File: l_bp.py

package info (click to toggle)
lumpy-sv 0.3.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 296,072 kB
  • sloc: cpp: 9,908; python: 1,768; sh: 1,384; makefile: 365; ansic: 322; perl: 58
file content (402 lines) | stat: -rw-r--r-- 10,926 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import sys
import re

def find_all(a_str, sub):
    start = 0
    while True:
        start = a_str.find(sub, start)
        if start == -1: return
        yield start
        start += len(sub) # use start += 1 to find overlapping matches

def parse_vcf(vcf_file_name, vcf_lines, vcf_headers, add_sname=True):
    header = ''
    samples = ''

    f = open(vcf_file_name, 'r')

    for l in f:
        if l[0] == '#':
            if l[1] != '#':
                samples = l.rstrip().split('\t')[9:]
            else:
                # ignore fileDate
                if l[:10] == '##fileDate':
                    continue
                if l not in vcf_headers:
                    vcf_headers.append(l)
        else:
            A = l.split('\t')
            if not 'SECONDARY' in A[7]:

                if add_sname and (samples != ''):
                    A[7] += ';' + 'SNAME=' + ','.join(samples)
                    l = '\t'.join(A)


                if 'SVTYPE=BND' in A[7]:
                    m = re.search(r"(\[|\])(.*)(\[|\])",A[4])
                    o_chr,o_pos = m.group(2).split(':')

                    if (o_chr == A[0]) and (('--:' in A[7]) != ('++' in A[7])):
                        neg_s = A[7].find('--:')
                        pos_s = A[7].find('++:')

                        if neg_s > 0:
                            neg_e = neg_s + A[7][neg_s:].find(';')
                            pre=A[7][:neg_s]
                            mid=A[7][neg_s:neg_e]
                            post=A[7][neg_e:]
                            A[7] = pre + '++:0,' + mid + post
                        else:
                            pos_e = pos_s + A[7][pos_s:].find(';')
                            pre=A[7][:pos_s]
                            mid=A[7][pos_s:pos_e]
                            post=A[7][pos_e:]
                            A[7] = pre + mid + ',--:0' + post

                        A[7] = 'SVTYPE=INV' + A[7][10:] + ';END=' + o_pos
                        A[4] = '<INV>'
                        vcf_lines.append('\t'.join(A))
                    else:
                        vcf_lines.append(l)
                else:
                    vcf_lines.append(l)

    return samples

def split_v(l):
    A = l.split('\t')
    m = to_map(A[7])

    chr_l = A[0]
    pos_l = int(A[1])

    chr_r = A[0]
    pos_r = int(A[1])
    if m['SVTYPE'] == 'BND':
        sep = '['
        if not sep in A[4]:
            sep = ']'
        s,e = [x for x in find_all(A[4],sep)]
        chr_r,pos_r = A[4][s+1:e].split(':')
        m['END'] = pos_r
        pos_r = int(pos_r)
    else:
        pos_r = int(m['END'])

    start_l = pos_l + int(m['CIPOS'].split(',')[0])
    end_l = pos_l + int(m['CIPOS'].split(',')[1])

    start_r = pos_r + int(m['CIEND'].split(',')[0])
    end_r = pos_r + int(m['CIEND'].split(',')[1])

    strands = m['STRANDS']

    return [m['SVTYPE'],chr_l,chr_r,strands,start_l,end_l,start_r,end_r,m]

def to_map(s):
    m = {}
    for k_v in s.split(';'):
        A = k_v.split('=')
        if len(A) > 1:
            m[A[0]] = A[1]
        else:
            m[A[0]] = None

    return m

def vcf_line_cmp(l1, l2):
    v1 = split_v(l1)
    v2 = split_v(l2)

    v1[3] = v1[3][:2]
    v2[3] = v2[3][:2]

    for i in range(len(v1)-1):
        if v1[i] != v2[i]:
            return cmp(v1[i],v2[i])
    return 0

def header_line_cmp(l1, l2):
    order = ['##source', \
             '##INFO', \
             '##ALT', \
             '##FORMAT',\
             '##SAMPLE']

    # make sure ##fileformat is first
    if l1[:12] == '##fileformat':
        return -1

    if l2[:12] == '##fileformat':
        return 1

    # make sure #CHROM ... is last
    if l1[1] != '#':
        return 1
    elif l2[1] != '#':
        return -1

    if l1.find('=') == -1:
        return -1
    if l2.find('=') == -1:
        return 1

    h1 = l1[:l1.find('=')]
    h2 = l2[:l2.find('=')]
    if h1 not in order:
        return -1
    if h2 not in order:
        return 1
    return cmp(order.index(h1),order.index(h2))

class breakpoint:
    chr_l = ''
    start_l = 0
    end_l = 0
    p_l = []

    chr_r = ''
    start_r = 0
    end_r = 0
    p_r = []

    sv_type = ''

    strands = ''

    l = ''

    def __init__(self,
                 l,
                 percent_slop=0,
                 fixed_slop=0):
        self.l = l

        [self.sv_type,\
        self.chr_l, \
        self.chr_r,\
        self.strands,
        self.start_l,\
        self.end_l,\
        self.start_r, \
        self.end_r,
        m] = split_v(l)

        self.p_l = [float(x) for x in m['PRPOS'].split(',')]
        self.p_r = [float(x) for x in m['PREND'].split(',')]

        slop_prob = 1e-100
        if ((percent_slop > 0) or (fixed_slop > 0)):

            l_slop = int(max(percent_slop*(self.end_l-self.start_l),fixed_slop))
            r_slop = int(max(percent_slop*(self.end_r-self.start_r),fixed_slop))

