1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
|
==============
lxml.objectify
==============
:Authors:
Stefan Behnel, Holger Joukl
lxml supports an alternative API similar to the Amara_ bindery or
gnosis.xml.objectify_ through a `custom Element implementation`_. The main idea
is to hide the usage of XML behind normal Python objects, sometimes referred
to as data-binding. It allows you to use XML as if you were dealing with a
normal Python object hierarchy.
Accessing the children of an XML element deploys object attribute access. If
there are multiple children with the same name, slicing and indexing can be
used. Python data types are extracted from XML content automatically and made
available to the normal Python operators.
.. contents::
..
1 The lxml.objectify API
1.1 Element access through object attributes
1.2 Creating objectify trees
1.3 Tree generation with the E-factory
1.4 Namespace handling
2 Asserting a Schema
3 ObjectPath
4 Python data types
4.1 Recursive tree dump
4.2 Recursive string representation of elements
5 How data types are matched
5.1 Type annotations
5.2 XML Schema datatype annotation
5.3 The DataElement factory
5.4 Defining additional data classes
5.5 Advanced element class lookup
6 What is different from lxml.etree?
.. _Amara: http://uche.ogbuji.net/tech/4suite/amara/
.. _gnosis.xml.objectify: http://gnosis.cx/download/
.. _`benchmark page`: performance.html#lxml-objectify
.. _`custom Element implementation`: element_classes.html
To set up and use ``objectify``, you need both the ``lxml.etree``
module and ``lxml.objectify``:
.. sourcecode:: pycon
>>> from lxml import etree
>>> from lxml import objectify
The objectify API is very different from the ElementTree API. If it
is used, it should not be mixed with other element implementations
(such as trees parsed with ``lxml.etree``), to avoid non-obvious
behaviour.
The `benchmark page`_ has some hints on performance optimisation of
code using lxml.objectify.
To make the doctests in this document look a little nicer, we also use
this:
.. sourcecode:: pycon
>>> import lxml.usedoctest
Imported from within a doctest, this relieves us from caring about the exact
formatting of XML output.
..
>>> try: from StringIO import StringIO
... except ImportError:
... from io import BytesIO # Python 3
... def StringIO(s):
... if isinstance(s, str): s = s.encode('UTF-8')
... return BytesIO(s)
..
>>> import sys
>>> from lxml import etree as _etree
>>> if sys.version_info[0] >= 3:
... class etree_mock(object):
... def __getattr__(self, name): return getattr(_etree, name)
... def tostring(self, *args, **kwargs):
... s = _etree.tostring(*args, **kwargs)
... if isinstance(s, bytes) and bytes([10]) in s: s = s.decode("utf-8") # CR
... if s[-1] == '\n': s = s[:-1]
... return s
... else:
... class etree_mock(object):
... def __getattr__(self, name): return getattr(_etree, name)
... def tostring(self, *args, **kwargs):
... s = _etree.tostring(*args, **kwargs)
... if s[-1] == '\n': s = s[:-1]
... return s
>>> etree = etree_mock()
The lxml.objectify API
======================
In ``lxml.objectify``, element trees provide an API that models the behaviour
of normal Python object trees as closely as possible.
Element access through object attributes
----------------------------------------
The main idea behind the ``objectify`` API is to hide XML element access
behind the usual object attribute access pattern. Asking an element for an
attribute will return the sequence of children with corresponding tag names:
.. sourcecode:: pycon
>>> root = objectify.Element("root")
>>> b = objectify.SubElement(root, "b")
>>> print(root.b[0].tag)
b
>>> root.index(root.b[0])
0
>>> b = objectify.SubElement(root, "b")
>>> print(root.b[0].tag)
b
>>> print(root.b[1].tag)
b
>>> root.index(root.b[1])
1
For convenience, you can omit the index '0' to access the first child:
.. sourcecode:: pycon
>>> print(root.b.tag)
b
>>> root.index(root.b)
0
>>> del root.b
Iteration and slicing also obey the requested tag:
.. sourcecode:: pycon
>>> x1 = objectify.SubElement(root, "x")
>>> x2 = objectify.SubElement(root, "x")
>>> x3 = objectify.SubElement(root, "x")
>>> [ el.tag for el in root.x ]
['x', 'x', 'x']
>>> [ el.tag for el in root.x[1:3] ]
['x', 'x']
>>> [ el.tag for el in root.x[-1:] ]
['x']
>>> del root.x[1:2]
>>> [ el.tag for el in root.x ]
['x', 'x']
If you want to iterate over all children or need to provide a specific
namespace for the tag, use the ``iterchildren()`` method. Like the other
methods for iteration, it supports an optional tag keyword argument:
.. sourcecode:: pycon
>>> [ el.tag for el in root.iterchildren() ]
['b', 'x', 'x']
>>> [ el.tag for el in root.iterchildren(tag='b') ]
['b']
>>> [ el.tag for el in root.b ]
['b']
XML attributes are accessed as in the normal ElementTree API:
.. sourcecode:: pycon
>>> c = objectify.SubElement(root, "c", myattr="someval")
>>> print(root.c.get("myattr"))
someval
>>> root.c.set("c", "oh-oh")
>>> print(root.c.get("c"))
oh-oh
In addition to the normal ElementTree API for appending elements to trees,
subtrees can also be added by assigning them to object attributes. In this
case, the subtree is automatically deep copied and the tag name of its root is
updated to match the attribute name:
.. sourcecode:: pycon
>>> el = objectify.Element("yet_another_child")
>>> root.new_child = el
>>> print(root.new_child.tag)
new_child
>>> print(el.tag)
yet_another_child
>>> root.y = [ objectify.Element("y"), objectify.Element("y") ]
>>> [ el.tag for el in root.y ]
['y', 'y']
The latter is a short form for operations on the full slice:
.. sourcecode:: pycon
>>> root.y[:] = [ objectify.Element("y") ]
>>> [ el.tag for el in root.y ]
['y']
You can also replace children that way:
.. sourcecode:: pycon
>>> child1 = objectify.SubElement(root, "child")
>>> child2 = objectify.SubElement(root, "child")
>>> child3 = objectify.SubElement(root, "child")
>>> el = objectify.Element("new_child")
>>> subel = objectify.SubElement(el, "sub")
>>> root.child = el
>>> print(root.child.sub.tag)
sub
>>> root.child[2] = el
>>> print(root.child[2].sub.tag)
sub
Note that special care must be taken when changing the tag name of an element:
.. sourcecode:: pycon
>>> print(root.b.tag)
b
>>> root.b.tag = "notB"
>>> root.b
Traceback (most recent call last):
...
