1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
#include <vector>
#include <iostream>
#include <fstream>
#include <cmath>
#include <HdrCreation/weights.h>
using namespace std;
using namespace libhdr::fusion;
static const size_t SAMPLES = WeightFunction::NUM_BINS;
// OLD STUFF
#define MIN_WEIGHT 1e-3
void exposure_weights_icip06( float* w, int M, int Mmin, int Mmax )
{
for( int m=0 ; m<M ; m++ )
if( m<Mmin || m>Mmax )
w[m] = 0.0f;
else
w[m]=1.0f-pow( ( (2.0f*float(m-Mmin)/float(Mmax-Mmin)) - 1.0f), 12.0f);
}
void weightsGauss( float* w, int M, int Mmin, int Mmax, float sigma = 8.0f)
{
float mid = Mmin + (Mmax-Mmin)/2.0f - 0.5f;
float mid2 = (mid-Mmin) * (mid-Mmin);
for( int m=0 ; m<M ; m++ ) {
if ( m<Mmin || m>Mmax ) {
w[m] = 0.0f;
} else {
// gkrawczyk: that's not really a gaussian, but equation is
// taken from Robertson02 paper.
float weight = exp( -sigma * (m-mid) * (m-mid) / mid2 );
if( weight < MIN_WEIGHT ) // ignore very low weights
w[m] = 0.0f;
else
w[m] = weight;
}
}
}
void weights_triangle( float* w, int M /*, int Mmin, int Mmax*/ )
{
for(int i=0;i<int(float(M)/2.0f);i++) {
w[i]=i/ (float(M)/2.0f);
if (w[i]<0.06f)w[i]=0;
}
for(int i=int(float(M)/2.0f);i<M;i++) {
w[i]=(M-1-i)/(float(M)/2.0f);
if (w[i]<0.06f)w[i]=0;
}
// for( int m=0 ; m<M ; m++ )
// if( m<Mmin || m>Mmax )
// w[m] = 0.0f;
// else
// {
// if ( m<int(Mmin+ (Mmax-Mmin)/2.0f +1) )
// w[m]=(m-Mmin)/float(Mmin+(Mmax-Mmin)/2.0f);
// else
// w[m]=( -m+Mmin+((Mmax-Mmin)) )/float(Mmin+(Mmax-Mmin)/2.0f);
// }
// if (w[i]<0.06f)w[i]=0;
}
void printTriangular()
{
WeightFunction weights(WEIGHT_TRIANGULAR);
vector<float> data(SAMPLES);
ofstream outputFile("data_triangular.dat");
weights_triangle(data.data(), SAMPLES);
for (size_t idx = 0; idx < SAMPLES; ++idx)
{
float w = weights.getWeight(((float)idx)/SAMPLES);
outputFile << idx << " " << data[idx] << " "
<< w << " " << abs(data[idx] - w)
<< "\n";
}
outputFile.close();
}
void printGaussian()
{
WeightFunction weights(WEIGHT_GAUSSIAN);
vector<float> data(SAMPLES);
ofstream outputFile("data_gauss.dat");
weightsGauss(data.data(), SAMPLES, 0, SAMPLES);
for (size_t idx = 0; idx < SAMPLES; ++idx)
{
float w = weights.getWeight(((float)idx)/SAMPLES);
outputFile << idx << " " << data[idx] << " "
<< w << " " << abs(data[idx] - w)
<< "\n";
}
outputFile.close();
}
void printPlateau()
{
WeightFunction weights(WEIGHT_PLATEAU);
vector<float> data(SAMPLES);
ofstream outputFile("data_plateau.dat");
exposure_weights_icip06(data.data(), SAMPLES, 0, SAMPLES);
for (size_t idx = 0; idx < SAMPLES; ++idx)
{
float w = weights.getWeight(((float)idx)/SAMPLES);
outputFile << idx << " " << data[idx] << " "
<< w << " " << abs(data[idx] - w)
<< "\n";
}
outputFile.close();
}
int main() // int argc, char** argv)
{
printTriangular();
printGaussian();
printPlateau();
return 0;
}
|