File: LutefiskGetCID.c

package info (click to toggle)
lutefisk 1.0.7%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 3,380 kB
  • sloc: ansic: 24,297; makefile: 16; sh: 15
file content (4615 lines) | stat: -rw-r--r-- 167,279 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
/*********************************************************************************************
Lutefisk is software for de novo sequencing of peptides from tandem mass spectra.
Copyright (C) 1995  Richard S. Johnson

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

Contact:

Richard S Johnson
4650 Forest Ave SE
Mercer Island, WA 98040

jsrichar@alum.mit.edu
*********************************************************************************************/

/* ANSI Headers */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

/* Lutefisk Headers */
#include "LutefiskPrototypes.h"
#include "LutefiskDefinitions.h"
#include "ListRoutines.h"

/* Function prototypes */
tMSDataList *ReadFinniganFile(char *filename);
tMSDataList *ReadFinniganFile(char *filename) {
        printf("That would be nice, wouldn't it.\nNative file reading not implimented.\n");
        return NULL;
        exit(1);
}
/*    Declare pointers to a struct that is global only within LutefiskGetCID.c.    */
static struct MSData *gGroupingPtr;
static struct MSData *gLastDataPtr;

/*Definitions for this file*/
#define MIN_NUM_IONS 5  /*Minimum number of ions after processing in GetCID*/
#define MAX_ION_MASS 3000       /*Ions greater than this are deemed too high to not be a mistake*/
#define MIN_HIGHMASS_INT_RATIO 0.05     /*Ratio of high mass intensity over total intensity*/
#define HIGH_MASS_RATIO 0.95    /*Ions are counted until this % of high mass ion intensity is reached*/
#define LCQ_INT_SUM_CUTOFF 500  /*Cutoff for good intensity total for LCQ data*/
#define QTOF_INT_SUM_CUTOFF     140  /*Cutoff for good intensity total for Qtof data*/
#define MAX_HIGH_MASS 100       /*Max number of ions greater than precursor*/
#define MAX_MASS 4000   /*Peptides above this mass are tossed out.*/
#define MIN_MASS 800    /*Peptides below this mass are tossed out.*/
#define LOW_MASS_ION_NUM 19     /*Number of peptide-related low mass ions*/


/*
//--------------------------------------------------------------------------------
//  GetCidData()
//--------------------------------------------------------------------------------
    GetCidData uses an ASCII input file named cidFilename, where cidFilename is produced 
    using the 'Print...' command in the Finnigan program LIST.  When cidFilename is 
    placed in the same folder as Lutefisk, it finds weighted average masses within a 
    resolution window defined by the variable 'peakWidth'.  'peakWidth' is half of the 
    peak width at its base, and for high sensitivity (low resolution) applications peakWidth 
    is typically 4-6 Da, but is best set to 3.0 for unit resolution (this helps get rid 
    of the C13 peaks).  GetCidData returns the value of the MSData struct called firstAvMassPtr,
    which is the final list of ion m/z and intensity values used for the rest of the program.

    Modified 03.13.00 JAT - Split out the file reading code into ReadCIDFile().
*/

struct MSData *GetCidData(void)
{
    tMSDataList     *MSDataList = NULL;
    tMSDataList     *peakList   = NULL;
    struct MSData     *firstAvMassPtr = NULL;
    INT_4 i, finalIonCount;
    REAL_4    excessIonRatio;
    REAL_4 generalQuality = 0;
    REAL_4 lowMassQuality = 0;
    REAL_4 highMassQuality = 0;
    REAL_4 quality = 0;


    if(gParam.fMonitor)
    {
        printf("Processing CID datafile '%s'\n", gParam.cidFilename);
    }

    MSDataList = ReadCIDFile(gParam.cidFilename);

    if (MSDataList->numObjects == 0)
    {
        printf("There doesn't seem to be any data in the firstDataPtr linked list.\n");
        exit(1);
    }    
    
    TrimList(MSDataList);
 
    
/*
*    Find the global multiplier, which is the value that determines the number of decimal points
*    for which the data will be considered significant.  For example, if two decimal points are 
*    to be used, then the multiplier will be 100 (ie, 100 x the monoisotopic mass will be the 
*    node values used in the graph.
*/

    FindTheMultiplier();


/*
*    If the 'Autodetect' value for the centroidOrProfile variable in the .params file was,
*    selected, the program tries to figure out what type of file is being used here.
*/
    if(gParam.centroidOrProfile == 'A')
    {
        CentroidOrProfile(MSDataList);
    }

    
/*
*    If the default value for the fragmentation pattern was selected, then the program
*    decides if the data is TSQ or LCQ data.  The differentiation is not fool-proof, but
*    should work most of the time.  The idea is that LCQ msms data starts at a mass that is
*    1/3 of the precursor ion m/z.
*/
    if(gParam.fragmentPattern == 'D')
    {
        GuessAtTheFragmentPattern();
    }

    
/*
*    Here's where profile data is smoothed once with a 5 point smoothing routine 
*    (using Finnigan's coefficients). 
*/

    if(gParam.centroidOrProfile == 'P')
    {
        SmoothCID(MSDataList);
    }

       
/*    Here is where the auto-peakWidth is determined.  The lowest mass ions (less than 500,
    and no more than ten and most intense) are chosen from the raw data in firstDataPtr.  
    The peak tops in firstDataPtr are found, and the peak width at 50% are calculated.  
    The peakWidth is 2x this 50% peakWidth, since
    peakWidth assumes a 10% valley.  Peaks used must be >10% of the most intense ion below 500.
    An average of these peakWidths is determined, and outliers are discarded and the average
    is recalculated.  This recalculated values is the peakWidth in the automated mode.*/

    if(gParam.peakWidth == 0)
    {
        if(gParam.centroidOrProfile == 'P')
        {
            gParam.peakWidth = GetPeakWidth(MSDataList);
        }
        else
        {
            if(gParam.fragmentPattern == 'L')
            {
                gParam.peakWidth = 0.5;    /*for lcq, assume width of 1 da*/
            }
            else 
            {
                gParam.peakWidth = 1;    /*otherwise, assume width of 2 da*/
            }
        }
        printf("The peak width is %5.2f\n", gParam.peakWidth * 2);
    }


/* 
*    Find the signal threshold, where the noise is the average of all ions and the 
*    signal/noise threshold is defined by ionThreshold.
*/

    gParam.intThreshold = FindThreshold(MSDataList);
    
/*    Alternatively, you could use the median rather than an average.*/

    /*threshold = FindMedian(firstDataPtr);    TOO SLOW */

/* 
*    Identify groups of ions, where a group of ions are above the "threshold" and 
*    consecutive ions are less than a peakWidth apart in m/z value (this is of particular
*    concern when importing centroided data rather than profile data).  Groups of ions 
*    are placed in a separate linked list which is passed to the function 'IonSorter'.   
*    The global struct pointer gGroupingPtr is used to remember the position in the linked 
*    list of the complete CID data where IonGrouper is to start finding a new group.  If 
*    IonGrouper is no longer able to find ion groups (ie, end of list), it passes
*   a NULL value.  This signals IonSorter to also pass a NULL value, which signals 
*    the while loop to terminate ('test' becomes FALSE).  Otherwise, IonSorter returns a pointer
*    to a linked list of MSData structs, which contains a short list of ions that have been
*    weight averaged.  This list of ions is appended onto the linked list that is pointed to by
*    firstAvMassPtr.
*/

        
    peakList = IonCondenser(MSDataList);

    if(peakList->numObjects < 5)
    {
        printf("Too few data points remaining after ion condensation!");
        return NULL;
    }
    
/*    
*    After generating all of the mass averaged ion values, some ions may still be closer than 
*    the value of 'peakWidth'.  This happens because some ions are just outside of the peakWidth
*    tolerance, but after weighted averaging to determine their new masses, they get too close.
*    For pairs of ions that are too close together, those with the lowest intensity are removed.
*/

    /* XXXXXXXXXXX JAT - Is this still necessary? */
/*    firstAvMassPtr = ZeroTheIons(firstAvMassPtr);    
*/


/*    Eliminate ions below the threshold.*/
/*    currPtr = firstAvMassPtr->next;
    previousPtr = firstAvMassPtr;
    while(currPtr != NULL)
    {
        if(currPtr->mOverZ > precursor + gParam.fragmentErr)
            break;
        if(currPtr->intensity == threshold)
        {
            if((currPtr->mOverZ < 147.5) ||
                (currPtr->mOverZ < 175.5 && currPtr->mOverZ > 174.5) ||
                (currPtr->mOverZ < 159.5 && currPtr->mOverZ > 158.5))
            {
                currPtr = currPtr->next;
                previousPtr = previousPtr->next;
            }
            else
            {
                previousPtr->next = currPtr->next;
                free(currPtr);
                currPtr = previousPtr->next;
            }
        }
        else
        {
            currPtr = currPtr->next;
            previousPtr = previousPtr->next;
        }
    }
*/    


    
/*    
*    Next the summed intensity of the linked list of ions is checked to see if it is less
*    than 2 billion.  If the sum exceeds this then each ion is attenuated ten fold.  This
*    is to make sure that I don't try to use a number too big for a INT_4 to hold later
*    on.
*/

    CheckTheIntensity(peakList);

    
    
/*    Next add the ion offset to the m/z values in the linked list of ions.*/

    AddTheIonOffset(peakList);
    
/*    Remove low mass ions that are not due to amino acids.*/

    LowMassIonRemoval(peakList);
    
/*    For Qtof data, convert any intense doubly charged ions to singly-charged ones.*/

/*    
*    Next the program checks to see if ions that are 1 Da apart are due to isotopes.  The
*    ions that seem to be due to isotopes are removed.  This is not done for data processed
*        using maxent3, since the data would already have been de-isotoped.
*/

        if(!gParam.maxent3)
        {
                RemoveIsotopes(peakList);
        }


/*
*    Remove the precursor ions.
*/
    RemovePrecursors(peakList);
    
    
/*
*    Find the ions that might be y ions that can be connected via single amino acids to the
*    y1 ions of 147 and 175 (if they are present).  A value of 1 is placed in normIntensity
*    if the ion is a golden boy (from CA).
*/
    if(gParam.proteolysis == 'T' && (gParam.fragmentPattern == 'Q' || gParam.fragmentPattern == 'T'))
    {
        FindTheGoldenBoys(peakList);
    }
    
    if(gParam.fragmentPattern =='L' && peakList->numObjects < 100)
    {
        FindBYGoldenBoys(peakList);     /*spare the b/y pairs if there are not many ions at this point*/
    }
        
    
/*    
*    Next the program checks to see if there are too many ions clustered together.  It does
*    this by counting the number of ions within windows of width SPECTRAL_WINDOW_WIDTH Da and 
*    making sure that only a certain number of ions (ionsPerWindow) are present within any 
*    given window.  If there are too many ions, it throws out those with the lowest intensity.
*/

    WindowFilter(peakList);
    
/*
*    Find high mass ions that could not be either b or y ions.
*/

    EliminateBadHighMassIons(peakList);
    
/*
*    Verify that the selected ions have a signal to noise ratio greater than SIGNAL_NOISE that
*    is #defined in LutefiskDefinitions.  The dta files from qtof data are also checked for s/n problems.
*/
    if(gParam.centroidOrProfile == 'P' || gParam.CIDfileType == 'X' || gParam.CIDfileType == 'D')
    {
        CheckSignalToNoise(peakList, MSDataList);
    }
    
/*
*    Check to see if ions can be connected to other ions with very high mass accuracy 
*    (compared to the calculated amino acid masses).  For LCQ data I've decided (from 50 
*    measurements) that the average error should be better than 0.15.  For QTOF data, this
*    should be much higher.  For triple quad data, I don't care to speculate.
*/
    if(gParam.fragmentPattern == 'L' || gParam.fragmentPattern == 'Q')
    {
        CheckConnections(peakList);
    }
    
/*
*       For LCQ data, find b/y pairs and flag them as being golden boys that are difficult to delete on 
*       the basis of ion intensity.
*/
    
    if(gParam.fragmentPattern =='L')
    {
        FindBYGoldenBoys(peakList);
    }
  
/*    
*    Next I count the ions, and if there are more ions per residue than stipulated by the value
*    of "ionsPerResiude" (from Lutefisk.params), then the lowest intensity ions are removed.  
*    For example if the peptide MW is 1200 and there are supposed to be 5 ions per residue,
*    then only 50 of the most intense ions are kept.
*/
    
    finalIonCount = (gParam.peptideMW / AV_RESIDUE_MASS) + 0.5;    /*Num of average residues.*/
    finalIonCount = finalIonCount * gParam.ionsPerResidue;        /*Num of ions allowed.*/
    
    /*lowMassIons = 0;
    currPtr = &peakList->mass[0];
    ptrOfNoReturn = &peakList->mass[peakList->numObjects];
    while (currPtr < ptrOfNoReturn) 
    {
        if (currPtr->mOverZ < 146.5) 
        {
            lowMassIons++;
        }
        currPtr++;
    }
    finalIonCount += lowMassIons;*/
    
    if (peakList->numObjects  > finalIonCount)
    {
        WeedTheIons(peakList, finalIonCount, TRUE);
    }

/*
    The use of "golden boy" ions (ions that connect to 147 and 175 in tryptic peptides) can 
    produce too many ions.  The following procedure is done in order to reduce excessive numbers.
    The golden boys are lumped in with the regular ions here, ie, no special treatment.
*/
    excessIonRatio = (2000 - gParam.peptideMW) / 1000;
    excessIonRatio = (excessIonRatio * 0.25) + 1;
    if(excessIonRatio < 1)
        excessIonRatio = 1;

    finalIonCount = finalIonCount * excessIonRatio;    /*Allow 15% increase in number of ions.*/
    if (peakList->numObjects > finalIonCount)
    {
        WeedTheIons(peakList, finalIonCount, FALSE);
    }




/*    Print out the number of ions in the final linked list of averaged ions.*/

    if(gParam.fMonitor)
    {
        printf("Number of ions: %d \n", peakList->numObjects);
    }

    if(peakList->numObjects < 5)
    {
        printf("Too few data points remaining after preprocessing!");
        return NULL;
    }
      
  



/*
*    For QTof data, use y1 ions for R and K and immonium ions to obtain a mass offset correction.
*/

    /*if(gParam.fragmentPattern == 'Q')
    {
        CalibrationCorrection(peakList);
    }*/

/*
*    For precursor charges of two or less, most of the fragment ions will be singly-charged.
*    Thus, one can compare theoretical mass defects from the observed defects, and make 
*    corrections.
*/

    if(gParam.chargeState <= 2 && gParam.fragmentPattern != 'Q')
    {
        DefectCorrection(peakList);
    }
    

/*
*    For LCQ data, normalize the intensity to the fourth most intense ions.  It seems that
*    the ion trap will produce one or two whopper ions, so it seems reasonable to avoid
*    having a large percentage of ion current in one or two ions.
*/

    if(gParam.fragmentPattern == 'L')
    {
        NormalizeIntensity(peakList);
    }

/*    Now get rid of the raw CID data.*/    
    DisposeList(MSDataList);
    
/*    Print the final list*/
    if(gParam.fVerbose)
    {
        DumpMSData(peakList);
    }


    /* KLUDGE:  Dump back into linked list - JAT */
/*    for (i = 0; i < MSDataList->numObjects; i++) 
    {    
        firstDataPtr = AddToCIDList(firstDataPtr, 
                                      LoadMSDataStruct(MSDataList->mass[i].mOverZ, 
                                                       MSDataList->mass[i].intensity));
    }        
*/    for (i = 0; i < peakList->numObjects; i++) 
    {    
        firstAvMassPtr = AddToCIDList(firstAvMassPtr, 
                                      LoadMSDataStruct(peakList->mass[i].mOverZ, 
                                                       peakList->mass[i].intensity));
    }        

/*      Check the CID data quality here, but only if there is a monitor for output.*/

        if(gParam.quality && gParam.fMonitor)
        {
                printf("\n");
                printf("Quality assessment:");
                
/*      Check the charge state, peptide mass, number of ions, total intensity of ions, and
        distribution of ions.*/
        
                generalQuality = GeneralEval(peakList);
        
/*      Check the low mass ions for qtof data*/

                if(gParam.fragmentPattern == 'Q')
                {
                        lowMassQuality = LowMassIonCheck(peakList);
                }
                else
                {
                        lowMassQuality = 1;     /*LCQ data doesn't contain the low mass end*/
                }

/*      Check for series of ions above the precursor that can be connected by amino acids*/

                highMassQuality = HighMassIonCheck(peakList);
        
/*      Combine the scores via multiplication; all values are between 0 and 1, so the combined
        quality value is also between 0 and 1*/
        
                quality = generalQuality * lowMassQuality * highMassQuality;
        
/*      Print some more info*/

                if(quality)
                {
                        printf("\nThis spectrum exceeds the minimal spectral quality parameters.\n");
                }
                else
                {
                        printf("\nThis spectrum stinks.\n");
                }
                /*printf("General appearance (scale of 0 to 1): %f\n", generalQuality);
                if(gParam.fragmentPattern != 'L')
                {
                        printf("Low mass ions (scale of 0 to 1): %f\n", lowMassQuality);
                }
                printf("High mass ions above the precursor (scale of 0 to 1): %f\n", highMassQuality);
                if(quality == 1)
                {
                        printf("Overall data quality rating (A to F scale): A\n\n");
                }
                else if (quality < 1 && quality > 0.8)
                {
                        printf("Overall data quality rating (A to F scale): B\n\n");
                }
                else if(quality <= 0.8 && quality >= 0.5)
                {
                        printf("Overall data quality rating (A to F scale): C\n\n");
                }
                else if(quality < 0.5 && quality > 0)
                {
                        printf("Overall data quality rating (A to F scale): D\n\n");
                }
                else
                {
                        printf("Overall data quality rating (A to F scale): F\n");
                        printf("Don't waste your time on this one.\n\n");
                        exit(0);
                }*/
                
        }

    DisposeList(peakList);
    
    return(firstAvMassPtr);
}

/*****************************GeneralEval******************************************************
*
*       Check that the charge state of the precursor is either +2 or +3, and that the mass is not
*       a weird value.  Also checks that this is not a virtually empty file (ie, more than a handful
*       of ions.  Checks that fragment ions are not weird values.  Makes sure that a minimum percentage
*       of the total ion abundance is above the precursor, and that of those above the precursor the
*       abundance is not isolated to just a few ions.  If all of these tests are passed, then a 
*       quality assignment is made based on the total intensity.
*
*/

REAL_4 GeneralEval(tMSDataList  *peakList)
{
        INT_4 i;
        INT_4 highMassIonCount = 0; 
        REAL_4 quality = 0;     
        REAL_4 precursor = (gParam.peptideMW + gParam.chargeState * gElementMass[HYDROGEN])
                                                / gParam.chargeState;
        REAL_4 totIntensity = 0;
        REAL_4 highMassInt = 0;
        REAL_4 highMassRatio = 0;
        REAL_4 highMassInt2 = 0;
        REAL_4 minPeakNum = gParam.peptideMW / AV_RESIDUE_MASS;
        tMSDataList *  intensityOrderedList = NULL;