            # pad each interval with slop_prob on each side.
            self.start_l = self.start_l-l_slop
            self.end_l = self.end_l+l_slop
            new_p_l = [slop_prob] * l_slop + self.p_l + [slop_prob] * l_slop

            self.start_r = self.start_r-r_slop
            self.end_r = self.end_r+r_slop
            new_p_r = [slop_prob] * r_slop + self.p_r + [slop_prob] * r_slop

            # chew off overhang if self.start_l or self.start_r less than 0
            if self.start_l < 0:
                new_p_l = new_p_l[-self.start_l:]
                self.start_l = 0
            if self.start_r < 0:
                new_p_r = new_p_r[-self.start_r:]
                self.start_r = 0

            # normalize so each probability curve sums to 1.
            sum_p_l = sum(new_p_l)
            self.p_l = [float(x)/sum_p_l for x in new_p_l]
            sum_p_r = sum(new_p_r)
            self.p_r = [float(x)/sum_p_r for x in new_p_r]

            # old_l = float(self.end_l - self.start_l + 1)

            # self.start_l = max(0,self.start_l-l_slop)
            # self.end_l = self.end_l+l_slop

            # new_l = float(self.end_l - self.start_l + 1)

            # new_p_l = []
            # for i in range(self.end_l-self.start_l+1):
            #     p = i/new_l
            #     old_i = int(p*old_l)
            #     new_p_l.append(self.p_l[old_i])
            # sum_p_l = sum(new_p_l)
            # self.p_l = [float(x)/sum_p_l for x in new_p_l]

            # old_r = float(self.end_r - self.start_r + 1)

            # self.start_r = max(0,self.start_r-r_slop)
            # self.end_r = self.end_r+r_slop

            # new_r = float(self.end_r - self.start_r + 1)

            # new_p_r = []
            # for i in range(self.end_r-self.start_r+1):
            #     p = float(i)/new_r
            #     old_i = int(p*old_r)
            #     new_p_r.append(self.p_r[old_i])
            # sum_p_r = max(1,sum(new_p_r))
            # self.p_r = [float(x)/sum_p_r for x in new_p_r]

    def __str__(self):
        return '\t'.join([str(x) for x in [self.chr_l, \
                                           self.start_l,\
                                           self.end_l,\
                                           self.chr_r,\
                                           self.start_r, \
                                           self.end_r,
                                           self.sv_type,\
                                           self.strands,\
                                           self.p_l,
                                           self.p_r]])
    def ovl(self, b):
        if (self.chr_l != b.chr_l) or \
            (self.chr_r != b.chr_r) or \
            (self.sv_type != b.sv_type):
            return 0
        #get left common interval
        c_start_l, c_end_l = [max(self.start_l, b.start_l), \
                              min(self.end_l, b.end_l)]
        #get right common interval
        c_start_r, c_end_r = [max(self.start_r, b.start_r), \
                              min(self.end_r, b.end_r)]

        c_l_len = c_end_l - c_start_l + 1
        c_r_len = c_end_r - c_start_r + 1

        if (c_l_len < 1) or (c_r_len < 1):
            return 0

        self_start_off_l = c_start_l - self.start_l
        b_start_off_l = c_start_l - b.start_l

        self_start_off_r = c_start_r - self.start_r
        b_start_off_r = c_start_r - b.start_r

        ovl_l = 0
        for i in range(c_l_len):
            ovl_l += min(self.p_l[i+self_start_off_l], b.p_l[i+b_start_off_l])

        ovl_r = 0
        for i in range(c_r_len):
            ovl_r += min(self.p_r[i+self_start_off_r], b.p_r[i+b_start_off_r])

        return ovl_l * ovl_r

def trim(A):
    clip_start = 0
    for i in range(len(A)):
        if A[i] == 0:
            clip_start += 1
        else:
            break
    clip_end = 0
    for i in range(len(A)-1,-1,-1):
        if A[i] == 0:
            clip_end += 1
        else:
            break
    return [clip_start, clip_end]


# I has 3 components [[start],[end],[p array]]
def align_intervals(I):
    start = -1
    end = -1
    new_I = []

    START = 0
    END = 1
    P = 2

    # find ends
    for i in I:
        if start == -1:
            start = i[START]
            end = i[END]
        else:
            if i[START] < start:
                start = i[START]

            if i[END] > end:
                end = i[END]

    for i in I:
        new_i = i[P]

        if i[START] > start:
            n = i[START] - start
            new_i = [0]*n + new_i

        if i[END] < end:
            n = end - i[END]
            new_i = new_i + [0]*n

        new_I.append(new_i)

    return [start, end, new_I]


class node:
    b = None
    color = -1
    edges = None
    def __init__(self, b):
        self.b = b
        self.color = -1
        self.edges = []

def connect(G, B, t):
    #first we need to add all of the elements in B to the graph

    # each node in the graph has 3 elements
    # 0: breakpoint
    # 1: color
    # 2: list of edges
    #    each edge has 2 elements
    #    0: correspondined node id in G
    #    1: weight (ovl score)

    b_ids = []

    for b in B:
        next_id = len(G)
        b_ids.append(next_id)
        #G[next_id] = [b, -1, []]
        G[next_id] = node(b)

    for i in range(len(B)):
        for j in range(len(B)):
            if i != j:
                ovl = B[i].ovl(B[j])
                if ovl > t:
                    #G[b_ids[i]][2].append([b_ids[j], ovl])
                    G[b_ids[i]].edges.append([b_ids[j], ovl])

def bron_kerbosch(G, R, P, X):
    if (len(P) == 0) and (len(X) == 0):
        yield R
    for v in P:
        V = set([v])
        N = set([g[0] for g in G[v].edges])

        for r in bron_kerbosch(G, \
                               R.union(V), \
                               P.intersection(N),
                               X.intersection(N)):
            yield r

        P = P - V
        X = X.union(V)