)
end
function Tensor.__tostring__(self)
local strt = {''}
if self:nDimension() == 0 then
table.insert(strt, '[' .. torch.typename(self) .. ' with no dimension]\n')
else
local tensor = torch.DoubleTensor():resize(self:size()):copy(self)
if tensor:nDimension() == 1 then
local format,scale,sz = Storage__printformat(tensor:storage())
if format:sub(2,4) == 'nan' then format = '%f' end
if scale then
table.insert(strt, string.format('%g', scale) .. ' *\n')
for i = 1,tensor:size(1) do
table.insert(strt, string.format(format, tensor[i]/scale) .. '\n')
end
else
for i = 1,tensor:size(1) do
table.insert(strt, string.format(format, tensor[i]) .. '\n')
end
end
table.insert(strt, '[' .. torch.typename(self) .. ' of size ' .. tensor:size(1) .. ']\n')
elseif tensor:nDimension() == 2 then
table.insert(strt, Tensor__printMatrix(tensor))
table.insert(strt, '[' .. torch.typename(self) .. ' of size ' .. tensor:size(1) .. 'x' .. tensor:size(2) .. ']\n')
else
table.insert(strt, Tensor__printTensor(tensor))
table.insert(strt, '[' .. torch.typename(self) .. ' of size ')
for i=1,tensor:nDimension() do
table.insert(strt, tensor:size(i))
if i ~= tensor:nDimension() then
table.insert(strt, 'x')
end
end
table.insert(strt, ']\n')
end
end
return table.concat(strt)
end
function Tensor.type(self,type)
local current = torch.typename(self)
if not type then return current end
if type ~= current then
local new = torch.getmetatable(type).new()
if self:nElement() > 0 then
new:resize(self:size()):copy(self)
end
return new
else
return self
end
end
function Tensor.typeAs(self,tensor)
return self:type(tensor:type())
end
function Tensor.byte(self)
return self:type('torch.ByteTensor')
end
function Tensor.char(self)
return self:type('torch.CharTensor')
end
function Tensor.short(self)
return self:type('torch.ShortTensor')
end
function Tensor.int(self)
return self:type('torch.IntTensor')
end
function Tensor.long(self)
return self:type('torch.LongTensor')
end
function Tensor.float(self)
return self:type('torch.FloatTensor')
end
function Tensor.double(self)
return self:type('torch.DoubleTensor')
end
function Tensor.half(self)
return self:type('torch.HalfTensor')
end
function Tensor.real(self)
return self:type(torch.getdefaulttensortype())
end
function Tensor.expand(result,tensor,...)
-- get sizes
local sizes = {...}
local t = torch.type(tensor)
if (t == 'number' or t == 'torch.LongStorage') then
table.insert(sizes,1,tensor)
tensor = result
result = tensor.new()
end
-- check type
local size
if torch.type(sizes[1])=='torch.LongStorage' then
size = sizes[1]
else
size = torch.LongStorage(#sizes)
for i,s in ipairs(sizes) do
size[i] = s
end
end
-- get dimensions
local tensor_dim = tensor:dim()
local tensor_stride = tensor:stride()
local tensor_size = tensor:size()
-- check nb of dimensions
if #size ~= tensor:dim() then
error('the number of dimensions provided must equal tensor:dim()')
end
-- create a new geometry for tensor:
for i = 1,tensor_dim do
if tensor_size[i] == 1 then
tensor_size[i] = size[i]
tensor_stride[i] = 0
elseif tensor_size[i] ~= size[i] then
error('incorrect size: only supporting singleton expansion (size=1)')
end
end
-- create new view, with singleton expansion:
result:set(tensor:storage(), tensor:storageOffset(),
tensor_size, tensor_stride)
return result
end
torch.expand = Tensor.expand
function Tensor.expandAs(result,tensor,template)
if template then
return result:expand(tensor,template:size())
end
return result:expand(tensor:size())
end
torch.expandAs = Tensor.expandAs
function Tensor.repeatTensor(result,tensor,...)
-- get sizes
local sizes = {...}
local t = torch.type(tensor)
if (t == 'number' or t == 'torch.LongStorage') then
table.insert(sizes,1,tensor)
tensor = result
result = tensor.new()
end
-- if not contiguous, then force the tensor to be contiguous
if not tensor:isContiguous() then tensor = tensor:clone() end
-- check type
local size
if torch.type(sizes[1])=='torch.LongStorage' then
size = sizes[1]
else
size = torch.LongStorage(#sizes)
for i,s in ipairs(sizes) do
size[i] = s
end
end
if size:size() < tensor:dim() then
error('Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor')
end
local xtensor = tensor.new():set(tensor)
local xsize = xtensor:size():totable()
for i=1,size:size()-tensor:dim() do
table.insert(xsize,1,1)
end
size = torch.DoubleTensor(xsize):cmul(torch.DoubleTensor(size:totable())):long():storage()
xtensor:resize(torch.LongStorage(xsize))
result:resize(size)
local urtensor = result.new(result)
for i=1,xtensor:dim() do
urtensor = urtensor:unfold(i,xtensor:size(i),xtensor:size(i))
end
for i=1,urtensor:dim()-xtensor:dim() do
table.insert(xsize,1,1)
end
xtensor:resize(torch.LongStorage(xsize))
local xxtensor = xtensor:expandAs(urtensor)
urtensor:copy(xxtensor)
return result
end
torch.repeatTensor = Tensor.repeatTensor
--- One of the size elements can be -1,
--- a new LongStorage is then returned.