/*      Do some basic checks on the charge state and peptide mass*/

        if(gParam.peptideMW < MIN_MASS)
        {
                return(0);      /*Too small*/
        }
        if(gParam.peptideMW > MAX_MASS)
        {
                return(0);      /*Too big*/
        }
        if(gParam.chargeState < 2)
        {
                return(0);      /*Not enough charge*/
        }
        if(gParam.chargeState > 3)
        {
                return(0);      /*Too much charge*/
        }

/*      Check the number of ions*/

        if(peakList->numObjects < minPeakNum)
        {
                return(0);      /*Not enough ions*/
        }
        if(peakList->numObjects < MIN_NUM_IONS)
        {
                return(0);
        }
        
/*      Check for weird ions (negative mass or very high)*/
        
        for (i = 0; i < peakList->numObjects; i++) 
    {    
        if(peakList->mass[i].mOverZ < -1)
        {
                return(0);
        }
        if(peakList->mass[i].mOverZ > MAX_ION_MASS)
        {
                return(0);
        }
    }
    
/*      Check for ions above the precursor*/
        
        for(i = 0; i < peakList->numObjects; i++)
        {
                totIntensity += peakList->mass[i].intensity;
                if(peakList->mass[i].mOverZ > precursor + gParam.fragmentErr * 3)
                {
                        highMassInt += peakList->mass[i].intensity;
                }
    }
    
    if(totIntensity == 0)
    {
        return(0);      /*No ion intensity, so quality of zero is returned*/
    }
    
/*      Calculate the percentage of total ion current above the precursor*/

    highMassRatio = highMassInt / totIntensity;
    
    if(highMassRatio < MIN_HIGHMASS_INT_RATIO)
    {
        return(0);      /*there's less than 5% of total intensity above the precursor*/
    }
    
/*      Now I count the number of ions that comprise 95% of the high mass intensity*/
    
    /*The next few lines are directly from bits of jat's code*/
    intensityOrderedList = (tMSDataList *) CopyList( peakList );
        if (!intensityOrderedList) 
    {
        printf("Ran out of memory in GeneralEval()!\n");
        exit(1);
    }
    /* Sort the intensityOrderedList in order of decreasing intensity */
    qsort(intensityOrderedList->mass,(size_t)intensityOrderedList->numObjects,
          (size_t)sizeof(tMSData),IntensityDescendSortFunc);
    
/*      Count the number of ions required to account for most of the high mass intensity.*/

    for(i = 0; i < intensityOrderedList->numObjects; i++)
    {
        if(intensityOrderedList->mass[i].mOverZ > precursor + 3 * gParam.fragmentErr)
        {
                highMassIonCount++;
                highMassInt2 += intensityOrderedList->mass[i].intensity;
        }
        if((highMassInt2 / totIntensity) > HIGH_MASS_RATIO * highMassRatio)
        {
                break;  /*For example if HIGH_MASS_RATIO = 0.9 and highMassRatio was 0.5 (ie,
                                half of the ion current in a spectrum was above the precursor), then
                                this bit of code counts the number of ions required to account for
                                0.45 of the total intensity (ie, 90% of the current above the precursor).
                                The idea is if only one or two ions account for most of the ion current,
                                then this is not as good as if the current were spread out among several
                                ions.  The latter situation would imply better sequence data, than just
                                having a few massive ions.*/
        }
    }
    
/*      Assign quality values based on the number of major high mass ions, and peptide mass.*/
    
    if(highMassIonCount == 1 && gParam.peptideMW > 850)
    {
        DisposeList(intensityOrderedList);      /*get rid of this ion list*/
        return(0);      /*Only one major ion above the precursor*/
    }
    
    DisposeList(intensityOrderedList);  /*get rid of this ion list*/
    
        return(1);      /*return a value of 1 if the spectrum passes this test*/
}

/*****************************LowMassIonCheck**************************************************
*
*       First, low mass ions are checked against an approved list of peptide-related ions.
*       If any are found, then the low mass quality is not zero, and might be as much as 1
*       depending on the number of low mass ions found.  If no peptide-related low mass ions
*       are found, then the number of weird ions are counted.  If any weird non-peptide ions
*       are located then the quality is zero.
*
*/

REAL_4 LowMassIonCheck(tMSDataList  *peakList)
{
        REAL_4 lowMassIons[LOW_MASS_ION_NUM] = {        60.0,   70.1,  72.1,    74.1,   84.0,   86.1,   
                                                                                                87.1,   88.0,   101.1,  102.1,  104.1,  110.1,  
                                                                                                112.1,  120.1,  129.1,  136.1,  159.1,  147.1,  
                                                                                                175.1
                              };
    REAL_4 quality = 1; /*default for no low mass ions, and no weird ions*/
        INT_4 i, j;
        INT_4 lowMassIonCount = 0;
        INT_4 weirdIons = 0;
        char test;
        
/*      First look for immonium and other peptide-related low mass ions*/

        for (i = 0; i < peakList->numObjects; i++)
        {
                if(peakList->mass[i].mOverZ > 175.1 + gParam.fragmentErr)
                {
                        break;
                }
                for(j = 0; j < LOW_MASS_ION_NUM; j++)
                {
                        if(peakList->mass[i].mOverZ <= lowMassIons[j] + gParam.fragmentErr &&
                                peakList->mass[i].mOverZ >= lowMassIons[j] - gParam.fragmentErr)
                        {
                                lowMassIonCount++;
                                break;
                        }
                }
        }
        
/*      If no peptide-related low mass ions found, then look for weird low mass ions.*/

        if(lowMassIonCount == 0)
        {
                for (i = 0; i < peakList->numObjects; i++)
                {
                        if(peakList->mass[i].mOverZ > 147.1 - gParam.fragmentErr)
                        {
                                break;
                        }
                        test = TRUE;    /*test is TRUE if its a weird peak*/
                        for(j = 0; j < 17; j++)
                        {
                                if(peakList->mass[i].mOverZ <= lowMassIons[j] + gParam.fragmentErr &&
                                        peakList->mass[i].mOverZ >= lowMassIons[j] - gParam.fragmentErr)
                                {
                                        test = FALSE;
                                        break;
                                }
                        }
                        if(test)
                        {
                                weirdIons++;
                        }
                }
        }
        
/*      Now assign a low mass ion quality.*/

        if(lowMassIonCount == 0)
        {
                if(weirdIons != 0)
                {
                        quality = 0;    /*Weird ions in the absence of immoniums is not good at all*/
                }
        }

        return(quality);
}


/*****************************HighMassIonCheck*************************************************
*
*
*
*/
REAL_4 HighMassIonCheck(tMSDataList  *peakList)
{
        INT_4 i, highCount, j, k, totalSinglyChargedConnectNum, totalDoublyChargedConnectNum;
        INT_4 nodeConnect[MAX_HIGH_MASS][AMINO_ACID_NUMBER];
        INT_4 connectNum[MAX_HIGH_MASS];
        INT_4 m, n, firstAA, secondAA, thirdAA, fourthAA;
        REAL_4 highMass[MAX_HIGH_MASS], highInt[MAX_HIGH_MASS];
        REAL_4 precursor;
        REAL_4 totalHighInt;
        REAL_4 averageInt, massDiff;
        REAL_4 threshold, quality;
        char runOfTwo, runOfThree, runOfFour;
        
/*      initialize*/
        
        averageInt = 0;
        totalHighInt = 0;
        quality = 0;
        precursor = (gParam.peptideMW + gParam.chargeState * gElementMass[HYDROGEN])
                                                / gParam.chargeState;
        highCount = 0;
        totalSinglyChargedConnectNum = 0;
        totalDoublyChargedConnectNum = 0;
        
        for(i = 0; i < MAX_HIGH_MASS; i++)
        {
                connectNum[i] = 0;
                for(j = 0; j < AMINO_ACID_NUMBER; j++)
                {
                        nodeConnect[i][j] = 0;
                }
        }
        for(i = 0; i < MAX_HIGH_MASS; i++)
        {
                highMass[i] = 0;
                highInt[i] = 0;
        }

        /*Identify high mass ions*/
        for (i = 0; i < peakList->numObjects; i++) 
        {       
                if(peakList->mass[i].mOverZ > precursor + 4 * gParam.fragmentErr)
                {
                        highMass[highCount] = peakList->mass[i].mOverZ;
                        highInt[highCount] = peakList->mass[i].intensity;
                        totalHighInt += peakList->mass[i].intensity;
                        highCount++;
                }
                if(highCount > MAX_HIGH_MASS)
                {
                        return(0);      /*Too many high mass ions (>100); I'll exceed the array sizes.
                                                Also, its unlikely to have this many high mass ions unless the
                                                file is screwed up somehow.*/
                }
        }
        
        if(highCount == 0)
        {
                return(0);      /*No high mass ions, so return a zero quality value*/
        }
        
        averageInt = totalHighInt / highCount;  /*average intensity*/
        threshold = averageInt / 5;                             /*threshold is 1/4 of the average; there is no
                                                                                        good reason to use 1/4 rather than, say 1/5.*/
        
        
        
/*      First assume fragment ions are all singly charged.  This first bit of nested for loops
        determines which nodes connect to each other.  The indexing for connectNum matches with
        highMass, and contains the number of connections that can be made to lower mass nodes.
        The array nodeConnect has two indexing, where one matches connectNum and highMass and the
        other index corresponds to the number of connections that can be made to lower mass nodes.
        The intensity of the higher mass node always has to be above the threshold, whereas the 
        lower mass node can be below threshold, but only if the mass difference corresponds to Pro
        or Gly.  The actual value stored by nodeConnect is the index value that it can connect with.*/

        for(i = 0; i < highCount; i++)
        {
                for(j = i; j < highCount; j++)
                {
                        if(highInt[j] > threshold)
                        {
                                massDiff = highMass[j] - highMass[i];
                                if(massDiff >= gMonoMass[G] - gParam.fragmentErr)
                                {
                                        for(k = 0; k < AMINO_ACID_NUMBER; k++)
                                        {
                                                if(massDiff <= gMonoMass[k] + gParam.fragmentErr &&
                                                        massDiff>= gMonoMass[k] - gParam.fragmentErr)
                                                {
                                                        if(highInt[i] > threshold || k == G || k == P)
                                                        {
                                                                nodeConnect[j][connectNum[j]] = i;
                                                                connectNum[j]++;
                                                                break;
                                                        }
                                                }
                                        }
                                }
                        }
                }
        }
        
/*      Count the singly-charged connections; this number does not tell you the longest sequence 
        obtainable.  This is determined below....*/

        totalSinglyChargedConnectNum = 0;
        for(i = 0; i < highCount; i++)
        {
                if(connectNum[i] != 0)
                {
                        totalSinglyChargedConnectNum++;
                }
        }
        
/*      Can I make runs of two, three, or four amino acids (ie, can I link three, four, or five ions)?*/

        runOfTwo = FALSE;       /*two amino acids defined*/
        runOfThree = FALSE;     /*three amino acids defined*/
        runOfFour = FALSE;      /*four amino acids defined*/
        
        if(gParam.peptideMW > 1000)     /*smaller peptides might not give data with long series of nodes*/
        {
                for(i = highCount - 1; i >= 0; i--)     /*start at the high mass end and word down*/
                {
                        if(connectNum[i] != 0)  /*keep looking at the next node down if the current one
                                                                        lacks any connections to lower nodes*/
                        {
                                for(j = 0; j < connectNum[i]; j++)      /*loop through the all of the possible 
                                                                                                        connections*/
                                {
                                        firstAA = nodeConnect[i][j];    /*firstAA is the next node down*/
                                        if(connectNum[firstAA] == 0)
                                        {
                                                continue;       /*if the next node down does not connect to anything, then
                                                                        stop following this pathway*/
                                        }
                                        for(k = 0; k < connectNum[firstAA]; k++)
                                        {
                                                secondAA = nodeConnect[firstAA][k];     /*secondAA is the second node down*/
                                                runOfTwo = TRUE;        /*you can connect at least three ions, and this will
                                                                                        remain TRUE for the rest of this function*/
                                                if(connectNum[secondAA] == 0)
                                                {
                                                        continue;       /*if the second node down does not connect to anything, 
                                                                                then stop following this pathway*/
                                                }
                                                for(m = 0; m < connectNum[secondAA]; m++)       /*etc etc*/
                                                {
                                                        thirdAA = nodeConnect[secondAA][m];
                                                        runOfThree = TRUE;
                                                        if(connectNum[thirdAA] == 0)
                                                        {
                                                                continue;
                                                        }
                                                        for(n = 0; n < connectNum[thirdAA]; n++)
                                                        {
                                                                fourthAA = nodeConnect[thirdAA][n];
                                                                runOfFour = TRUE;
                                                        }
                                                }
                                        }
                                }
                        }
                }
        }
                                                        
        
/*      Now assume fragment ions are doubly-charged, which is only possible if the precursor is 
        triply-charged, and the data was not derived from any maxent3 treatment (conversion of all
        ions to singly charged, and de-isotoped).*/
        
        if(gParam.chargeState == 3 && !gParam.maxent3)
        {
                /*initialize the node arrays to get rid of the singly charged info*/
                for(i = 0; i < MAX_HIGH_MASS; i++)
                {
                        connectNum[i] = 0;
                        for(j = 0; j < AMINO_ACID_NUMBER; j++)
                        {
                                nodeConnect[i][j] = 0;
                        }
                }
                
                for(i = 0; i < highCount; i++)
                {
                        for(j = i; j < highCount; j++)
                        {
                                if(highInt[j] > threshold)
                                {
                                        massDiff = (highMass[j] - highMass[i]) * 2;
                                        if(massDiff >= gMonoMass[G] - gParam.fragmentErr)
                                        {
                                                for(k = 0; k < AMINO_ACID_NUMBER; k++)
                                                {
                                                        if(massDiff <= gMonoMass[k] + gParam.fragmentErr &&
                                                                massDiff>= gMonoMass[k] - gParam.fragmentErr)
                                                        {
                                                                if(highInt[i] > threshold || k == G || k == P)
                                                                {
                                                                        nodeConnect[j][connectNum[j]] = i;
                                                                        connectNum[j]++;
                                                                        break;
                                                                }
                                                        }
                                                }
                                        }
                                }
                        }
                }
                /*Count the doubly-charged connections*/
                totalDoublyChargedConnectNum = 0;
                for(i = 0; i < highCount; i++)
                {
                        if(connectNum[i] != 0)
                        {
                                totalDoublyChargedConnectNum++;
                        }
                }
                
                /*Can I make runs of two, three, or four amino acids?*/
                
                if(gParam.peptideMW > 1000)
                {
                        for(i = highCount - 1; i >= 0; i--)
                        {
                                if(connectNum[i] != 0)
                                {
                                        for(j = 0; j < connectNum[i]; j++)
                                        {
                                                firstAA = nodeConnect[i][j];
                                                if(connectNum[firstAA] == 0)
                                                {
                                                        continue;
                                                }
                                                for(k = 0; k < connectNum[firstAA]; k++)
                                                {
                                                        secondAA = nodeConnect[firstAA][k];
                                                        runOfTwo = TRUE;
                                                        if(connectNum[secondAA] == 0)
                                                        {
                                                                continue;
                                                        }
                                                        for(m = 0; m < connectNum[secondAA]; m++)
                                                        {
                                                                thirdAA = nodeConnect[secondAA][m];
                                                                runOfThree = TRUE;
                                                                if(connectNum[thirdAA] == 0)
                                                                {
                                                                        continue;
                                                                }
                                                                for(n = 0; n < connectNum[thirdAA]; n++)
                                                                {
                                                                        fourthAA = nodeConnect[thirdAA][n];
                                                                        runOfFour = TRUE;
                                                                }
                                                        }
                                                }
                                        }
                                }
                        }
                }
        }

/*Print relevant info*/

        /*if(runOfFour)
        {
                printf("\n");
                printf("At least five ions above the precursor can be connected\n");
        }
        else if(runOfThree)
        {
                printf("\n");
                printf("At least four ions above the precursor can be connected\n");
        }
        else if(runOfTwo)
        {
                printf("\n");
                printf("At least three ions above the precursor can be connected\n");
        }
        else
        {
                if(totalSinglyChargedConnectNum == 0 && totalDoublyChargedConnectNum == 0)
                {
                        printf("\n");
                        printf("No ions above the precursor can be connected\n");
                }
                else
                {
                        printf("\n");
                        printf("Only pairs of ions above the precursor can be connected\n");
                }
        }*/
        
/*      First see if any connections can be made*/

        if(totalSinglyChargedConnectNum == 0 && totalDoublyChargedConnectNum == 0)
        {
                if(gParam.peptideMW < 950)
                {
                        quality = 1;    /*low mw peptides may not have many ions above the precursor*/
                }
                else
                {
                        quality = 0;    /*bigger peptides are therefore crap*/
                }
        }
        else    /*If any connections can be made, then start out w/ a high quality*/
        {
                quality = 1;
        }
        
/*      Quality is adjusted downward if insufficient sequence lengths obtained for certain mass ranges*/
        /*if(gParam.peptideMW > 1150)   /*Anything less than 1150 is not attenuated further*/
        /*{
                if(gParam.peptideMW < 1300)
                {
                        if(!runOfTwo)
                        {
                                quality *= 0.5;
                        }
                }
                else if(gParam.peptideMW < 1450)
                {
                        if(!runOfThree)
                        {
                                quality *= 0.5;
                        }
                }
                else
                {
                        if(!runOfFour)
                        {
                                quality *= 0.75;
                        }
                }
        }*/
        
        return(quality);
}

/*
//--------------------------------------------------------------------------------
//  ReadCIDFile()
//--------------------------------------------------------------------------------
    Modified 03.13.00 JAT - Split this function out from GetCidData().
*/
tMSDataList *ReadCIDFile(char *inFilename)
{

    FILE *     fp;
    INT_4      i;
    INT_4      j;
    tMSDataList * MSDataList   = NULL;
    tMSData    massToAdd;    
    REAL_4     massValue       = 0.0;
    REAL_4     oldMassValue    = 0.0;
    INT_4      ionIntensity    = 0;    
    INT_4      oldIonIntensity = 0;    
    REAL_4     intensityAsReal = 0.0;
    char *     stringBuffer    = NULL;
    char *     stringBuffer2   = NULL;
    BOOLEAN    firstNumberFlag = true;
    BOOLEAN    headerFlag      = true;

	msms.scanMassHigh = -1;
    stringBuffer = (char *)malloc(258);
    if (NULL == stringBuffer)
    {
        printf("Outa memory in GetCidData()!\n");
        goto problem;
    }
    
    stringBuffer2 = (char *)malloc(258);
    if (NULL == stringBuffer2)
    {
        printf("Outa memory in GetCidData()!\n");
        goto problem;
    }
    
    for (i = 0; i < 258; i++)
    {
        stringBuffer2[i] = 0;
    }

    if (gParam.CIDfileType == 'N')
    {
        /* Open the native data file and make a linked list of m/z and intensity values.*/
        if (gParam.fVerbose) printf("Reading the native CID file '%s'\n", inFilename);
        
        MSDataList = ReadFinniganFile(inFilename);
    }
    else 
    {
        /* Open the ASCII data file and make a linked list of m/z and intensity values.*/

        MSDataList = (tMSDataList *) CreateNewList( sizeof(tMSData), 500, 500 );
        if ( NULL == MSDataList )
        {
            printf("Outa memory in GetCIDFile()!\n");
            goto problem;
        }
    
        fp = fopen(inFilename,"r");
        if (fp == NULL)
        {
            printf("Cannot open the CID file '%s'.\n", inFilename);
            goto problem;
        }
    
        i=0;
        oldMassValue = 0;
        oldIonIntensity = 0;
    
        while (my_fgets(stringBuffer, 256, fp) != NULL)
        {    
            i+=1;
            
            /* Skip blank lines */
            if (!strcmp(stringBuffer, "\r")) continue;    /*PC files are screwy*/
            if (!strcmp(stringBuffer, "\n")) continue;    
        
            /* Deal with the headers first -------------------------------------- */
            if (headerFlag) 
            {
                if(gParam.CIDfileType == 'T')
                {
                        headerFlag = FALSE;     /*tab text has no header*/
                }
                else if (gParam.CIDfileType == 'F') /* Finnigan's ICIS text format */
                {
                    /* headerFlag is true until the data is being 
                    read w/ in the Finnigan file.*/
                    sscanf(stringBuffer, "%f %d", &massValue, &ionIntensity);
    
                    /* The number 1 should appear on the first 
                    line of data in a Finnigan ASCII file.*/
                    if(massValue == 1.0)
                    {
                        headerFlag = FALSE;
                    }
                    else if (massValue > 1.0 && massValue < 2000.0 && ionIntensity > 0)
                    {    /* Catch potential problem caused by forgetting
                           to change from 'F' to 'T' in the .params file. */
                        gParam.CIDfileType = 'T';
                    }
                    else continue; /* Still in the header, so go back to the start of the loop. */
                }        
                else if (gParam.CIDfileType == 'L') /* Finnigan's LCQ text format */
                {
                    sscanf(stringBuffer, "%[DataPeaks]", stringBuffer2);
                    if(!strcmp(stringBuffer2, "DataPeaks"))
                    {
                        headerFlag = FALSE;
                        continue;
                    }
                    else
                    {
                        continue;    /*read another line*/
                    }
                }
                else if (gParam.CIDfileType == 'D') /* Finnigan's '.dta' text format */
                {
                    /*First line is MH+ and charge: read if these
                    values are zero from the params file*/
                    if(gParam.peptideMW == 0 || gParam.chargeState == 0)
                    {
                        sscanf(stringBuffer, "%f %d", &gParam.peptideMW, &gParam.chargeState);
                        /*adjust for the fact that the value in the dta file is MH+*/
                        gParam.peptideMW -= gElementMass[HYDROGEN];
                        if (gParam.fVerbose) 
                        {
                           printf("  Precursor Mass:  %.3f\n", gParam.peptideMW);
                           printf("Precursor Charge:  %d\n", gParam.chargeState);
                        }
                    }
                    else
                    {    
                        sscanf(stringBuffer, "%*f %*d");
                    }
                    headerFlag = FALSE;
                    continue; /*the next line is the start of the data*/
                }
                else if (gParam.CIDfileType == 'Q') /* Micromass' pkl '.dta' text format */
                {
                    /*First line is the precursor m/z, followed by intensity (float) and charge: read if these
                    values are zero from the params file*/
                    if(gParam.peptideMW == 0 || gParam.chargeState == 0)
                    {
                        sscanf(stringBuffer, "%f %*f %d", &gParam.peptideMW, &gParam.chargeState);
                        /*adjust for the fact that the value in the pkl file is precurson mass*/
                        gParam.peptideMW = (gParam.peptideMW * gParam.chargeState) 
                                            - (gParam.chargeState * gElementMass[HYDROGEN]);
                    }
                    else
                    {    
                        sscanf(stringBuffer, "%*f %*f %*d");
                    }
                    headerFlag = FALSE;
                    continue; /*the next line is the start of the data*/
                }
                else {
                        printf("Whoa! Pleading ignorace of CID file type '%c'\n", gParam.CIDfileType);
                        goto problem;
                }
            }
        
/* Read the data */
            
            massToAdd.mOverZ    = -1;    /*test to see if real data entered later*/
            massToAdd.intensity = -1;
            if (gParam.CIDfileType == 'F') /* Finnigan's ICIS text format */
            {
                sscanf(stringBuffer, "%*d %f %d", &massToAdd.mOverZ, &massToAdd.intensity);
            }    
            else if (gParam.CIDfileType == 'T') /* Tab text format */
            {
                sscanf(stringBuffer, "%f %d", &massToAdd.mOverZ, &massToAdd.intensity);
                if (i == 1 && (massToAdd.mOverZ <= 1 || massToAdd.mOverZ > 1000))
                {
                    printf("The datafile does not appear to be in tab-delimited (T) format\n"
                           "Be sure the CID file type is set correctly in the Lutefisk.params file.\n");
                    goto problem;
                }
            }
            else if (gParam.CIDfileType == 'Q') /* Micromass' pkl '.dta' text format */
            {
                sscanf(stringBuffer, "%f %f", &massToAdd.mOverZ, &intensityAsReal);
                massToAdd.intensity = (INT_4) intensityAsReal;
                if (i == 1 && (massToAdd.mOverZ <= 1 || massToAdd.mOverZ > 1000))
                {
                    printf("The datafile does not appear to be in Micromass' pkl '.dta' (Q) format\n"
                           "Be sure the CID file type is set correctly in the Lutefisk.params file.\n");
                    goto problem;
                }
            }
            else if (gParam.CIDfileType == 'L') /* Finnigan's LCQ text format */
            {
                if (stringBuffer[0] == '\n')
                {
                    continue;    /*skip any blank lines*/
                }
                sscanf(stringBuffer, "%s", stringBuffer2);
                if (!strcmp(stringBuffer2, "saturated"))
                {
                    continue;    /*finnigan sticks this into every other line for some reason*/
                }
                for (j = 0; j < 258; j++)
                {
                    if(stringBuffer[j] == ',')    /*replaces commas with spaces*/
                    {
                        stringBuffer[j] = ' ';
                    }
                }
                sscanf(stringBuffer, "%*[Packet] %*[#] %*d %*[intensity] %*[=] %f %*[mass/position] %*[=] %f", &intensityAsReal, &massToAdd.mOverZ);
                massToAdd.intensity = (INT_4) intensityAsReal;
            }
            else if (gParam.CIDfileType == 'D') /* Finnigan's '.dta' text format */
            {
                                /* In case the intensity is a real value, we will read it this way. */
                sscanf(stringBuffer, "%f %f", &massToAdd.mOverZ, &intensityAsReal);
                massToAdd.intensity = (INT_4) intensityAsReal;
            }
  
            
            if (massToAdd.mOverZ < -1 || massToAdd.intensity < 0)
            {
                printf("There is something wrong with the data file.\n");
                goto problem;
            }
            
            if (firstNumberFlag)
            {
                msms.scanMassLow = massToAdd.mOverZ;
                firstNumberFlag = false;
            }
            if(massToAdd.mOverZ > msms.scanMassHigh)
            	msms.scanMassHigh = massToAdd.mOverZ;
                
            if (oldMassValue == massToAdd.mOverZ)
            {
                if (massToAdd.intensity >= oldIonIntensity)
                {
                    MSDataList->mass[MSDataList->numObjects - 1] = massToAdd;
                    oldMassValue = massToAdd.mOverZ;
                    oldIonIntensity = massToAdd.intensity;
                }
            }
            else
            {
                if (!AddToList(&massToAdd, MSDataList)) 
                {
                    printf("Ran out of room for datapoints!\n");
                    goto problem;
                }
    
                oldMassValue = massToAdd.mOverZ;
                oldIonIntensity = massToAdd.intensity;
            }
        }

        fclose(fp);
    }
 
    free(stringBuffer);
    free(stringBuffer2);
 
    return MSDataList;
  
  problem:
  
        printf("Quitting.");
        exit(1);  
        return(NULL);
}
    
  
/************************************ CalibrationCorrection ********************************
*
*    If sufficiently intense immonium ions and y1 ions (for tryptic peptides) are available,
*    determine a mass correction to be applied to the list of ions.
*
*/
void CalibrationCorrection(tMSDataList *inPeakList)
{
    REAL_4 immoniumIons[13], y1Arg, y1Lys, intensityCutoff, calibrationMass[15], calibrationIntensity[15];
    REAL_4 offsetMass, totalOffsetIntensity, lysErr, argErr;
    INT_4  i, ionNum;
    
    tMSData *currPtr = NULL;
    tMSData *ptrOfNoReturn = NULL;
    
    /*Calculate the values for y1Arg, y1Lys, and immoniumIons.*/
    y1Arg = gMonoMass[R] + 3 * gElementMass[HYDROGEN] + gElementMass[OXYGEN];
    y1Lys = gMonoMass[K] + 3 * gElementMass[HYDROGEN] + gElementMass[OXYGEN];
    immoniumIons[0] = gMonoMass[P] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[1] = gMonoMass[V] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[2] = gMonoMass[L] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[3] = gMonoMass[M] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[4] = gMonoMass[H] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[5] = gMonoMass[F] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[6] = gMonoMass[Y] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[7] = gMonoMass[W] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[8] = gMonoMass[T] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[9] = gMonoMass[S] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[10] = gMonoMass[N] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[11] = gMonoMass[D] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    immoniumIons[12] = gMonoMass[E] + gElementMass[HYDROGEN] - gElementMass[OXYGEN] - gElementMass[CARBON];
    
    
    if (inPeakList->numObjects == 0) return;
    
    /*Calculate the intensity cutoff.*/
    intensityCutoff = 0;
    currPtr = &inPeakList->mass[0];
    ptrOfNoReturn = &inPeakList->mass[inPeakList->numObjects];
    while(currPtr < ptrOfNoReturn)
    {
        intensityCutoff += currPtr->intensity;
        currPtr++;
    }
    
    intensityCutoff = intensityCutoff / inPeakList->numObjects;    /*calc the average intensity*/
    intensityCutoff = intensityCutoff / 4;    /*Only use ions that are greater than 1/4 of the average intensity*/
    
    /*Check if any of the immonium ions or tryptic y1 ions are present.*/
    
    ionNum = 0;    /*reset the ion counter*/
    if(gParam.proteolysis == 'T')    /*look for y1 ions for Arg and Lys if a tryptic peptide.*/
    {
        currPtr = &inPeakList->mass[0];
        while(currPtr < ptrOfNoReturn)
        {
            if(currPtr->mOverZ > y1Arg + gParam.fragmentErr)
            {
                break;
            }
            if(currPtr->mOverZ <= y1Lys + gParam.fragmentErr && currPtr->mOverZ >= y1Lys - gParam.fragmentErr
                && currPtr->intensity > intensityCutoff)
            {
                calibrationMass[ionNum] = y1Lys - currPtr->mOverZ;
                calibrationIntensity[ionNum] = currPtr->intensity;
                ionNum++;
            }
            if(currPtr->mOverZ <= y1Arg + gParam.fragmentErr && currPtr->mOverZ >= y1Arg - gParam.fragmentErr
                && currPtr->intensity > intensityCutoff)
            {
                calibrationMass[ionNum] = y1Arg - currPtr->mOverZ;
                calibrationIntensity[ionNum] = currPtr->intensity;
                ionNum++;
            }
            currPtr++;
        }
        if(ionNum == 2)    /*if both K and R y1 ions found, then choose the one with the least error*/
        {
            lysErr = calibrationMass[0] - y1Lys;
            argErr = calibrationMass[1] - y1Arg;
            if(lysErr < 0)
            {
                lysErr = lysErr * -1;
            }
            if(argErr < 0)
            {
                argErr = argErr * -1;
            }
            if(lysErr < argErr)
            {
                ionNum = 1;
            }
            else
            {
                calibrationMass[0]      = calibrationMass[1];
                calibrationIntensity[0] = calibrationIntensity[1];
                ionNum = 1;
            }
        }
    }
    if(gParam.proteolysis == 'K')    /*Look for y1 ion of Lys if a Lys-C peptide.*/
    {
        currPtr = &inPeakList->mass[0];
        while(currPtr < ptrOfNoReturn)
        {
            if(currPtr->mOverZ > y1Lys + gParam.fragmentErr)
            {
                break;
            }
            if(currPtr->mOverZ <= y1Lys + gParam.fragmentErr && currPtr->mOverZ >= y1Lys - gParam.fragmentErr
                && currPtr->intensity > intensityCutoff)
            {
                calibrationMass[ionNum]      = y1Lys - currPtr->mOverZ;
                calibrationIntensity[ionNum] = currPtr->intensity;
                ionNum++;
            }
            currPtr++;
        }
    }
    
    /*Now look for the immonium ions.*/
    for(i = 0; i < 13; i++)
    {
        currPtr = &inPeakList->mass[0];
        while(currPtr < ptrOfNoReturn)
        {
            if(currPtr->mOverZ > immoniumIons[i] + gParam.fragmentErr)
            {
                break;
            }
            if(currPtr->mOverZ >= immoniumIons[i] - gParam.fragmentErr &&
                currPtr->mOverZ <= immoniumIons[i] + gParam.fragmentErr
                && currPtr->intensity > intensityCutoff)
            {
                calibrationMass[ionNum]      = immoniumIons[i] - currPtr->mOverZ;
                calibrationIntensity[ionNum] = currPtr->intensity;
                ionNum++;
            }
            currPtr++;
        }
    }
    
    /*Calculate the offset values*/ 
    
    offsetMass = 0;
    totalOffsetIntensity = 0;
    for(i = 0; i < ionNum; i++)
    {
        offsetMass += calibrationMass[i] * calibrationIntensity[i];
        totalOffsetIntensity += calibrationIntensity[i];
    }
    if(totalOffsetIntensity == 0)
        return;    /*nothing was found to adjust calibration, so return w/o modifying the masses.*/
    offsetMass = offsetMass / totalOffsetIntensity;    /*obtain the average offset weighted for intensity*/
    offsetMass = offsetMass * 0.5;    /*adjust by only half as much as calculated (dont be too radical)*/
    
    /*Apply the calculated offset value to all of the ion masses.*/
    
    currPtr = &inPeakList->mass[0];
    while(currPtr < ptrOfNoReturn)
    {
        currPtr->mOverZ = currPtr->mOverZ + offsetMass;
        currPtr++;
    }
    
    msms.scanMassLow = msms.scanMassLow + offsetMass;
    msms.scanMassHigh = msms.scanMassHigh + offsetMass;
    
    printf("The QTof calibration offset is %f \n", offsetMass);

    return;
}

/***********************************CheckConnections****************************************
*
*    This is where I make sure that ions can be connected to other ions via single amino 
*    acid jumps.  The mass accuracy required is increased for this determination.
*/
void CheckConnections(tMSDataList *inPeakList)
{
    tMSData *currPtr;
    tMSData *ptrOfNoReturn;
    tMSData *nextPtr;
    REAL_4 massDiff, error;
    REAL_4 highMassYIon, lowMassYIon, highMassBIon;
    REAL_4 precursor = (gParam.peptideMW + (gParam.chargeState * gElementMass[HYDROGEN])) 
                        / gParam.chargeState;
    INT_4 j, i, maxCharge;
    char test;
    
    if(gParam.fragmentErr >= 0.75 || (gParam.chargeState > 2 && gParam.maxent3 == FALSE))
    {
        return;    /*Invoke this routine only by setting the fragment error to less than 0.75.*/
    }
    
    error = gParam.fragmentErr * 0.5;   /*9/23/03 changed rsj*/

    /* make all indexes negative, later any ions that can connect are made positive, 
       and in the end the ions that continue to have negative indexes are removed */
    currPtr = &inPeakList->mass[0];    
    ptrOfNoReturn = &inPeakList->mass[inPeakList->numObjects];    
    while(currPtr < ptrOfNoReturn)
    {
        currPtr->index = -1;
        currPtr++;
    }
    
/*    For doubly charged precursors from ion trap data, don't eliminate fragment ions that could be 
    doubly-charged.*/
    if(gParam.fragmentPattern == 'L' && gParam.chargeState == 2)
    {
        currPtr = &inPeakList->mass[0];    
        ptrOfNoReturn = &inPeakList->mass[inPeakList->numObjects];    
        while(currPtr < ptrOfNoReturn)
        {
            if(currPtr->mOverZ >= precursor - gMonoMass[W] - gParam.fragmentErr && 
                currPtr->mOverZ <= precursor - 2 * gParam.fragmentErr)
            {
                currPtr->index = 1;
            }
            currPtr++;
        }
    }
    
    /*now find connecting ions*/
    currPtr = &inPeakList->mass[0];    
    while(currPtr < ptrOfNoReturn - 1)
    {
        nextPtr = currPtr + 1;
        while(nextPtr < ptrOfNoReturn)
        {
            massDiff = nextPtr->mOverZ - currPtr->mOverZ;
            if(massDiff > gMonoMass[W] + error)
            {
                break;    /*stop looking if the difference is more than Trp*/
            }
            test = FALSE;
            for(i = 0; i < gAminoAcidNumber; i++)
            {
                if(massDiff <= gMonoMass[i] + error && 
                    massDiff >= gMonoMass[i] - error)
                {
                    test = TRUE;
                    break;
                }
            }
            if(test)
            {
                if(nextPtr->index == -1)
                {
                    nextPtr->index = 1;
                }
                if(currPtr->index == -1)
                {
                    currPtr->index = 1;
                }
            }
            nextPtr++;
        }
        currPtr++;
    }
        
    /*Keep ions that could be terminal y ions or high mass b ions.*/
    
    if(gParam.maxent3)
    {
        maxCharge = 1;  /*maxCharge is one for maxent3 data, since all ions converted to +1*/
    }
    else
    {
        maxCharge = gParam.chargeState;
    }
    
    currPtr = &inPeakList->mass[0];    
    while(currPtr < ptrOfNoReturn)
    {
        for(i = 1; i <= maxCharge; i++)
        {
            for(j = 0; j < gAminoAcidNumber; j++)
            {
                /*Calculate the high mass y ion.*/
                highMassYIon = gParam.peptideMW - gMonoMass[j] + gParam.modifiedNTerm - gElementMass[HYDROGEN];
                highMassYIon = (highMassYIon + (gElementMass[HYDROGEN] * i)) / i;
                
                /*Calculate the low mass y ion.*/
                lowMassYIon = gMonoMass[j] + gElementMass[HYDROGEN] + gParam.modifiedCTerm;
                lowMassYIon = (lowMassYIon + (gElementMass[HYDROGEN] * i)) / i;
                