--- The length of the unspecified dimension
--- is inferred from the number of remaining elements.
local function specifyFully(size, nElements)
local nCoveredElements = 1
local remainingDim = nil
local sizes = size:totable()
for i = 1, #sizes do
local wantedDimSize = sizes[i]
if wantedDimSize == -1 then
if remainingDim then
error("Only one of torch.view dimensions can be -1.")
end
remainingDim = i
else
nCoveredElements = nCoveredElements * wantedDimSize
end
end
if not remainingDim then
return size
end
assert(nElements % nCoveredElements == 0, "The number of covered elements is not a multiple of all elements.")
local copy = torch.LongStorage(sizes)
copy[remainingDim] = nElements / nCoveredElements
return copy
end
-- TODO : This should be implemented in TH and and wrapped.
function Tensor.view(result, src, ...)
local size = ...
local view, tensor
local function istensor(tensor)
return torch.typename(tensor) and torch.typename(tensor):find('torch.*Tensor')
end
local function isstorage(storage)
return torch.typename(storage) and torch.typename(storage) == 'torch.LongStorage'
end
if istensor(result) and istensor(src) and type(size) == 'number' then
size = torch.LongStorage{...}
view = result
tensor = src
elseif istensor(result) and istensor(src) and isstorage(size) then
size = size
view = result
tensor = src
elseif istensor(result) and isstorage(src) and size == nil then
size = src
tensor = result
view = tensor.new()
elseif istensor(result) and type(src) == 'number' then
size = {...}
table.insert(size,1,src)
size = torch.LongStorage(size)
tensor = result
view = tensor.new()
else
local t1 = 'torch.Tensor, torch.Tensor, number [, number ]*'
local t2 = 'torch.Tensor, torch.Tensor, torch.LongStorage'
local t3 = 'torch.Tensor, torch.LongStorage'
local t4 = 'torch.Tensor, number [, number ]*'
error(string.format('torch.view, expected (%s) or\n (%s) or\n (%s)\n or (%s)', t1, t2, t3, t4))
end
local origNElement = tensor:nElement()
size = specifyFully(size, origNElement)
assert(tensor:isContiguous(), "expecting a contiguous tensor")
view:set(tensor:storage(), tensor:storageOffset(), size)
if view:nElement() ~= origNElement then
local inputSize = table.concat(tensor:size():totable(), "x")
local outputSize = table.concat(size:totable(), "x")
error(string.format("Wrong size for view. Input size: %s. Output size: %s",
inputSize, outputSize))
end
return view
end
torch.view = Tensor.view
function Tensor.viewAs(result, src, template)
if template and torch.typename(template) then
return result:view(src, template:size())
elseif template == nil then
template = src
src = result
result = src.new()
return result:view(src, template:size())
else
local t1 = 'torch.Tensor, torch.Tensor, torch.LongStorage'
local t2 = 'torch.Tensor, torch.LongStorage'
error(string.format('expecting (%s) or (%s)', t1, t2))
end
end
torch.viewAs = Tensor.viewAs
function Tensor.split(result, tensor, splitSize, dim)
if torch.type(result) ~= 'table' then
dim = splitSize
splitSize = tensor
tensor = result
result = {}
else
-- empty existing result table before using it
for k,v in pairs(result) do
result[k] = nil
end
end
dim = dim or 1
local start = 1
while start <= tensor:size(dim) do
local size = math.min(splitSize, tensor:size(dim) - start + 1)
local split = tensor:narrow(dim, start, size)
table.insert(result, split)
start = start + size
end
return result
end
torch.split = Tensor.split
function Tensor.chunk(result, tensor, nChunk, dim)
if torch.type(result) ~= 'table' then
dim = nChunk
nChunk = tensor
tensor = result
result = {}
end
dim = dim or 1
local splitSize = math.ceil(tensor:size(dim)/nChunk)
return torch.split(result, tensor, splitSize, dim)
end
torch.chunk = Tensor.chunk
function Tensor.totable(tensor)
local result = {}
local dim = tensor:dim()
if dim == 1 then
tensor:apply(function(i) table.insert(result, i) end)
elseif dim > 0 then
for i = 1, tensor:size(1) do
table.insert(result, tensor[i]:totable())
end
end
return result
end
torch.totable = Tensor.totable
function Tensor.permute(tensor, ...)
local perm = {...}
local nDims = tensor:dim()
assert(#perm == nDims, 'Invalid permutation')
local j
for i, p in ipairs(perm) do
if p ~= i and p ~= 0 then
j = i
repeat
assert(0 < perm[j] and perm[j] <= nDims, 'Invalid permutation')
tensor = tensor:transpose(j, perm[j])
j, perm[j] = perm[j], 0
until perm[j] == i
perm[j] = j
end
end
return tensor
end
torch.permute = Tensor.permute
for _,type in ipairs(types) do
local metatable = torch.getmetatable('torch.' .. type .. 'Tensor')
for funcname, func in pairs(Tensor) do
if funcname ~= 'totable' or type ~='Half' then
rawset(metatable, funcname, func)
else
local function Tensor__totable(self)
local host_tensor = self:float()
return self:float():totable()
end
rawset(torch.getmetatable('torch.HalfTensor'), 'totable', Tensor__totable)
end
end
end
|