                /*Calculate the high mass b ion.*/
                highMassBIon =  gParam.peptideMW - gMonoMass[j] - gParam.modifiedCTerm;
                highMassBIon = (highMassBIon + (gElementMass[HYDROGEN] * (i - 1))) / i;
                
                if(currPtr->mOverZ >= highMassYIon - gParam.fragmentErr &&
                    currPtr->mOverZ <= highMassYIon + gParam.fragmentErr)
                {
                    if(currPtr->index == -1)
                    {
                        currPtr->index = 1;    /**Fixed by RSJ, JAT had currptr->intensity*/
                    }
                }
                if(currPtr->mOverZ >= lowMassYIon - gParam.fragmentErr &&
                    currPtr->mOverZ <= lowMassYIon + gParam.fragmentErr)
                {
                    if(currPtr->index == -1)
                    {
                        currPtr->index = 1;    /**Fixed by RSJ, JAT had currptr->intensity*/
                    }
                }
                if(currPtr->mOverZ >= highMassBIon - gParam.fragmentErr &&
                    currPtr->mOverZ <= highMassBIon + gParam.fragmentErr)
                {
                    if(currPtr->index == -1)
                    {
                        currPtr->index = 1;    /**Fixed by RSJ, JAT had currptr->intensity*/
                    }
                }
            }
        }
    
        currPtr++;
    }
    
    
    /*Keep the low mass ions.*/
    currPtr = &inPeakList->mass[0];    
    while(currPtr < ptrOfNoReturn)
    {
        if(currPtr->mOverZ < 148 || (currPtr->mOverZ > 158.5 && currPtr->mOverZ < 159.5))
        {
            if(currPtr->index == -1)
            {
                currPtr->index = 1;
            }
        }
        currPtr++;
    }
    
    /*get rid of the peaks with neg indexes*/
    currPtr = &inPeakList->mass[0];    
    while(currPtr < ptrOfNoReturn)
    {
        if(currPtr->index == -1)
        {
            RemoveFromList(currPtr - &inPeakList->mass[0], inPeakList);
            ptrOfNoReturn--;
            currPtr--;
        }

        currPtr++;
    }            


    /* Reset index values */    
    for (i = 0;    i <    inPeakList->numObjects; i++)
    {
        inPeakList->mass[i].index = i;
    }    
    
    return;
}

/***********************************CheckSignalToNoise**************************************
*
*    This function verifies that the remaining ions selected as "interesting" have an adequate
*    signal to noise ratio.  This ratio is #defined in LutefiskDefinitions.  The noise is
*    calculated as the average intensity 50 u above and 50 u below the ion.  For simplicity,
*    the first element in the linked list is never deleted.
*/

void CheckSignalToNoise(tMSDataList *inPeakList, tMSDataList *inMSDataList)
{
    tMSDataList *neighborhoodList = NULL;
    tMSData *currPtr = NULL;
    tMSData    *previousPtr = NULL;
    tMSData *ptrOfNoReturn = NULL;
    tMSData *currPeakPtr = NULL;
    tMSData *peakPtrOfNoReturn = NULL;
    INT_4     dataNum;
    INT_4     range = 50;    /*This is the range (+/- this num) over which the noise is determined*/
    INT_4     deltaMassNum;
    INT_4    calcDataNum;
    REAL_4     signalToNoise, intensity, noise, deltaMass, deltaMassSum, firstDataPoint;

    
    
/*    
    I ran in to trouble by assuming that profile data would have a continuous non-zero intensity.
    However, it seems that Sciex data and probably others has long stretches of zeroed data.
    This had the effect of having a higher calculated noise value, which caused real ions
    to be excluded using the original s/n exclusion criteria established for continuous
    non-zero data.  To overcome this, I need to figure out what the average data spacing is, 
    and then use this to figure out the noise level.
*/
    
    if (inMSDataList->numObjects < 2) return;
    if (inPeakList->numObjects < 2) return;

    previousPtr = &inMSDataList->mass[0];
    currPtr = &inMSDataList->mass[1];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    
    deltaMass = 0;
    deltaMassSum = 0;
    deltaMassNum = 0;
    
    
    if(gParam.CIDfileType == 'X' || gParam.CIDfileType == 'D')    /*QTof .dta data*/
    {
        while(currPtr < ptrOfNoReturn)
        {
            if(currPtr->intensity != 0 && previousPtr->intensity != 0)    /*only look at non-zero data points*/
            {
                deltaMass = currPtr->mOverZ - previousPtr->mOverZ;
                if(deltaMass <= 2)    /*dta files seem to have "ions" spaced every u or so*/
                {
                    deltaMassSum += deltaMass;
                    deltaMassNum++;
                }
            }
            currPtr++;
            previousPtr++;
        }
        
        if(deltaMass <= 0 || deltaMassNum < 25)    
        {
            return;    /*if the dta data has been created so that there are few ions less than 2 da apart,
                    then its difficult to assess the noise level*/
        }
        deltaMass = deltaMassSum / (REAL_4)deltaMassNum;
    }
    else
    {
        while(currPtr < ptrOfNoReturn)
        {
            if(currPtr->intensity != 0 && previousPtr->intensity != 0)    /*only look at non-zero data points*/
            {
                deltaMass = currPtr->mOverZ - previousPtr->mOverZ;
                if(deltaMass <= (gParam.peakWidth * 0.5))
                {
                    deltaMassSum += deltaMass;
                    deltaMassNum++;
                }
            }
            currPtr++;
            previousPtr++;
        }

        if(deltaMassNum <= 0)    /*if deltaMass not found try setting the window a bit wider*/
        {
            previousPtr = &inMSDataList->mass[0];
            currPtr = &inMSDataList->mass[1];
            deltaMass = 0;
            deltaMassSum = 0;
            deltaMassNum = 0;
            while(currPtr < ptrOfNoReturn)
            {
                if(currPtr->intensity != 0 && previousPtr->intensity != 0)    /*only look at non-zero data points*/
                {
                    deltaMass = currPtr->mOverZ - previousPtr->mOverZ;
                    if(deltaMass <= gParam.peakWidth)
                    {
                        deltaMassSum += deltaMass;
                        deltaMassNum++;
                    }
                }
                currPtr++;
                previousPtr++;
            }
        }
        if(deltaMassNum == 0)
            return;    /*avoid divide by zero*/
        deltaMass = deltaMassSum / (REAL_4)deltaMassNum;
    }

    if(deltaMass <= 0)
        return;    /*to prevent divide by zero below*/
    
    
    neighborhoodList = (tMSDataList *) CreateNewList( sizeof(tMSData), 1000, 1000 );
    if (!neighborhoodList) 
    {
        printf("Ran out of memory in CheckSignalToNoise()!\n");
        exit(1);
    }


/*    Start looking at each peak*/
    currPeakPtr = &inPeakList->mass[0];
    peakPtrOfNoReturn = &inPeakList->mass[inPeakList->numObjects];
    while(currPeakPtr < peakPtrOfNoReturn)
    {
/*    First find the ion's neighbors, excluding the ion itself*/
        firstDataPoint = 0;
        dataNum = 0;
        calcDataNum = 0;
        intensity = 0;
        signalToNoise = 0;
        currPtr = &inMSDataList->mass[0];
        
        while(currPtr < ptrOfNoReturn)
        {
            if(currPtr->intensity != 0)    /*dont look at data points w/ zero intensity*/
            {
                if(currPtr->mOverZ > currPeakPtr->mOverZ + range)
                {
                    break;
                }
                else 
                {
                    if (currPtr->mOverZ > currPeakPtr->mOverZ - range
                        && (currPtr->mOverZ < currPeakPtr->mOverZ - gParam.peakWidth
                            || currPtr->mOverZ > currPeakPtr->mOverZ + gParam.peakWidth))
                    {
                        if (!AddToList(currPtr, neighborhoodList))
                        {
                            printf("Ran out of memory in CheckSignalToNoise()!\n");
                            exit(1);
                        }
                    }
                }
            }
            currPtr++;
        }
        
    
        if(neighborhoodList->numObjects > 0)
        {    
            /* Sort the neighborhoodList in order of decreasing intensity */
            qsort(neighborhoodList->mass,(size_t)neighborhoodList->numObjects,
                  (size_t)sizeof(tMSData),IntensityDescendSortFunc);
        
            /* The noise is the median intensity in the list */    
            noise = neighborhoodList->mass[(INT_4)(neighborhoodList->numObjects/2)].intensity;
            
            signalToNoise = (currPeakPtr->intensity) / noise;
        }
        else
        {
            signalToNoise = 100;    /*if there are no data points for measuring noise then give high s/n*/
        }
        
        /* less than 50 data points used to determine the noise level is considered insufficient */
        if ((signalToNoise < SIGNAL_NOISE && neighborhoodList->numObjects > 50) 
            || signalToNoise == 0)    
        {
            /*dont get rid of immonium ions*/
            if(currPeakPtr->mOverZ > 148 && (currPeakPtr->mOverZ < 158.5 || currPeakPtr->mOverZ > 159.5))
            {
                RemoveFromList(currPeakPtr - &inPeakList->mass[0], inPeakList);
                peakPtrOfNoReturn--;
                currPeakPtr--;
            }
        }
    
        neighborhoodList->numObjects = 0;
        currPeakPtr++;
    }
    
    if (neighborhoodList) DisposeList(neighborhoodList);
    
    return;
}

/***********************************GuessAtTheFragmentPattern*******************************
*
*    If the default ("D") is used for the fragment pattern, then the program takes a stab at
*    figuring out if the data is from an LCQ or a TSQ.  It does this by assuming that TSQ
*    data always starts at a mass lower than 0.2 x the precursor m/z.  If changes occur to 
*    the LCQ that permit lower start masses in MS/MS data, then this will need to be changed.
*
*/
void GuessAtTheFragmentPattern()
{
    REAL_4 precursor;
    
    precursor = (gParam.peptideMW + (gParam.chargeState * gElementMass[HYDROGEN])) / 
                gParam.chargeState;
                
    precursor = precursor * 0.2;
    
    if(precursor > msms.scanMassLow)
    {
        if(gParam.fragmentErr >= 0.15 * gMultiplier)
        {
            gParam.fragmentPattern = 'T'; /* TSQ (triple quad) */
        }
        else
        {
            gParam.fragmentPattern = 'Q'; /* Q-TOF */
        }
    }
    else
    {
        gParam.fragmentPattern = 'L'; /* LCQ (ion trap) */
    }


    return;
}

/***********************************DefectCorrection****************************************
*
*    The observed mass defect is compared to the theoretical mass defect, and corrections are
*    made.  I've found that my LCQ data can have slightly lower than expected masses at higher
*    m/z; for example, an ion at 1100.2 is really at 1100.6.  Since the low m/z end is often
*    ok, I cannot use a mass offset across the entire m/z range.  This more intelligent defect
*    correction should allow for the use of tighter error tolerances (+/- 0.5 Da).
*
*/
void DefectCorrection(tMSDataList *inPeakList)
{
    tMSData     *currPtr = NULL;
    tMSData     *previousPtr = NULL;
    tMSData     *ptrOfNoReturn = NULL;
    INT_4 integerMass[200], ionNum, i;
    REAL_4 mass[200], defect[200], precursor; 
    REAL_8 aObserved, bObserved, sumOfXSquared, sumOfY, sumOfX;
    REAL_8 sumOfXTimesY, aTheory = 0, bTheory = 0.00050275;
    REAL_8 numerator, denominator, observedDefect, theoryDefect, additionalDefect, testMass;
    char doublyCharged[200];
    
    precursor = (gParam.peptideMW + (gParam.chargeState * gElementMass[HYDROGEN])) / 
                gParam.chargeState;
    
/*    Create mass and integerMass arrays from linked list data*/
    ionNum = 0;
    currPtr = &inPeakList->mass[0];
    ptrOfNoReturn = &inPeakList->mass[inPeakList->numObjects];
    while(currPtr < ptrOfNoReturn)
    {
        mass[ionNum] = currPtr->mOverZ;
        theoryDefect = bTheory * mass[ionNum];          /*added 8/5/03*/
        integerMass[ionNum] = mass[ionNum] - theoryDefect + 0.5;        /*added -theoryDefect + 0.5 8/5/03*/
        defect[ionNum] = mass[ionNum] - integerMass[ionNum];
        ionNum++;
        if(ionNum >= 200)
            return;    /*if too many ions, then return w/o making corrections*/
        currPtr++;
    }
    
/*    Find potential doubly-charged ions, and mark them so that they are not changed.*/
    for(i = 0; i < ionNum; i++)
    {
        doublyCharged[i] = 0;    /*initialize*/
    }
    if(gParam.chargeState == 2)    
    {
        for(i = 0; i < ionNum; i++)
        {
            if(mass[i] > precursor - (3 * gMonoMass[W] / 2) - gParam.fragmentErr &&
                mass[i] < precursor + gParam.fragmentErr)
            {
                doublyCharged[i] = 1;
            }
        }
            /*for(j = 0; j < ionNum; j++)
            {
                if(((mass[i] * 2) - gElementMass[HYDROGEN] <= mass[j] + gParam.fragmentErr)
                    && ((mass[i] * 2) - gElementMass[HYDROGEN] >= mass[j] - gParam.fragmentErr))
                {
                    doublyCharged[i] = 1;
                }
            }*/
    }
/*    Calculated the mass defect for each data point*/
   /* for(i = 0; i < ionNum; i++)
    {
        defect[i] = mass[i] - integerMass[i];
        if(integerMass[i] < 700 && doublyCharged[i] == 0)    
        {
            if(defect[i] > 0.7)    //for low mass, if error is in other direction, the defect should be negative.
            {
                defect[i] = 0;
                integerMass[i] = mass[i] + 0.5;
                mass[i] = integerMass[i];    //bump the value up to at least the integer value
            }
        }
    }*/
    
/*    Now for the least squares calculation of a straight line.*/
    sumOfX = 0;    /*calc sumOfX*/
    for(i = 0; i < ionNum; i++)
    {
        sumOfX += mass[i];
    }
    
    sumOfY = 0;    /*calc sumOfY*/
    for(i = 0; i < ionNum; i++)
    {
        sumOfY += defect[i];
    }
    
    sumOfXSquared = 0;    /*calc sumOfXSquared*/
    for(i = 0; i < ionNum; i++)
    {
        sumOfXSquared = sumOfXSquared + (mass[i] * mass[i]);
    }
    
    sumOfXTimesY = 0;    /*calc of sumOfXTimesY*/
    for(i = 0; i < ionNum; i++)
    {
        sumOfXTimesY = sumOfXTimesY + (mass[i] * defect[i]);
    }
    
/*    From equation y = bx + a, calc a first*/
    numerator = (sumOfXSquared * sumOfY) - (sumOfX * sumOfXTimesY);
    denominator = (ionNum * sumOfXSquared) - (sumOfX * sumOfX);
    if(denominator == 0)
    {
        printf("DefectCorrection:  denominator = 0! Quitting.\n");
        exit(1);
    }
    aObserved = numerator / denominator;
    
/*    Now calculate b*/
    numerator = (ionNum * sumOfXTimesY) - (sumOfX * sumOfY);
    denominator = (ionNum * sumOfXSquared) - (sumOfX * sumOfX);
    if(denominator == 0)
    {
        printf("DefectCorrection:  denominator = 0\n");
        exit(1);
    }
    bObserved = numerator / denominator;
    
/*    Now make the mass corrections.*/
    for(i = 0; i < ionNum; i++)
    {
        if(mass[i] > 0 && doublyCharged[i] == 0)
        {
            testMass = (mass[i] * bTheory) - defect[i];
            if(testMass > 0.15)    /*if already close, then don't bother*/
            { 
                observedDefect = (bObserved * mass[i]) + aObserved;
                theoryDefect = (bTheory * mass[i]) + aTheory;
                additionalDefect = theoryDefect - observedDefect;
                if(additionalDefect < 0)
                {
                    additionalDefect = (theoryDefect - defect[i]) / 2;
                }
                if(additionalDefect > 0)
                {
                    mass[i] = mass[i] + additionalDefect;       
                }
            }
            testMass = defect[i] - (mass[i] * bTheory);
            if(testMass > 0.15) 
            {
                observedDefect = (bObserved * mass[i]) + aObserved;
                theoryDefect = (bTheory * mass[i]) + aTheory;
                additionalDefect = theoryDefect - observedDefect;
                if(additionalDefect > 0)
                {
                    additionalDefect = (theoryDefect - defect[i]) / 2;
                }
                if(additionalDefect < 0)
                {
                    mass[i] = mass[i] + additionalDefect;
                }
            }
        }
    }
    
    currPtr = &inPeakList->mass[0];
    i = 0;
    while(currPtr < ptrOfNoReturn)
    {
        currPtr->mOverZ = mass[i];
        i++;
        currPtr++;
    }


    return;
}

/***********************************NormalizeIntensity**************************************
*
*    This function normalizes the CID data intensity to the fourth most intense ion.  It
*    seems to not be unusual for LCQ data to have a few favored fragmentation pathways that
*    result in a couple of intense ions.  In order to increase the spread in the scoring of
*    candidate sequences, these intense ions are reduced to the intensity of the fourth most
*    abundant ion.
*
*/
void NormalizeIntensity(tMSDataList *inMSDataList)
{

    /* Sort the MSData in order of decreasing intensity */
    qsort(inMSDataList->mass,(size_t)inMSDataList->numObjects,
          (size_t)sizeof(tMSData),IntensityDescendSortFunc);

    inMSDataList->mass[0].intensity = inMSDataList->mass[3].intensity;
    inMSDataList->mass[1].intensity = inMSDataList->mass[3].intensity;
    inMSDataList->mass[2].intensity = inMSDataList->mass[3].intensity;
    
    /* Resort the MSData in order of increasing mass */
    qsort(inMSDataList->mass,(size_t)inMSDataList->numObjects,
          (size_t)sizeof(tMSData),MassAscendSortFunc);
    

    return;
}

/***********************************CentroidOrProfile***************************************
*
*    The mass differences between adjacent data points are calculated, and a standard deviation
*    for these differences is used to establish if the data is profile (very little deviation)
*    or centroided data (large deviation).
*
*/
void CentroidOrProfile(tMSDataList *inMSDataList)
{
    tMSData     *currPtr;
    tMSData     *prevPtr;
    tMSData     *ptrOfNoReturn;
    INT_4         threshold = 0;
    INT_4        numberOfMassDiffs = 0;
    INT_4        i;
    REAL_8         massDiff[100];
    REAL_8        massDiffAv = 0;
    REAL_8        standardDeviation = 0;
    
    
    if (inMSDataList->numObjects < 2) return; 
        
    threshold = FindThreshold(inMSDataList);

    prevPtr = &inMSDataList->mass[0];
    currPtr = &inMSDataList->mass[1];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
        
    while (currPtr < ptrOfNoReturn && numberOfMassDiffs < 100) 
    {

        if(currPtr->intensity > threshold && prevPtr->intensity > threshold)
        {
            massDiff[numberOfMassDiffs] = (currPtr->mOverZ) - (prevPtr->mOverZ);
            massDiffAv += massDiff[numberOfMassDiffs];
            numberOfMassDiffs++;  
        }
        currPtr++;
        prevPtr++;
    }
    
    if(numberOfMassDiffs == 0) return; /* Avoid potential divide-by-zero */
    
    massDiffAv = massDiffAv / numberOfMassDiffs;
    
    for(i = 0; i < numberOfMassDiffs; i++)
    {
        standardDeviation = standardDeviation + 
                            ((massDiff[i] - massDiffAv) * (massDiff[i] - massDiffAv));
    }
    standardDeviation = standardDeviation / numberOfMassDiffs;
    standardDeviation = sqrt(standardDeviation);
    
    if(massDiffAv < 1)
    {
        if(standardDeviation < 0.5)
        {
            gParam.centroidOrProfile = 'P';
        }
        else
        {
            gParam.centroidOrProfile = 'C';
        }
    }
    else
    {
        gParam.centroidOrProfile = 'C';
    }

    return;
}

/***********************************FindBYGoldenBoys****************************************
*
*       For LCQ data, find b/y ion pair complements that represent cleavage at the same amide
*       bond.  Designate these as golden boy ions that are difficult to get rid of simply on the
*       basis of ion intensity.
*
*/

void FindBYGoldenBoys(tMSDataList *inMSDataList)
{
        REAL_4  *massList, *mass2List, testMass, *pairMass, avePairMass;
        REAL_8  stDev;
        INT_4   maxIonNum = gGraphLength / gMultiplier;
        INT_4   ionNum, i, j, pairNum;
        char    *goodOrBad;
        
        tMSData         *currPtr = NULL;
    tMSData             *ptrOfNoReturn = NULL;
    
/*    Set aside some space for these arrays.*/
    massList = (float *) malloc(maxIonNum * sizeof(REAL_4));
    if(massList == NULL)
    {
        printf("FindBYGoldenBoys:  Out of memory.");
        exit(1);
    }
    mass2List = (float *) malloc(maxIonNum * sizeof(REAL_4));
    if(mass2List == NULL)
    {
        printf("FindBYGoldenBoys:  Out of memory.");
        exit(1);
    }
    pairMass = (float *) malloc(maxIonNum * sizeof(REAL_4));
    if(massList == NULL)
    {
        printf("FindBYGoldenBoys:  Out of memory.");
        exit(1);
    }
    goodOrBad = (char *) malloc(maxIonNum * sizeof(char));
    if(goodOrBad == NULL)
    {
        printf("FindBYGoldenBoys:  Out of memory.");
        exit(1);
    }
    
/*    Initialize some variables.*/
        currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    while(currPtr < ptrOfNoReturn)
    {
        currPtr->normIntensity = 0;        /*set normIntensity field to zero*/
        currPtr++;
    }
    
    ionNum              = 0;
    pairNum     = 0;
    avePairMass = 0;
    stDev               = 0;
    
    for(i = 0; i < maxIonNum; i++)
    {
        massList[i]  = 0;
        mass2List[i] = 0;
        goodOrBad[i] = 0;
    }
        
/*    Fill in the mass array assuming singly-charged ions.*/
    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    while(currPtr < ptrOfNoReturn)
    {
        massList[ionNum] = currPtr->mOverZ;
        ionNum++;
        currPtr++;
    }

/*    Fill in the mass array assuming doubly-charged ions.*/
        if(gParam.chargeState > 2)
        {
                for(i = 0; i < ionNum; i++)
                {
                        testMass = massList[i] * 2 - gElementMass[HYDROGEN];
                        if(testMass < gParam.peptideMW - gMonoMass[G] + gParam.fragmentErr &&
                                testMass > 700) /*doubly charged ions have to be in the right mass range*/
                        {
                        mass2List[i] = testMass;
                    }
                    else
                    {
                        mass2List[i] = 0;       /*zero is a flag that it could not be a doubly-charged ion*/
                    }
                }
        }

/*      Find a suitable error*/
        /*assume all ions are singly-charged*/
        for(i = 0; i < ionNum - 1; i++)
        {
                for(j = i + 1; j < ionNum; j++)
                {
                        testMass = massList[i] + massList[j] - 2 * gElementMass[HYDROGEN];
                        if(testMass <= gParam.peptideMW + gParam.peptideErr * 2 &&
                                testMass >= gParam.peptideMW - gParam.peptideErr * 2)
                        {
                                pairMass[pairNum] = testMass;   /*collect the data*/
                                pairNum++;
                        }
                }
        }
        /*now assume that one of the pair is doubly-charged*/
        if(gParam.chargeState > 2)
        {
                for(i = 0; i < ionNum - 1; i++)
                {
                        for(j = i + 1; j < ionNum; j++)
                        {
                                if(mass2List[j] > massList[i])
                                {
                                        testMass = massList[i] + mass2List[j] - 2 * gElementMass[HYDROGEN];
                                        if(testMass <= gParam.peptideMW + gParam.peptideErr * 2 &&
                                                testMass >= gParam.peptideMW - gParam.peptideErr * 2)
                                        {
                                                pairMass[pairNum] = testMass;   /*collect the data*/
                                                pairNum++;
                                        }
                                }
                        }
                }
        }
        
        /*now calculate the stDev error*/
        if(pairNum < 3)
        {
                stDev = gParam.peptideErr;      /*not enough pairs of ions to determine standard deviation
                                                                        so it gets defined as the peptide error from the params file*/
        }
        else    /*enough data to take a stab at finding standard deviation*/
        {
                for(i = 0; i < pairNum; i++)
                {
                        avePairMass += pairMass[i];
                }
                avePairMass = avePairMass / pairNum;
                
                for(i = 0; i < pairNum; i++)
                {
                        stDev += ((pairMass[i] - avePairMass) * (pairMass[i] - avePairMass));
                }
                stDev = stDev / (pairNum - 1);
                stDev = sqrt(stDev);
        
        }
        
        /*reality checks*/
        if(stDev > 2 * gParam.peptideErr)
        {
                stDev = 2 * gParam.peptideErr;  /*don't let the error be too big*/
        }
        else if(stDev < 0.5 * gParam.peptideErr)
        {
                stDev = 0.5 * gParam.peptideErr;        /*or too small*/
        }


        /*find pairs of masses that are close to the peptide molecular weight*/
        /*first assume the ions are all singly-charged*/
        pairNum = 0;
        for(i = 0; i < ionNum - 1; i++)
        {
                for(j = i + 1; j < ionNum; j++)
                {
                        testMass = massList[i] + massList[j] - 2 * gElementMass[HYDROGEN];
                        if(testMass <= gParam.peptideMW + stDev &&
                                testMass >= gParam.peptideMW - stDev)
                        {
                                goodOrBad[i] = 1;
                                goodOrBad[j] = 1;
                                pairNum++;
                        }
                }
        }
        /*now assume that one of them is doubly-charged*/
        if(gParam.chargeState > 2)
        {
                for(i = 0; i < ionNum - 1; i++)
                {
                        for(j = i + 1; j < ionNum; j++)
                        {
                                if(mass2List[j] > massList[i])
                                {
                                        testMass = massList[i] + mass2List[j] - 2 * gElementMass[HYDROGEN];
                                        if(testMass <= gParam.peptideMW + stDev &&
                                                testMass >= gParam.peptideMW - stDev)
                                        {
                                                goodOrBad[i] = 1;
                                                goodOrBad[j] = 1;
                                                pairNum++;
                                        }
                                }
                        }
                }
        }
        
/*
    The normIntensity field for the ms data pointers contain 0 if not a goldenBoy and a 1 if
    it is.
*/

    for(i = 0; i < ionNum; i++)
    {
        if(goodOrBad[i] != 0)
        {
            currPtr = &inMSDataList->mass[0];
            ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
            while(currPtr < ptrOfNoReturn)
            {

                if(massList[i] == currPtr->mOverZ)
                {
                    currPtr->normIntensity = 1;
                    break;
                }
                currPtr++;
            }
        }
    }

/*      free the variables*/
        free(massList);
        free(mass2List);
        free(pairMass);
        free(goodOrBad);
        
        return;
}

/***********************************FindTheGoldenBoys***************************************
*
*    Two arrays are set up, one that contains the ion m/z and another that is either 1 or 0,
*    depending on whether the ion is a golden boy or not (golden boys are ions that can be
*    connected by single amino acid jumps to either 147 or 175, and are m/z less than the 
*    precursor ion).  By searching through the ms data list, I start at 147 and make one aa jumps.
*    If an ion is present then the same index position for the second array is reset to 1.
*
*/
void FindTheGoldenBoys(tMSDataList *inMSDataList)
{
    REAL_4 *massList, precursor, lys, arg, plusArgLys[2 * AMINO_ACID_NUMBER];
    REAL_4 testMass, err;
    char *goodOrBad, test;
    INT_4 i, j, k, ionNum, *intensityList, cutoff, goldenBoyNum;
    INT_4 maxIonNum = gGraphLength / gMultiplier;    /*don't need GRAPH_LENGTH numbers of ions for the
                                                    arrays of massList, goodOrBad, and intensityList*/
    tMSData         *currPtr = NULL;
    tMSData         *ptrOfNoReturn = NULL;
    
    
/*    Set aside some space for these arrays.*/
    massList = (float *) malloc(maxIonNum * sizeof(REAL_4));
    if(massList == NULL)
    {
        printf("FindTheGoldenBoys:  Out of memory.");
        exit(1);
    }
    goodOrBad = (char *) malloc(maxIonNum * sizeof(char));
    if(goodOrBad == NULL)
    {
        printf("FindTheGoldenBoys:  Out of memory.");
        exit(1);
    }
    intensityList = (int *) malloc(maxIonNum * sizeof(INT_4));
    if(intensityList == NULL)
    {
        printf("FindTheGoldenBoys:  Out of memory.");
        exit(1);
    }


/*    Initialize some variables.*/
    lys = gMonoMass[K] + 3 * gElementMass[HYDROGEN] + gElementMass[OXYGEN];
    arg = gMonoMass[R] + 3 * gElementMass[HYDROGEN] + gElementMass[OXYGEN];
    
    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    while(currPtr < ptrOfNoReturn)
    {
        currPtr->normIntensity = 0;        /*set normIntensity field to zero*/
        currPtr++;
    }
    for(i = 0; i < maxIonNum; i++)
    {
        massList[i] = 0;
        intensityList[i] = 0;
        goodOrBad[i] = 0;
    }
    for(i = 0; i < gAminoAcidNumber; i++)
    {
        plusArgLys[i] = lys + gMonoMass[i];
    }
    j = 0;
    for(i = gAminoAcidNumber; i < 2 * gAminoAcidNumber; i++)
    {
        plusArgLys[i] = arg + gMonoMass[j];
        j++;
    }
    precursor = (gParam.peptideMW + gParam.chargeState * gElementMass[HYDROGEN]) / gParam.chargeState;
    ionNum = 0;
    err = gParam.fragmentErr / 4;     /*The error between ions is less than the error of the 
                                    calc vs obsd masses.*/
    
/*    Fill in the mass array.*/
    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    while(currPtr < ptrOfNoReturn)
    {
        if(currPtr->mOverZ > lys - gParam.fragmentErr &&
            currPtr->mOverZ < precursor - gParam.fragmentErr * 2 &&
            currPtr->mOverZ < GOLDEN_BOY_MAX)
        {
            massList[ionNum] = currPtr->mOverZ;
            intensityList[ionNum] = currPtr->intensity;
            ionNum++;
        }
        currPtr++;
    }
    

/*
    Seed the array goodOrBad by putting a 1 in the position that have 147 or 175.  If both
    are absent, then I seed with the array plusArgLys.
*/
    test = 1;
    for(i = 0; i < ionNum; i++)
    {
        if((massList[i] <= lys + gParam.fragmentErr) && 
            (massList[i] >= lys - gParam.fragmentErr))
        {
            goodOrBad[i] = 1;    /*you found 147*/
            test = 0;
            break;
        }
    }
    for(i = 0; i < ionNum; i++)
    {
        if((massList[i] <= arg + gParam.fragmentErr) && 
            (massList[i] >= arg - gParam.fragmentErr))
        {
            goodOrBad[i] = 1;    /*you found 175*/
            test = 0;
            break;
        }
    }
    if(test)
    {
        for(i = 0; i < ionNum; i++)
        {
            for(j = 0; j < 2 * gAminoAcidNumber; j++)
            {
                if((massList[i] <= plusArgLys[j] + gParam.fragmentErr) &&
                    (massList[i] >= plusArgLys[j] - gParam.fragmentErr))
                {
                    goodOrBad[i] = 1;
                }
            }
        }
    }
    
/*
    Start at the low mass end and work up trying to connect y ions.  Anything that can be
    connected to 147 or 175 is given a value of 1 in the goodOrBad array.
*/

    for(i = 0; i < ionNum - 1; i++)
    {
        if(goodOrBad[i] != 0)
        {
            for(j = i + 1; j < ionNum; j++)
            {
                testMass = massList[j] - massList[i];
                if((testMass <= gMonoMass[W] + err) &&
                    (testMass >= gMonoMass[G] - err))
                {
                    for(k = 0; k < gAminoAcidNumber; k++)
                    {
                        if((testMass <= gMonoMass[k] + err) &&
                            (testMass >= gMonoMass[k] - err))
                        {
                                if(massList[i] <= lys + err && massList[i] >= lys - err)
                                {       
                                        goodOrBad[j] = -1;      /*tag y2 ions so that they don't get tossed*/
                                }
                                else if(massList[i] <= arg + err && massList[i] >= arg - err)
                                {
                                        goodOrBad[j] = -1;      /*tag y2 ions so that they don't get tossed*/
                                }
                                else
                                {
                                goodOrBad[j] = 1;
                            }
                        }
                    }
                }
            }
        }
    }

/*      Make sure we don't lose the y1 ions by marking them as -1*/
        for(i = 0; i < ionNum; i++)
        {
                if(massList[i] <= lys + err && massList[i] >= lys - err)
        {       
                goodOrBad[i] = -1;      /*tag y2 ions so that they don't get tossed*/
        }
        if(massList[i] <= arg + err && massList[i] >= arg - err)
        {
                goodOrBad[i] = -1;      /*tag y2 ions so that they don't get tossed*/
        }
    }
                                
/*
    Eliminate low intensity goldenBoys from the goldenBoy list.
*/

    cutoff = 0;
    goldenBoyNum = 0;
    for(i = 0; i < ionNum; i++)
    {
        if(goodOrBad[i] == 1)
        {
            cutoff += intensityList[i];
            goldenBoyNum++;
        }
    }
    if(goldenBoyNum == 0) return;
    cutoff = (cutoff / goldenBoyNum) * GOLDEN_BOY_CUTOFF;
    
    for(i = 0; i < ionNum; i++)
    {
        if(goodOrBad[i] == 1)
        {
            if(intensityList[i] < cutoff)
            {
                 goodOrBad[i] = 0;
            }
        }
    }
    
    /*change the -1 values that mark y2 ions back to +1 values so that they get counted as goldenboys*/
    for(i = 0; i < ionNum; i++)
    {
        if(goodOrBad[i] == -1)
        {
                goodOrBad[i] = 1;
        }
    }
    
/*
    The normIntensity field for the ms data pointers contain 0 if not a goldenBoy and a 1 if
    it is.
*/

    for(i = 0; i < ionNum; i++)
    {
        if(goodOrBad[i] != 0)
        {
            currPtr = &inMSDataList->mass[0];
            ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
            while(currPtr < ptrOfNoReturn)
            {

                if(massList[i] == currPtr->mOverZ)
                {
                    currPtr->normIntensity = 1;
                    break;
                }
                currPtr++;
            }
        }
    }
        
/*    Free the arrays.*/
    free(massList);
    free(goodOrBad);
    free(intensityList);
    return;
}

/********************************GetPeakWidth***********************************************
*
*    GetPeakWidth finds the peak width when the auto-peakWidth option is chosen by setting
*    the peakWidth to zero in the .params file.
*
*/

REAL_4 GetPeakWidth(tMSDataList *inMSDataList)
{

    tMSDataList     *bigTreeList = NULL;
    INT_4            i;
    tMSData         *currPtr;
    tMSData         *ptrOfNoReturn;
    REAL_4            precursor;
    INT_4            topIndex;
    INT_4            halfIntensity;
    REAL_4            slope;
    REAL_4            intercept;
    REAL_4            leadingMass;
    REAL_4            trailingMass;
    REAL_4            peakWidth;
    REAL_4            peakWidthSum = 0;
    REAL_4            peakWidthSquaredSum = 0;
    REAL_4            avgPeakWidth;
    REAL_4            stdDev;
    REAL_4            tolerance;
    
    
    if (inMSDataList->numObjects == 0)
    {
        printf("GetPeakWidth: no data in inMSDataList\n");
        exit(1);
    }
    
    precursor = (gParam.peptideMW + gParam.chargeState) / gParam.chargeState;

    /* Sort the MSData in order of decreasing intensity */
    qsort(inMSDataList->mass,(size_t)inMSDataList->numObjects,
          (size_t)sizeof(tMSData),IntensityDescendSortFunc);


    bigTreeList = (tMSDataList *) CreateNewList( sizeof(tMSData), 10, 1 );
    if (!bigTreeList) 
    {
        printf("Ran out of memory in GetPeakWidth()!\n");
        exit(1);
    }

    /* Make bigTrees the top ten most intense peaks that are not the precursor. */
    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    
    while (currPtr < ptrOfNoReturn && bigTreeList->numObjects < 10) 
    {
        /* Only gather peaks below 600 and don't take the precursor */
        if (currPtr->mOverZ < 600 
            && (currPtr->mOverZ < precursor - 2.0
                || currPtr->mOverZ > precursor + 2.0))
/* XXXXXX WHICH SHOULD I USE????? JAT
//            && (currPtr->mOverZ < precursor - gParam.peptideErr
//                || currPtr->mOverZ > precursor + gParam.peptideErr))
*/
        {
            /* Don't take a peak that overlaps one already on the list */
            for (i = 0; i < bigTreeList->numObjects; i++)
            {
                if (currPtr->mOverZ > bigTreeList->mass[i].mOverZ - 5.0
                    &&     currPtr->mOverZ < bigTreeList->mass[i].mOverZ + 5.0)    
                {
                    break; /* Too close to a tree we already have */
                }
            }
            if (i == bigTreeList->numObjects) 
            {    
                if(!AddToList(currPtr, bigTreeList)) 
                {
                    printf("Ran out of memory in GetPeakWidth()!\n");
                    exit(1);
                }
            }
        }            
        currPtr++;
    }
    
    /* Resort the MSData in order of increasing mass */
    qsort(inMSDataList->mass,(size_t)inMSDataList->numObjects,
          (size_t)sizeof(tMSData),MassAscendSortFunc);


    /* Remove big tree peaks if they are < 10% of the highest peak. */
    for (i = 1; i < bigTreeList->numObjects; i++)
    {
        if (bigTreeList->mass[i].intensity < 0.10 * bigTreeList->mass[0].intensity)
        {
            RemoveFromList(i, bigTreeList);
            i--;
        }
    }
    
    /* Now find the half-height peak width of each remaining bigTree. */
    for (i = 0; i < bigTreeList->numObjects; i++)
    {    
        currPtr = &inMSDataList->mass[0];
        ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
        
        while (currPtr < ptrOfNoReturn) 
        {
            if (currPtr->mOverZ == bigTreeList->mass[i].mOverZ) break;        
            currPtr++;
        }    
        
        topIndex = currPtr - &inMSDataList->mass[0];
        halfIntensity = (INT_4)(0.5 * bigTreeList->mass[i].intensity);

        /*
        //                   peak top
        //                      |
        //     leading          .        trailing
        //       edge          . .         edge
        //                    .   .
        //    ______________ . ___ . ______________ 50% peak height
        //                  .       .
        //                 .         .
        //               .             .
        //     . . . . .     |-----|     . . . . . 
        //                  peak width
        */


        /* ----------- Find the leading edge 50% mass value ----------- */
        while (currPtr >= &inMSDataList->mass[0]) 
        {
            if (currPtr->intensity < halfIntensity) break;
            currPtr--;
        }
        
        /* Use the two points that flank the half-intensity value to
           calculate the mass at exactly half intensity. */
        slope = (REAL_4)(((currPtr + 1)->intensity - currPtr->intensity)/
                                                 ((currPtr + 1)->mOverZ - currPtr->mOverZ));
                                                 
        intercept = (REAL_4)((currPtr->intensity) - (currPtr->mOverZ * slope));
        
        leadingMass = (REAL_4)((halfIntensity - intercept)/slope);
        
        /* ----------- Find the trailing edge 50% mass value ----------- */
        currPtr = &inMSDataList->mass[topIndex];

        while (currPtr < ptrOfNoReturn) 
        {
            if (currPtr->intensity < halfIntensity) break;
            currPtr++;
        }
        
        /* Use the two points that flank the half-intensity value to
           calculate the mass at exactly half intensity. */
        slope = (REAL_4)((currPtr->intensity - (currPtr - 1)->intensity)/
                                                 (currPtr->mOverZ - (currPtr - 1)->mOverZ));
                                                 
        intercept = (REAL_4)(((currPtr - 1)->intensity) - ((currPtr - 1)->mOverZ * slope));
        
        trailingMass = (REAL_4)((halfIntensity - intercept)/slope);
        
        /* XXXXXXXXX Why multiply by two? - JAT */
        peakWidth = (REAL_4)(trailingMass - leadingMass) * 2;
        peakWidthSum += peakWidth;
        peakWidthSquaredSum += peakWidth * peakWidth;

        /* Replace the mass with the peak width (for throwing out outliers) */
        bigTreeList->mass[i].mOverZ = (REAL_4)(trailingMass - leadingMass) * 2;        
    }


    if (bigTreeList->numObjects > 0)
    {
        /* Calculate the average peak width for the big trees. */
        avgPeakWidth = (REAL_4)(peakWidthSum/bigTreeList->numObjects);

        /* Calculate the standard deviation. */
        stdDev = sqrt((peakWidthSquaredSum/bigTreeList->numObjects) - 
                      (avgPeakWidth * avgPeakWidth));
                      
        /* Throw away peaks too far away from the average. */
        tolerance = 1.5 * stdDev;
        peakWidthSum = 0;
        for (i = 0; i < bigTreeList->numObjects; i++)
        {    
            /* Remember that the big tree mass in now really the peak width */
            if (bigTreeList->mass[i].mOverZ < (avgPeakWidth - tolerance) 
                || bigTreeList->mass[i].mOverZ > (avgPeakWidth + tolerance))
            {
                RemoveFromList(i, bigTreeList);
                i--;
            }
            else
            {
                peakWidthSum += bigTreeList->mass[i].mOverZ;
            }
        }
        avgPeakWidth = (REAL_4)(peakWidthSum/bigTreeList->numObjects);
    }
    else 
    {
        avgPeakWidth = 3;
    }
    
    if(avgPeakWidth >= 2.5)    
    {
        /*For the broad peaks, I force the fragment error to be at least 1 Da.*/
        if(gParam.fragmentErr < 1.0)
        {
            gParam.fragmentErr = 1;
        }
    }
    else
    {
        if(avgPeakWidth >= 1.5)
        {
            if(gParam.fragmentErr < 0.75)
            {
                gParam.fragmentErr = 0.75;
            }
        }
        else
        {
            /* XXXXXXX Should this be done when data is high res? JAT */
            if(gParam.fragmentErr < 0.5)
            {
                gParam.fragmentErr = 0.5;
            }
        }
    }
    
    
    avgPeakWidth = avgPeakWidth / 2;    /* the program anticipates a number that is half of the 
                                           actual peak width */

    
    if (bigTreeList) DisposeList(bigTreeList);

    return(avgPeakWidth);

}

/*
//--------------------------------------------------------------------------------
//  IntensityDescendSortFunc()
//--------------------------------------------------------------------------------
//  Modified 03.13.00 JAT - Added the secondary mass key to eliminate problems with
//                          platform specific differences.
//  
*/
INT_4 IntensityDescendSortFunc(const void *n1, const void *n2) 
{

    tMSData *n3, *n4;
    
    n3 = (tMSData *)n1;
    n4 = (tMSData *)n2;
    
    if (n3->intensity != n4->intensity) 
    {
        return (INT_4)(n3->intensity < n4->intensity)? 1:-1;
    }
    else 
    {
        if (n3->mOverZ != n4->mOverZ) 
        {
            return (INT_4)(n3->mOverZ < n4->mOverZ)? 1:-1;
        }
        return 0;
    }        
}

/*
//--------------------------------------------------------------------------------
//  MassAscendSortFunc()
//--------------------------------------------------------------------------------
*/
INT_4 MassAscendSortFunc(const void *n1, const void *n2) 
{

    tMSData *n3, *n4;
    
    n3 = (tMSData *)n1;
    n4 = (tMSData *)n2;
    
    if(n3->mOverZ != n4->mOverZ) 
    {
        return (INT_4)(n3->mOverZ > n4->mOverZ)? 1:-1;
    }
    else 
    {
        return 0;
    }        
}


/***********************************RemoveIsotopes***************************************
*
*    This function removes peaks that differ by one dalton and appear to be due to 
*   the presence of isotopes.  The algorithm is very simple and basic and only 
*   worries about whether the next ion up is an isotopic peak; it doesn't worry 
*   about two daltons up cuz I'm assuming that those ions will weeded out based on 
*   intensity.  This function won't be suitable for use on high resolution data 
*   obtained from, say, a Q-TOF.  I'll burn that bridge when I get to it.
*/

void RemoveIsotopes(tMSDataList *inMSDataList)
{
    tMSData     *currPtr = NULL;
    tMSData     *isotopePtr = NULL;
    tMSData     *isotope2Ptr = NULL;
    tMSData     *ptrOfNoReturn = NULL;
    REAL_4         upperLimit;
    REAL_4        lowerLimit;
    REAL_4        massDiff;
    REAL_4        obsdIntensityRatio;
    REAL_4        calcIntensityRatio;
    
    /* Use a tighter error since the difference is relative. */
    upperLimit = 1 + (gParam.fragmentErr / 2);
    lowerLimit = 1 - (gParam.fragmentErr / 2);
    
    currPtr     = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    
    while (currPtr < ptrOfNoReturn - 1) 
    {
        isotopePtr = currPtr + 1;
        while (isotopePtr < ptrOfNoReturn
               && isotopePtr->mOverZ <= currPtr->mOverZ + upperLimit) 
        {
            massDiff = isotopePtr->mOverZ - currPtr->mOverZ;
            /* Are the peaks 1 Da apart? */
            if (massDiff < upperLimit && massDiff > lowerLimit)    
            {
                /* Calculate the theoretical isotope ratio.
                *  (The 0.2 is a fudge factor.)
                */
                calcIntensityRatio = ((currPtr->mOverZ) / 1800) + 0.2;
                
                obsdIntensityRatio = (REAL_4)(isotopePtr->intensity) / (REAL_4)(currPtr->intensity);
                
                /* Does a comparison of the intensities make it look like an isotope peak? 
                *  Give 25% leeway.
                */
                if (obsdIntensityRatio <= calcIntensityRatio)/* + 0.25
                    && obsdIntensityRatio >= calcIntensityRatio - 0.25)     Fixed by RSJ*/
                {
                    /* We found what looks a +1 isotope peak, is there a peak that
                    *  looks like a +2 isotope?
                    */
                    isotope2Ptr = isotopePtr + 1;
                    while (isotope2Ptr < ptrOfNoReturn
                              && isotope2Ptr->mOverZ <= isotopePtr->mOverZ + upperLimit) 
                    {
                        massDiff = isotope2Ptr->mOverZ - isotopePtr->mOverZ;
                        /* Are the peaks 1 Da apart? */
                        if (massDiff < upperLimit && massDiff > lowerLimit)    
                        {
                            /* XXXXXX What should the equation for this ratio be? - JAT */
                            /* Calculate the theoretical isotope ratio.
                            *  (The 0.2 is a fudge factor.)
                            */
                            calcIntensityRatio = ((isotopePtr->mOverZ) / 1800) + 0.2;
                            
                            obsdIntensityRatio = (REAL_4)(isotope2Ptr->intensity) / (REAL_4)(isotopePtr->intensity);
                            
                            /* Does a comparison of the intensities make it look like an isotope peak? 
                            *  Give 25% leeway.
                            */
                            if (obsdIntensityRatio <= calcIntensityRatio)/* + 0.25
                    && obsdIntensityRatio >= calcIntensityRatio - 0.25)     Fixed by RSJ*/    
                            {
                                /* We found what looks a +2 isotope peak, Whack it. */
                                RemoveFromList((isotope2Ptr - &inMSDataList->mass[0]), inMSDataList);
                                ptrOfNoReturn--;
                                isotope2Ptr--;
                            }
                        }
                        isotope2Ptr++;                
                    }
                    
                    /* Whack the +1 isotope. */
                    RemoveFromList((isotopePtr - &inMSDataList->mass[0]), inMSDataList);
                    ptrOfNoReturn--;
                    isotopePtr--;
                }
            }
            isotopePtr++;
        }    
    
        currPtr++;
    }    
    
    return;
}

/***********************************FindMedian**********************************************
*
*    FindMedian finds the median threshold value.
*/

INT_4 FindMedian(struct MSData *firstPtr)
{
    
    struct MSData *currPtr, *biggestPtr;
    
    INT_4 biggestIntensity, lowIntensityValue, highIntensityValue;
    INT_4 numberOfIons, targetNumOfIons, median, signal;
        
/*    Count the number of datapoints, and divide in half.*/
    targetNumOfIons = 0;
    currPtr = firstPtr;
    while(currPtr != NULL)
    {
        targetNumOfIons += 1;
        currPtr = currPtr->next;
    }
    targetNumOfIons = targetNumOfIons / 2;
    
/*    Make the highest intensity datapoints negative.*/
    numberOfIons = 0;
    while(numberOfIons <= targetNumOfIons)
    {
        currPtr = firstPtr;
        biggestPtr = currPtr;
        biggestIntensity = currPtr->intensity;
        numberOfIons += 1;
        while(currPtr != NULL)
        {
            if(currPtr->intensity > biggestIntensity)
            {
                biggestIntensity = currPtr->intensity;
                biggestPtr = currPtr;
            }
            currPtr = currPtr->next;
        }
        biggestPtr->intensity = biggestPtr->intensity * -1;
    }
    
/*    Find the highest intensity datapoint from the low intensity half of the set.*/
    currPtr = firstPtr;
    biggestIntensity = currPtr->intensity;
    while(currPtr != NULL)
    {
        if(currPtr->intensity > biggestIntensity)
        {
            biggestIntensity = currPtr->intensity;
        }
        currPtr = currPtr->next;
    }
    lowIntensityValue = biggestIntensity;

/*    Find the highest intensity datapoint from the high intensity half of the set.  Recall
    that the high intensity half of the data set is negative, so I'll actually be finding
    the lowest intensity datapoint.*/
    currPtr = firstPtr;
    while(currPtr != NULL)    /*First find a negative intensity.*/
    {
        if(currPtr->intensity < 0)
        {
            biggestIntensity = currPtr->intensity;
            break;
        }
        currPtr = currPtr->next;
    }
    
    currPtr = firstPtr;        /*Now go look for the correct value.*/
    while(currPtr != NULL)    
    {
        if(currPtr->intensity > biggestIntensity && currPtr->intensity < 0)
        {
            biggestIntensity = currPtr->intensity;
        }
        currPtr = currPtr->next;
    }
    highIntensityValue = biggestIntensity * -1;

/*    Take an average of the two datapoints, which will be the median.*/
    median = (lowIntensityValue + highIntensityValue) / 2;

/*    The signal threshold is determined from the median and the user input "ionThreshold".*/
    signal = median * gParam.ionThreshold;
    
    return(signal);
}

/************************ZeroTheIons***************************************************
*
*    This function inputs the linked list of weight averaged ions (a struct of type MSData),
*    plus the REAL_4 'peakWidth', which is one-half of the width of a peak near its base.
*    It finds ions that are too close together (less than 'peakWidth') and zero's the intensity
*    field of the ion with the lowest intensity.  Those ions w/ zero intensity are free'd and
*    the list is re-linked.  It returns a pointer to this list of structs of type MSData.
*/

struct MSData *ZeroTheIons(struct MSData *firstAvMassPtr)
{
    struct MSData *currPtr, *nextPtr, *previousPtr, *structToFreePtr;
    REAL_8 diff;

    currPtr = firstAvMassPtr;    
    
    while(currPtr != NULL)
    {
        nextPtr = currPtr->next;
        
        while(nextPtr != NULL)
        {
            diff = fabs((nextPtr->mOverZ) - (currPtr->mOverZ));

            if(diff <= gParam.peakWidth * 1.5)    /* *1.75 was empirically derived*/
            {
                if(currPtr->intensity < nextPtr->intensity)    /*Which ion should be zeroed?*/
                {
                    currPtr->intensity = 0;
                }
                else
                {
                    nextPtr->intensity = 0;
                }
            }
            nextPtr = nextPtr->next;
        }
        
        /*    
        *    currPtr is moved up to the next position, and if the intensity of that value 
        *    has not been zeroed, then it breaks out of the while loop and becomes the next 
        *    currPtr.  If currPtr reaches the NULL value, the while loop terminates, and the 
        *    NULL currPtr also terminates the next loop up in the hierarchy.
        */
        while(currPtr != NULL)    
        {
            currPtr = currPtr->next;
            if(currPtr == NULL || currPtr->intensity != 0)
            {
                break;    /*Break out - you've found an ion value that is not NULL and has 
                        positive intensity.*/
            }
        }
    }

    /*
    *    Next I weed out the zero intensity ions, and re-link the non-zero ions.
    *    The original linked list of mass spectral data is free'ed.
    */

    currPtr = firstAvMassPtr;
    
    while(currPtr->intensity == 0)    /*Find the first ion that has a non-zero intensity.*/
    {
        structToFreePtr = currPtr;
        currPtr = currPtr->next;
        free(structToFreePtr);
    }
    
    firstAvMassPtr = currPtr;    /*Set the new firstAvMassPtr; this is the return value.*/
    previousPtr = currPtr;
    currPtr = currPtr->next;

    while(currPtr != NULL && previousPtr != NULL)
    {
        if(currPtr->intensity == 0)
        {
            previousPtr->next = currPtr->next;
            free(currPtr);
            currPtr = previousPtr->next;
        }
        else
        {
            previousPtr = currPtr;
            currPtr = currPtr->next;
        }
    }
    
    return(firstAvMassPtr);
}

/*******************************WeedTheIons****************************************
*
*    This function is called when the actual number of ions in a linked list of structs
*    of type MSData exceeds the value "finalIonCount".  The most intense ions are saved,
*    and the linked list is modified to remove the low intensity ions.  The discarded
*    structs are free'ed.
*/
void WeedTheIons(tMSDataList *inMSDataList, INT_4 finalIonCount, BOOLEAN spareGoldenBoys)
{
    tMSData     *currPtr;
    tMSData     *ptrOfNoReturn;
    BOOLEAN     thumbsDown;
    REAL_4         immonium[15];
    REAL_4        precursor;
    INT_4        i;
    
/*initialize immonium ions*/
    immonium[0] = gMonoMass[D] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[1] = gMonoMass[N] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[2] = gMonoMass[E] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[3] = gMonoMass[Q] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[4] = gMonoMass[H] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[5] = gMonoMass[L] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[6] = gMonoMass[M] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[7] = gMonoMass[F] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[8] = gMonoMass[P] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[9] = gMonoMass[S] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[10] = gMonoMass[T] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[11] = gMonoMass[W] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[12] = gMonoMass[Y] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[13] = gMonoMass[V] - gElementMass[1] - gElementMass[3] + gElementMass[0];
    immonium[14] = gMonoMass[K] - gElementMass[1] - gElementMass[3] - 2 * gElementMass[0] - gElementMass[2];

    precursor = (gParam.peptideMW + gParam.chargeState * gElementMass[HYDROGEN]) / gParam.chargeState;

    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];

    /* Increase the intensity of ions larger than the precursor as befitting
       their importance so they are less likely to be purged. */
    while (currPtr < ptrOfNoReturn) 
    {
        if (currPtr->mOverZ > precursor) 
        {
            currPtr->intensity *= 2.5;
        }
        currPtr++;
    }

    /* Sort the MSData in order of decreasing intensity */
    qsort(inMSDataList->mass,(size_t)inMSDataList->numObjects,
          (size_t)sizeof(tMSData),IntensityDescendSortFunc);

    /* Now that the ions are sorted, take the intensity increase given to
       the ions above the precursor back out. */
    currPtr = &inMSDataList->mass[0];
    while (currPtr < ptrOfNoReturn) 
    {
        if (currPtr->mOverZ > precursor) 
        {
            currPtr->intensity /= 2.5;
        }
        currPtr++;
    }

    /* Keep the flowers and remove the weeds. */
    currPtr = &inMSDataList->mass[finalIonCount];
    while (currPtr < ptrOfNoReturn) 
    {
        thumbsDown = TRUE;
        if (TRUE == spareGoldenBoys 
            && currPtr->normIntensity == 1 
            && currPtr->intensity > 0) 
        {
            /* Spare the golden boys */
            thumbsDown = FALSE;
        }
        else if (currPtr->mOverZ < 160)
        {
            /* Spare potential immonium ions */
            for(i = 0; i < 15; i++)
            {
                if (currPtr->mOverZ <= immonium[i] + gParam.fragmentErr 
                    && currPtr->mOverZ >= immonium[i] - gParam.fragmentErr)
                {
                    thumbsDown = FALSE;
                    break;
                }
            }
        }
        
        if (TRUE == thumbsDown) {
            RemoveFromList(currPtr - &inMSDataList->mass[0], inMSDataList);
            ptrOfNoReturn--;
            currPtr--;
        }
        
        currPtr++;
    }


    /* Resort the MSData in order of increasing mass */
    qsort(inMSDataList->mass,(size_t)inMSDataList->numObjects,
          (size_t)sizeof(tMSData),MassAscendSortFunc);


    /* Update the index values */
    for (i = 0; i < inMSDataList->numObjects; i++)
    {
        inMSDataList->mass[i].index = i;
    }


    return;
}
/****************************countIons*********************************************
*    This function counts the number of ions in the linked list of structs of type 
*    MSData.  It returns a INT_4 corresponding to the number of ions counted.
*/
INT_4 countIons(struct MSData *firstAvMassPtr)
{
    struct MSData *currPtr;
    INT_4 count = 0;
    
    currPtr = firstAvMassPtr;
    while(currPtr != NULL)
    {
        if(currPtr->normIntensity == 0/* && currPtr->mOverZ > 146.5*/)
        {
            count++;
        }
        currPtr = currPtr->next;
    }
    
    return(count);
}


/****************************countIonsAgain*********************************************
*    This function counts the number of ions in the linked list of structs of type 
*    MSData.  It returns a INT_4 corresponding to the number of ions counted.
*/
INT_4 countIonsAgain(struct MSData *firstAvMassPtr)
{
    struct MSData *currPtr;
    INT_4 count = 0;
    
    currPtr = firstAvMassPtr;
    while(currPtr != NULL)
    {
        currPtr = currPtr->next;
        count++;
    }
    
    return(count);
}
    

/****************************RemovePrecursors**************************************
*
*    I don't see why I keep these ions around.  Lets get rid of them here.
*
*/
void RemovePrecursors(tMSDataList *inMSDataList)
{
    tMSData     *currPtr;
    tMSData     *ptrOfNoReturn;
    REAL_4 precursor, precurMin2W, precurMinWA, precurMin2A, precurMinW, precurMinA;
    REAL_4 tolerance;
    
    currPtr     = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];

    tolerance = gParam.fragmentErr;
    precursor = (gParam.peptideMW + (gParam.chargeState * gElementMass[HYDROGEN])) / 
                gParam.chargeState;
    precurMin2W = (gParam.peptideMW - WATER - WATER + 
                  (gParam.chargeState * gElementMass[HYDROGEN])) / gParam.chargeState;
    precurMinWA = (gParam.peptideMW - WATER - AMMONIA +
                  (gParam.chargeState * gElementMass[HYDROGEN])) / gParam.chargeState;
    precurMin2A = (gParam.peptideMW - AMMONIA - AMMONIA + 
                  (gParam.chargeState * gElementMass[HYDROGEN])) / gParam.chargeState;
    precurMinW = (gParam.peptideMW - WATER + 
                 (gParam.chargeState * gElementMass[HYDROGEN])) / gParam.chargeState;
    precurMinA = (gParam.peptideMW - AMMONIA + 
                 (gParam.chargeState * gElementMass[HYDROGEN])) / gParam.chargeState;

    while (currPtr < ptrOfNoReturn) 
    {
        if((currPtr->mOverZ <= precursor + tolerance &&  currPtr->mOverZ >= precursor - tolerance) ||
            (currPtr->mOverZ <= precurMin2W + tolerance &&  currPtr->mOverZ >= precurMin2W - tolerance) ||
            (currPtr->mOverZ <= precurMinWA + tolerance &&  currPtr->mOverZ >= precurMinWA - tolerance) ||
            (currPtr->mOverZ <= precurMin2A + tolerance &&  currPtr->mOverZ >= precurMin2A - tolerance) ||
            (currPtr->mOverZ <= precurMinW + tolerance &&  currPtr->mOverZ >= precurMinW - tolerance) ||
            (currPtr->mOverZ <= precurMinA + tolerance &&  currPtr->mOverZ >= precurMinA - tolerance))
        {
            if(currPtr->intensity > 1)
            {
                currPtr->intensity = 1;    /*if there are too many ions, then the low intensity
                                        will cause this to be removed*/
            }
            else
            {
                currPtr->intensity = 0;    /*usually intensity is a large integer, but in case it
                                        ever becomes a REAL_4 between 0 and 1, I'll stick this 
                                        condition in here - it probably won't ever be used.*/
            }
        }
        currPtr++;
    }

    return;
}

/****************************EliminateBadHighMassIons******************************
*
*    This function removes high mass ions that could not be either b or y ions, via the
*    loss of one or two amino acids.  Since ions may be due to the loss of three amino acids
*    this function stops eliminating ions that could be due to the loss of one glycine
*    and two alanines.  The combination of three glycines matches one Asn and one Gly. 
*
*/

void EliminateBadHighMassIons(tMSDataList *inPeakList)
{
    tMSData     *currPtr = NULL;
    tMSData     *windowStartPtr = NULL;
    tMSData     *ptrOfNoReturn = NULL;
    REAL_4        stopSearch, bIon, yIon;
    INT_4        i, j;
    char        test;
    
    if(gParam.peptideMW > gParam.monoToAv)
        return;    /*this function designed for monoisotopic masses only*/
        
    stopSearch = gParam.peptideMW + gElementMass[HYDROGEN] - 2 * gMonoMass[A] - 
                    gMonoMass[G] + gParam.fragmentErr;
    
    /* make all indexes positive; bad ions are later given negative index values*/
    currPtr = &inPeakList->mass[0];    
    ptrOfNoReturn = &inPeakList->mass[inPeakList->numObjects];    
    while(currPtr < ptrOfNoReturn)
    {
        currPtr->index = 1;
        currPtr++;
    }

    /*look at ions from high mass to low mass*/
    currPtr = &inPeakList->mass[ (inPeakList->numObjects) - 1 ];
    ptrOfNoReturn = &inPeakList->mass[0];
    
    while(currPtr >= ptrOfNoReturn && currPtr->mOverZ > stopSearch)
    {
        test = TRUE;
        for(i = 0; i < gAminoAcidNumber; i++)
        {
            bIon = gParam.peptideMW - gParam.modifiedCTerm - gMonoMass[i];
            if(currPtr->mOverZ <= bIon + gParam.fragmentErr &&
                currPtr->mOverZ >= bIon - gParam.fragmentErr)
            {
                test = FALSE;
            }
            yIon = gParam.peptideMW + gElementMass[HYDROGEN] - gMonoMass[i];
            if(currPtr->mOverZ <= yIon + gParam.fragmentErr &&
                currPtr->mOverZ >= yIon - gParam.fragmentErr)
            {
                test = FALSE;
            }        
            for(j = 0; j < gAminoAcidNumber; j++)
            {
                bIon = gParam.peptideMW - gParam.modifiedCTerm 
                        - gMonoMass[i] - gMonoMass[j];
                            if(currPtr->mOverZ <= bIon + gParam.fragmentErr &&
                currPtr->mOverZ >= bIon - gParam.fragmentErr)
                {
                    test = FALSE;
                }
                yIon = gParam.peptideMW + gElementMass[HYDROGEN] - gMonoMass[i] - gMonoMass[j];
                if(currPtr->mOverZ <= yIon + gParam.fragmentErr &&
                currPtr->mOverZ >= yIon - gParam.fragmentErr)
                {
                    test = FALSE;
                }
            }
        }
        if(test)
        currPtr->index = -1;
        currPtr--;
    }
    
    /*get rid of the peaks with neg indexes*/
    currPtr = &inPeakList->mass[0];    
    ptrOfNoReturn = &inPeakList->mass[inPeakList->numObjects];
    while(currPtr < ptrOfNoReturn)
    {
        if(currPtr->index == -1)
        {
            RemoveFromList(currPtr - &inPeakList->mass[0], inPeakList);
            ptrOfNoReturn--;
            currPtr--;
        }

        currPtr++;
    }    
    return;
}

/****************************WindowFilter******************************************
*
*    Next the program checks to see if there are too many ions clustered together.  It does
*    this by counting the number of ions within windows of width 120 Da and making sure that
*    only a certain number of ions (ionsPerWindow) are present within any given window.  If
*    there are too many ions, it throws out those with the lowest intensity.
*/

void WindowFilter(tMSDataList *inMSDataList)
{
    tMSData     *currPtr = NULL;
    tMSData     *windowStartPtr = NULL;
    tMSData     *ptrOfNoReturn = NULL;
    INT_4         ionsInWindow;
    INT_4        endingMass;
    INT_4        charge;
    INT_4        ionsRemoved;
    REAL_4         nextChargeWindowStart;
    
        
        if(gParam.maxent3)
        {
                charge = 1;
        }
        else
        {
                charge = gParam.chargeState;    /*This is decremented to 1.*/
        }
    nextChargeWindowStart = (gParam.peptideMW + charge) / charge;
    
    
    /* Find the start of the first window at a mass greater than 176 Da. 
    *  Below this mass there is no filtering of ions.  y1 for arg is 175 
    */
    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[ inMSDataList->numObjects ];
    
    while (currPtr < ptrOfNoReturn && currPtr->mOverZ < 176) currPtr++; 
    if (currPtr == ptrOfNoReturn) return;

    windowStartPtr = currPtr;    
    
    /* If the mass of the window exceeds the nextWindowStart, then the 
    *  value of charge is decremented and a nextWindowStart is calculated.  
    *  Charge can never be less than one. The variable 'nextWindowStart' 
    *  contains the m/z of the point where the window width should be changed. 
    *  For example, if the chargeState is 2 then the region below the precursor 
    *  ion has a width of SPECTRAL_WINDOW_WIDTH / 2, and the region above has 
    *  a window width of SPECTRAL_WINDOW_WIDTH / 1.
    */
    while (charge > 0 && currPtr < ptrOfNoReturn && windowStartPtr < ptrOfNoReturn) 
    {
        ionsInWindow = 0;
        
        if (currPtr->mOverZ > nextChargeWindowStart) 
        {
            charge--;
            if (charge == 0) break;
            nextChargeWindowStart = (gParam.peptideMW + charge) / charge;
        }

        endingMass = currPtr->mOverZ + (REAL_4)(SPECTRAL_WINDOW_WIDTH / charge);
    
    
        /* Ions are counted up to the endingMass value. */
        while (currPtr < ptrOfNoReturn 
               && currPtr->mOverZ < endingMass) 
        { 
            /* Only count ions that are not goldenBoys */
            if (currPtr->normIntensity == 0) ionsInWindow++;    
        
            currPtr++;
        }
        
        if (ionsInWindow > gParam.ionsPerWindow) {
            /* If there are too many ions, then purge them. */
            ionsRemoved = PurgeTheWindow(inMSDataList, windowStartPtr, ionsInWindow, endingMass);
            /*currPtr -= ionsRemoved;  */ 
            ptrOfNoReturn -= ionsRemoved;   
            /*windowStartPtr += gParam.ionsPerWindow;*/   /*Fixed by RSJ*/   
                             
        }    /*Fixed by RSJ*/ 
        /*else    /*Fixed by RSJ*/ 
        /*{    /*Fixed by RSJ*/ 
            /*windowStartPtr = currPtr;    /*Fixed by RSJ*/ 
        /*}*/
        windowStartPtr++;
        currPtr = windowStartPtr; 

    }
            
    return;
}

/****************************PurgeTheWindow****************************************
*
*    This function finds the lowest intensity ions within a particular m/z window,
*    and purges from the linked list of mass spectral CID data those ions of lowest
*    intensity.  It relinks the list and free's the space that is no longer used.
*/

INT_4 PurgeTheWindow(tMSDataList *inMSDataList, tMSData *windowStartPtr, 
                    INT_4 ionsInWindow, INT_4 endingMass)
{
    tMSData     *currPtr = NULL;
    tMSData     *ptrOfNoReturn = NULL;
    INT_4 excessIonNum, smallestIntensity, indexToRemove;
    REAL_4     precursor, precurMinW, precurMinA, precurMin2W, precurMin2A, precurMinWA;
    REAL_4  tolerance;

    
    precursor = (gParam.peptideMW + (gParam.chargeState * gElementMass[HYDROGEN])) / 
                gParam.chargeState;
    precurMinW = (precursor - WATER) / gParam.chargeState;
    precurMinA = (precursor - AMMONIA) / gParam.chargeState;
    precurMin2W = (precursor - (2 * WATER)) / gParam.chargeState;
    precurMin2A = (precursor - (2 * AMMONIA)) / gParam.chargeState;
    precurMinWA = (precursor - WATER - AMMONIA) / gParam.chargeState;
    
    excessIonNum = ionsInWindow - gParam.ionsPerWindow;

    tolerance = gParam.fragmentErr;
    
    currPtr = windowStartPtr;
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];

    /* Whack any precursor ions first */
    if ((currPtr->mOverZ < precurMin2W - tolerance 
         && endingMass > precurMin2W - tolerance)
        || (currPtr->mOverZ < precursor + tolerance 
            && endingMass > precursor + tolerance)) 
    {

        while (currPtr < ptrOfNoReturn
               && (currPtr->mOverZ < endingMass)) 
        { 
            if (currPtr->mOverZ > precurMin2W - tolerance) {
                if ((currPtr->mOverZ >= precursor - tolerance   && currPtr->mOverZ <= precursor + tolerance)
                    || (currPtr->mOverZ >= precurMinW - tolerance  && currPtr->mOverZ <= precurMinW + tolerance)
                    || (currPtr->mOverZ >= precurMinA - tolerance  && currPtr->mOverZ <= precurMinA + tolerance)
                    || (currPtr->mOverZ >= precurMin2W - tolerance && currPtr->mOverZ <= precurMin2W + tolerance)
                    || (currPtr->mOverZ >= precurMin2A - tolerance && currPtr->mOverZ <= precurMin2A + tolerance)
                    || (currPtr->mOverZ >= precurMinWA - tolerance && currPtr->mOverZ <= precurMinWA + tolerance))
                {
                    RemoveFromList(currPtr - &inMSDataList->mass[0], inMSDataList);
                    ptrOfNoReturn--;
                    currPtr--;
                    excessIonNum--;
                }
            }
            currPtr++;
        }    
    }

    /* Now shed remaining excess ions. */
    while (excessIonNum > 0) { 
        currPtr = windowStartPtr;
        ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];

        /* Don't wipe a golden boy */
        while (currPtr->normIntensity == 1
               && currPtr < ptrOfNoReturn) currPtr++;
        if (currPtr == ptrOfNoReturn 
            || currPtr->mOverZ > endingMass) break;
               
        smallestIntensity = currPtr->intensity;
        indexToRemove = currPtr - &inMSDataList->mass[0];
        
        while (currPtr < ptrOfNoReturn
               && (currPtr->mOverZ < endingMass)) 
        { 
            if (currPtr->normIntensity != 1
                && currPtr->intensity < smallestIntensity)
            {
                smallestIntensity = currPtr->intensity;
                indexToRemove = currPtr - &inMSDataList->mass[0];
            }
            currPtr++;
        }
        RemoveFromList(indexToRemove, inMSDataList);
        excessIonNum--;
    }

    /* Return the number of ions removed. */
    return((ionsInWindow - gParam.ionsPerWindow) - excessIonNum);


}    
    
    
/***********************AddTheIonOffset********************************************
*
*    This function adds ionOffset (a user controlled variable) to the m/z field of
*    a list of structs of type MSData.
*
*/

void AddTheIonOffset(tMSDataList *inMSDataList)
{
    tMSData         *currPtr;
    tMSData         *ptrOfNoReturn;
    
    
    if (gParam.ionOffset == 0) return;
    
    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    
    while (currPtr < ptrOfNoReturn) 
    {
        currPtr->mOverZ = currPtr->mOverZ + gParam.ionOffset;
        currPtr++;
    }

    return;
}


/***********************CheckTheIntensity******************************************
*
*    This function starts adding up the total intensity of the ions in the linked
*    list (which starts with the pointer to a struct of type MSData called firstAvMassPtr).
*    If the sum exceeds 2 billion, then all of the ions are attenuated ten fold.
*/
void CheckTheIntensity(tMSDataList *inMSDataList)
{
    INT_4             intensitySum = 0;
    tMSData         *currPtr;
    tMSData         *ptrOfNoReturn;


    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    
    while (currPtr < ptrOfNoReturn) 
    {
        intensitySum += currPtr->intensity;
        if(intensitySum > 2000000000)
        {
            currPtr = &inMSDataList->mass[0];
            while (currPtr < ptrOfNoReturn) 
            {
                currPtr->intensity = currPtr->intensity / 10;
                currPtr++;
            }
            currPtr = &inMSDataList->mass[0];    /*Reset the currPtr to the beginning.*/
            intensitySum = 0;    /*Reinitialize the summed intensity to zero.*/
            continue;    /*Break out of the current loop, but continue using the while loop.*/
        }
        currPtr++;    /*If nothing happens, then move on to the next ion.*/
    }

    return;
}

/***********************SortByMass*************************************************
*
*    This function takes in a pointer to the first element in the linked list of
*    structures of type MSData that contains the smoothed and average mass values
*    plus intensities.  It sorts the contents by mass - the lowest mass ions
*    are placed first in the list.
*/

void SortByMass(struct MSData *firstAvMassPtr)
{
    struct MSData *currPtr, *testPtr;
    INT_4 lowMassIntensity, highMassIntensity;
    char test;
    REAL_4 lowMOverZ, highMOverZ;
    
    currPtr = firstAvMassPtr;    /*Two pointers are compared, currPtr is supposed to contain
                                    the lowest mass ion.*/
    
    while(currPtr != NULL)    /*If currPtr is NULL then the end of the list has been reached.*/
    {
        testPtr = currPtr->next;    /*testPtr contains the high mass ion.*/
        test = TRUE;
        while(testPtr != NULL)
        {
            if(testPtr->mOverZ < currPtr->mOverZ)    /*Make the comparison.*/
            {
                lowMassIntensity = testPtr->intensity;    /*Store ion values in these INT_4 ints.*/
                lowMOverZ = testPtr->mOverZ;
                highMassIntensity = currPtr->intensity;
                highMOverZ = currPtr->mOverZ;
                
                currPtr->intensity = lowMassIntensity;    /*Swap the values back into the pointers.*/
                currPtr->mOverZ = lowMOverZ;
                testPtr->intensity = highMassIntensity;
                testPtr->mOverZ = highMOverZ;
                
                test = FALSE;    /*Do not allow the currPtr to be incremented.*/
                break;    /*Break to the outer loop.*/
            }
            testPtr = testPtr->next;    /*Get set to test the next ion.*/
        }
        if(test)    /*If no testPtr ion was found to be lower in mass, then test = FALSE.
                        Proceed to the next ion up.  If there was a rearrangement, then I
                        need to retest the new value that was swapped.*/
        {
            currPtr = currPtr->next;
        }
    }
    
    return;
}
/***********************SmoothCID**************************************
*
*    SmoothCID is a five point digital filter that uses Finnigan's coefficients,
*    which are 13, 27, 37, 27, and 13.  The first two and last two data points are
*    not smoothed.
*
*/

void SmoothCID(tMSDataList *inMSDataList)
{
    tMSData     *currPtr;
    tMSData     *ptrOfNoReturn;

    tMSData *ptrOne, *ptrTwo, *ptrThree, *ptrFour, *ptrFive;    /*These are the five points.*/
    INT_4 smoothedDataPoint;    /*This INT_4 is used to calculated the smoothed data point.*/
    
    
    if (inMSDataList->numObjects < 6) return;
    
    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    
/*    Initialize the five points. */
    ptrOne   = currPtr;
    ptrTwo   = currPtr + 1;
    ptrThree = currPtr + 2;
    ptrFour  = currPtr + 3;
    ptrFive  = currPtr + 4;
    
    currPtr  = currPtr + 5;
    
/*    Do the five point average.  currPtr always points to the next data point 
*    following the five
*    that are currently being smoothed.  If currPtr is NULL then the smoothing is stopped.
*/
    
    while(currPtr < ptrOfNoReturn)
    {
        if((ptrOne->intensity > 7000000) || (ptrTwo->intensity > 7000000) ||
            (ptrThree->intensity > 7000000) || (ptrFour->intensity > 7000000) ||
            (ptrFive->intensity > 7000000))    /*if intensity exceeds INT_4 int*/
        {
            ptrOne->intensity = ptrOne->intensity * 0.001;
            ptrTwo->intensity = ptrTwo->intensity * 0.001;
            ptrThree->intensity = ptrThree->intensity * 0.001;
            ptrFour->intensity = ptrFour->intensity * 0.001;
            ptrFive->intensity = ptrFive->intensity * 0.001;
            smoothedDataPoint = (13 * ptrOne->intensity) + (27 * ptrTwo->intensity) + 
            (37 * ptrThree->intensity) + (27 * ptrFour->intensity) + (13 * ptrFive->intensity);
            smoothedDataPoint = smoothedDataPoint / 117;
            smoothedDataPoint = smoothedDataPoint * 1000;
            ptrOne->intensity = ptrOne->intensity * 1000;
            ptrTwo->intensity = ptrTwo->intensity * 1000;
            ptrThree->intensity = ptrThree->intensity * 1000;
            ptrFour->intensity = ptrFour->intensity * 1000;
            ptrFive->intensity = ptrFive->intensity * 1000;
        }
        else
        {
            smoothedDataPoint = (13 * ptrOne->intensity) + (27 * ptrTwo->intensity) + 
            (37 * ptrThree->intensity) + (27 * ptrFour->intensity) + (13 * ptrFive->intensity);
            smoothedDataPoint = smoothedDataPoint / 117;
        }
        
        ptrThree->intensity = smoothedDataPoint;
        
        ptrOne = ptrTwo;        /*    Shift the five points up by one position.*/
        ptrTwo = ptrThree;
        ptrThree = ptrFour;
        ptrFour = ptrFive;
        ptrFive = currPtr;
        currPtr++;    
    }
    
    return;

}


/**********************FreeAllMSData***************************************************
*
*    An alternate way to free the data in a linked list.  Here the structs are free'ed
*    in non-reverse order.  I'll see if this crashes.
*/

void FreeAllMSData(struct MSData *currPtr)
{
    struct MSData *freeMePtr;
    
    
    while(currPtr != NULL)
    {
        freeMePtr = currPtr;
        currPtr = currPtr->next;
        free(freeMePtr);
    }
    return;
}


/******************LoadMSDataStruct********************************************
*
* LoadStruct puts mass to charge and intensity values into the appropriate struct field
* and returns the pointer to that struct.
*
*/
struct MSData *LoadMSDataStruct(REAL_4 massValue, INT_4 ionIntensity)
{
    struct MSData *currPtr = NULL;    


    currPtr = (struct MSData *)malloc(sizeof(struct MSData));
    if(currPtr == NULL)
    {
        printf("LoadMSDataStruct:  Out of memory\n");
        exit(1);
    }
    currPtr->mOverZ = massValue;
    currPtr->intensity = ionIntensity;
    currPtr->normIntensity = 0;
    currPtr->next = NULL;

    return(currPtr);
}

/****************AddToListNoNull**********************************************************
*
*     AddToListNoNull adds m/z and intensity values in an MSData struct to a linked list.  
* The first parameter is a pointer to a struct
* of type MSData containing the firt bit of data in the list.  The second parameter 
* is a pointer to a struct of type MSData
* containing a new piece of data to be added to the list.  The end of this linked 
* list is not signaled by the presence of a zero in the next field.
*
*/

struct MSData *AddToListNoNull(struct MSData *firstPtr, struct MSData *currPtr)
{
    struct MSData *lastPtr;
    
    lastPtr = firstPtr;
    
    if(firstPtr == NULL)
        firstPtr = currPtr;
    else
    {
        while(lastPtr->next != NULL)
            lastPtr = lastPtr->next;
        lastPtr->next = currPtr;
    }
    
    return(firstPtr);
}

/****************AddToCIDList**********************************************************
*
* AddToList adds m/z and intensity values in and MSData struct to a linked list.  
* The first parameter is a pointer to a struct
* of type MSData containing the firt bit of data in the list.  The second parameter 
* is a pointer to a struct of type MSData
* containing a new piece of data to be added to the list.  The end of this linked 
* list is signaled by the presence of a zero in the 
* next field.
*
*/

struct MSData *AddToCIDList(struct MSData *firstPtr, struct MSData *currPtr)
{
    
    if(firstPtr == NULL)
        {
        firstPtr = currPtr;
    }
        else
    {
        gLastDataPtr->next = currPtr;
    }
    
    gLastDataPtr = currPtr;
    return(firstPtr);
}

/***************ModifyList**********************************************************
* Replaces most recently added element in a linked list with a new element.  The 
* first paramter is a pointer to a struct of
* type MSData containing the first bit of data in the list.  The second paramter 
* is a pointer to a struct of type MSData
* containing a new piece of data to replace the last element in the list.   NULL 
* is placed in the next field of this struct element.
*
*/

void ModifyList(struct MSData *firstPtr, struct MSData *currPtr)
{
    struct MSData *lastPtr, *nextToLastPtr;
    
    lastPtr = firstPtr;
    
    if(firstPtr == NULL)
    {
        firstPtr = currPtr;
        return;
    }
    if(firstPtr->next == NULL)
    {
        return;
    }
    else
    {
        while(lastPtr->next != NULL)
        {
            nextToLastPtr = lastPtr;
            lastPtr = lastPtr->next;
        }
        free(lastPtr);
        nextToLastPtr->next = currPtr;
    }
    
    currPtr->next = NULL;
    gLastDataPtr = currPtr;
}




/***************FindThreshold*****************************************
*
* FindThreshold sums the intensities of all of the ions in the list  
* of tMSData structs whose intensity is greater than zero.  This sum 
* is then divided by the total number of non-zero ions present, and is 
* returned as a INT_4.
*
******/
INT_4 FindThreshold(tMSDataList *inMSDataList)
{
    tMSData     *currPtr;
    tMSData     *ptrOfNoReturn;
    INT_4         signal = 0;
    INT_4         numOfNonZeroPts = 0;
    REAL_4         intensitySum = 0;
    REAL_4        noise = 0;
    
            
    if (inMSDataList->numObjects != 0) 
    {
        currPtr = &inMSDataList->mass[0];
        ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
        
        while (currPtr < ptrOfNoReturn) 
        {
            if(currPtr->intensity != 0)    /*dont count the zero intensity data points*/
            {
                numOfNonZeroPts++;
                intensitySum += currPtr->intensity;    /*Add the intensity.*/
            }
            currPtr++;    /*Increment to the next data point.*/
        }
        
        noise = intensitySum / numOfNonZeroPts;
        printf("Average signal (noise) = %.2f\n",noise);  /*debug*/
        printf("Data points = %d\n", numOfNonZeroPts); /*debug*/
        signal = noise * gParam.ionThreshold;
        
        if(signal == 0)
            signal = 1;    /*added 11/10/98 for qtof data*/
    }
    
    return(signal);
}
/***********************************LowMassIonRemoval****************************************
*
*    Low mass ions that could not be due to amino acid immonium ions and other small fragments
*    derived from amino acids are removed.  For tryptic peptides, the mass range below y1 for
*    Lys (m/z 147) are removed, and for other cleavages, ions below m/z 90 (y1 for Ala) are
*    eliminated.
*
*/

void    LowMassIonRemoval(tMSDataList *inMSDataList)
{
    REAL_4 lowMassIons[23] =     {44.0500,  70.0657,  87.0922, 112.0875,  87.0558,
                              88.0399, 102.0555,  84.0450, 101.0715, 129.0664,
                             110.0718,  86.0970,  86.0970,  84.0814, 101.1079, 
                             129.1028, 104.0534, 120.0813,  70.0657,  60.0449,
                              74.0606, 136.0762,  72.0813
    };
    
    INT_4 i;
    tMSData     *currPtr;
    tMSData     *ptrOfNoReturn;
    BOOLEAN     thumbsDown;
    
    currPtr = &inMSDataList->mass[0];
    ptrOfNoReturn = &inMSDataList->mass[inMSDataList->numObjects];
    
    while (currPtr < ptrOfNoReturn) 
    {
        if(currPtr->mOverZ < 74.5)
        {
            thumbsDown = TRUE;
            /* Spare potential immonium ions */
            for(i = 0; i < 23; i++)
            {
                if (currPtr->mOverZ <= lowMassIons[i] + gParam.fragmentErr &&
                    currPtr->mOverZ >= lowMassIons[i] - gParam.fragmentErr)
                {
                    thumbsDown = FALSE;
                    break;
                }
            }
            
            if (TRUE == thumbsDown) {
                RemoveFromList(currPtr - &inMSDataList->mass[0], inMSDataList);
                ptrOfNoReturn--;
                currPtr--;
            }
        }
        
        currPtr++;
    }

    return;
}



/***********************************IonCondenser**********************************************
*
*    This function was originally designed with centroided data in mind, but it seemed to work
*    well for profile data, too.  The idea is that groups of ions that are above the 'threshold' 
*    of ion intensity, and are close in m/z (as defined by 'peakWidth'). The value of 'precursor'
*   is the m/z value of the precursor ion, and it is used to determine when to switch the 
*   threshold value to one-half of what was read from the file Lutefisk.params.
*     
*/

tMSDataList *IonCondenser(tMSDataList *inMSDataList) 
{
    
    INT_4         i, j;    
    REAL_4         halfWidth = gParam.peakWidth/2;
    tMSDataList *  intensityOrderedList = NULL;
    tMSDataList *  peakList = NULL;
    tMSData     potentialPeak;
    tMSData     peak;
    tMSData     msData;
    REAL_8        intensitySum = 0.0;
    INT_4         prevIntensity = 0;
    REAL_4        avgIonMass = 0;


        
    /* Add index values */    
    for (i = 0; i < inMSDataList->numObjects; i++)
    {
        inMSDataList->mass[i].index = i;
    }    

    intensityOrderedList = (tMSDataList *) CopyList( inMSDataList );
    if (!intensityOrderedList) 
    {
        printf("Ran out of memory in IonCondenser()!\n");
        exit(1);
    }
    
    /* Sort the intensityOrderedList in order of decreasing intensity */
    qsort(intensityOrderedList->mass,(size_t)intensityOrderedList->numObjects,
          (size_t)sizeof(tMSData),IntensityDescendSortFunc);


    peakList = (tMSDataList *) CreateNewList( sizeof(tMSData), 1000, 1000 );
    if (!peakList) 
    {
        printf("Ran out of memory in IonCondenser()!\n");
        exit(1);
    }


    /* Find all the peak tops that are at least a peakWidth apart. */
    for (i = 0; i < intensityOrderedList->numObjects; i++)
    {
        potentialPeak = intensityOrderedList->mass[i];
        
        /* Quit when we hit the zero intensity points */
        if (potentialPeak.intensity <= 0) break;
        
        /*    Get rid of ions below mass 43 (44 is the immonium ion of alanine). */
        if (potentialPeak.mOverZ < 43.0) continue;

        /* Don't try to make a peak out of an ion whose intensity 
           is less than the threshold. */           
        if (potentialPeak.intensity < gParam.intThreshold) 
        {
            if((potentialPeak.mOverZ > 43.0 && potentialPeak.mOverZ < 147.5) 
               || (potentialPeak.mOverZ > 174.5 && potentialPeak.mOverZ < 175.5) 
               || (potentialPeak.mOverZ > 158.5 && potentialPeak.mOverZ < 159.5))
            {
                /* Let immoniums thru even if they are low intensity */
            }
            else continue;
        }

        /* Would the potential peak overlap the domain of an existing peak? */
        for (j = 0; j < peakList->numObjects; j++)
        {
            peak = peakList->mass[j];
            
            if (potentialPeak.mOverZ >= peak.mOverZ - gParam.peakWidth
                && potentialPeak.mOverZ <= peak.mOverZ + gParam.peakWidth) break;
                
            /**Fixed by RSJ.  Try to keep peaks closer to 1 Da apart.**/
            if(gParam.peakWidth < 0.8)
            {
                if (potentialPeak.mOverZ >= peak.mOverZ - 0.8
                && potentialPeak.mOverZ <= peak.mOverZ + 0.8) break;
            }
            
        }
        if (j == peakList->numObjects) 
        {
             /* Add a new peak. */
             
             intensitySum = 0;
             avgIonMass = 0;
             
             /* Calculate weighted average mass for the peak. */

            /* Leading edge... */
            prevIntensity = potentialPeak.intensity;
            j = potentialPeak.index;
            while (j >= 0) 
            {
                msData = inMSDataList->mass[j];
                if (msData.mOverZ < potentialPeak.mOverZ - halfWidth) break;
                if (msData.intensity >= gParam.intThreshold) 
                {
                    intensitySum += msData.intensity;
                    avgIonMass   += (msData.intensity * msData.mOverZ);
                }
                else if (prevIntensity >= msData.intensity
                         && ((msData.mOverZ > 43.0 && msData.mOverZ < 147.5)
                             || (msData.mOverZ > 174.5 && msData.mOverZ < 175.5)
                             || (msData.mOverZ > 158.5 && msData.mOverZ < 159.5)))
                {
/*              else if (prevIntensity >= msData.intensity
                         || (msData.mOverZ > 43.0 && msData.mOverZ < 147.5)
                         || (msData.mOverZ > 174.5 && msData.mOverZ < 175.5)
                         || (msData.mOverZ > 158.5 && msData.mOverZ < 159.5))
                {
*/                  intensitySum += msData.intensity;
                    avgIonMass   += (msData.intensity * msData.mOverZ);                
                }
                prevIntensity = msData.intensity;
                j--;
            }
            /* Trailing edge... */
            prevIntensity = potentialPeak.intensity;
            j = potentialPeak.index + 1;
            while (j < inMSDataList->numObjects) 
            {
                msData = inMSDataList->mass[j];
                if (msData.mOverZ > potentialPeak.mOverZ + halfWidth) break;
                if (msData.intensity >= gParam.intThreshold) {
                    intensitySum += (INT_4)msData.intensity;
                    avgIonMass += (REAL_4)(msData.intensity * msData.mOverZ);
                }
                else if (prevIntensity >= msData.intensity
                         && ((msData.mOverZ > 43.0 && msData.mOverZ < 147.5)
                             || (msData.mOverZ > 174.5 && msData.mOverZ < 175.5)
                             || (msData.mOverZ > 158.5 && msData.mOverZ < 159.5)))
                {
/*              else if (prevIntensity >= msData.intensity
                         || (msData.mOverZ > 43.0 && msData.mOverZ < 147.5)
                         || (msData.mOverZ > 174.5 && msData.mOverZ < 175.5)
                         || (msData.mOverZ > 158.5 && msData.mOverZ < 159.5))
                {
*/                  intensitySum += msData.intensity;
                    avgIonMass   += (msData.intensity * msData.mOverZ);                
                }
                prevIntensity = msData.intensity;
                j++;
            }
            
            if (intensitySum == 0) {
                printf("ionCondenser(): intensitySum = 0.\n" 
                       "Threshold: %d, potential peak: %6.2f  %d (index %d)\n", 
                           gParam.intThreshold, potentialPeak.mOverZ, 
                           potentialPeak.intensity, potentialPeak.index);
                           
                /* Leading edge... */
                prevIntensity = potentialPeak.intensity;
                j = potentialPeak.index;
                while (j >= 0) 
                {
                        msData = inMSDataList->mass[j];
                        printf("Leading: %6.2f  %d (%d)\n", msData.mOverZ, msData.intensity, msData.index);
                        if (msData.mOverZ < potentialPeak.mOverZ - halfWidth) break;
                        j--;
                    }      
                /* Trailing edge... */
                    prevIntensity = potentialPeak.intensity;
                    j = potentialPeak.index + 1;
                    while (j < inMSDataList->numObjects) 
                    {
                        msData = inMSDataList->mass[j];
                        printf("Trailing: %6.2f  %d (%d)\n", msData.mOverZ, msData.intensity, msData.index);
                        if (msData.mOverZ > potentialPeak.mOverZ + halfWidth) break;
                        j++;
                    }    
                    
 /**************/
    for (j = 0; j < inMSDataList->numObjects; j++)
    {
        inMSDataList->mass[i].index = i;
printf("AFTER: %6.2f  %d\n", inMSDataList->mass[j].mOverZ, inMSDataList->mass[j].intensity);
    }    
printf("pointer: %p\n", (void *)inMSDataList);
/***********/

                      
                exit(1);
            }
    
            potentialPeak.mOverZ = avgIonMass / intensitySum;

            /* Now double check to be sure that the mass still is not within
               a peakwidth of another peak. */
            
            for (j = 0; j < peakList->numObjects; j++)
            {
                peak = peakList->mass[j];
                
                if (potentialPeak.mOverZ >= peak.mOverZ - gParam.peakWidth
                    && potentialPeak.mOverZ <= peak.mOverZ + gParam.peakWidth) break;
                
            }
            if (j == peakList->numObjects) 
            {
                 /* Add a new peak. */
                if(!AddToList(&potentialPeak, peakList)) 
                {
                    printf("Ran out of memory in IonCondenser()!\n");
                    exit(1);
                }
            }
        }
    }
    
    if (intensityOrderedList) DisposeList(intensityOrderedList);
            
    /* Resort the MSData in order of increasing mass */
    qsort(peakList->mass,(size_t)peakList->numObjects,
          (size_t)sizeof(tMSData),MassAscendSortFunc);
            
    /* Add index values */    
    for (i = 0;    i <    peakList->numObjects; i++)
    {
        peakList->mass[i].index = i;
        peakList->mass[i].normIntensity = 0;
    }    

    return peakList;
}

/* -------------------------------------------------------------------------
//  my_fgets 
*/
char *my_fgets(char *s, INT_4 n, FILE *fp)
{
  register char *t = s;
  register long c;

  if (n < 1)
    return(NULL);

  while (--n) {
    if ((c = getc(fp)) < 0) {
      if (feof(fp) && t != s) break;
      return(NULL);
    }

    *t++ = c;
    if (c == '\n' || c == '\32') break;
    /* This is to handle stupid windows files that end each line with \r\n */
    else if (c == '\r') {
      if ((c = getc(fp)) < 0) {
        if (feof(fp) && t != s) break;
        return(NULL);
      }
      if (c != '\n') {
        /* Roll back the file pointer or we will miss characters. */
        fseek(fp, -1, SEEK_CUR);
      }
      break;
    }
  }

  *t = '\0';

  return(s);
}

#ifdef DEBUG
/**************************** DumpMassList **************************************
*
*    For debugging purposes only.
*
*/

void DumpMassList(struct MSData *firstPtr) 
{

    struct MSData     *currPtr = NULL;
    INT_4 ionNum;
    INT_4 intensity[3000];    
    REAL_4 mass[3000];        

    /* Create mass and integerMass arrays from linked list data */
    ionNum = 0;
    currPtr = firstPtr;
    while(currPtr != NULL)
    {
        mass[ionNum] = currPtr->mOverZ;
        intensity[ionNum] = currPtr->intensity;
        ionNum++;
        if(ionNum >= 3000)
            break;    
        currPtr = currPtr->next;
    }
}

/**************************** DumpMSData **************************************
*
*    For debugging purposes only.
*
*/

void DumpMSData(tMSDataList *inList) 
{

    INT_4 i;
    
    printf("\n\nMASS LIST:\n");
    for (i = 0; i < inList->numObjects; i++) 
    {
        if (i >= 3000) break;    
        printf("%d  %7.3f  %d\n", i, inList->mass[i].mOverZ, inList->mass[i].intensity);
    
    }
    

}

#endif