AttributeError: no such child: b
>>> print(root.notB.tag)
notB
Creating objectify trees
------------------------
As with ``lxml.etree``, you can either create an ``objectify`` tree by
parsing an XML document or by building one from scratch. To parse a
document, just use the ``parse()`` or ``fromstring()`` functions of
the module:
.. sourcecode:: pycon
>>> fileobject = StringIO('<test/>')
>>> tree = objectify.parse(fileobject)
>>> print(isinstance(tree.getroot(), objectify.ObjectifiedElement))
True
>>> root = objectify.fromstring('<test/>')
>>> print(isinstance(root, objectify.ObjectifiedElement))
True
To build a new tree in memory, ``objectify`` replicates the standard
factory function ``Element()`` from ``lxml.etree``:
.. sourcecode:: pycon
>>> obj_el = objectify.Element("new")
>>> print(isinstance(obj_el, objectify.ObjectifiedElement))
True
After creating such an Element, you can use the `usual API`_ of
lxml.etree to add SubElements to the tree:
.. sourcecode:: pycon
>>> child = objectify.SubElement(obj_el, "newchild", attr="value")
.. _`usual API`: tutorial.html#the-element-class
New subelements will automatically inherit the objectify behaviour
from their tree. However, all independent elements that you create
through the ``Element()`` factory of lxml.etree (instead of objectify)
will not support the ``objectify`` API by themselves:
.. sourcecode:: pycon
>>> subel = objectify.SubElement(obj_el, "sub")
>>> print(isinstance(subel, objectify.ObjectifiedElement))
True
>>> independent_el = etree.Element("new")
>>> print(isinstance(independent_el, objectify.ObjectifiedElement))
False
Tree generation with the E-factory
----------------------------------
To simplify the generation of trees even further, you can use the E-factory:
.. sourcecode:: pycon
>>> E = objectify.E
>>> root = E.root(
... E.a(5),
... E.b(6.21),
... E.c(True),
... E.d("how", tell="me")
... )
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:py="http://codespeak.net/lxml/objectify/pytype">
<a py:pytype="int">5</a>
<b py:pytype="float">6.21</b>
<c py:pytype="bool">true</c>
<d py:pytype="str" tell="me">how</d>
</root>
This allows you to write up a specific language in tags:
.. sourcecode:: pycon
>>> ROOT = objectify.E.root
>>> TITLE = objectify.E.title
>>> HOWMANY = getattr(objectify.E, "how-many")
>>> root = ROOT(
... TITLE("The title"),
... HOWMANY(5)
... )
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:py="http://codespeak.net/lxml/objectify/pytype">
<title py:pytype="str">The title</title>
<how-many py:pytype="int">5</how-many>
</root>
``objectify.E`` is an instance of ``objectify.ElementMaker``. By default, it
creates pytype annotated Elements without a namespace. You can switch off the
pytype annotation by passing False to the ``annotate`` keyword argument of the
constructor. You can also pass a default namespace and an ``nsmap``:
.. sourcecode:: pycon
>>> myE = objectify.ElementMaker(annotate=False,
... namespace="http://my/ns", nsmap={None : "http://my/ns"})
>>> root = myE.root( myE.someint(2) )
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns="http://my/ns">
<someint>2</someint>
</root>
Namespace handling
------------------
During tag lookups, namespaces are handled mostly behind the scenes.
If you access a child of an Element without specifying a namespace,
the lookup will use the namespace of the parent:
.. sourcecode:: pycon
>>> root = objectify.Element("{http://ns/}root")
>>> b = objectify.SubElement(root, "{http://ns/}b")
>>> c = objectify.SubElement(root, "{http://other/}c")
>>> print(root.b.tag)
{http://ns/}b
Note that the ``SubElement()`` factory of ``lxml.etree`` does not
inherit any namespaces when creating a new subelement. Element
creation must be explicit about the namespace, and is simplified
through the E-factory as described above.
Lookups, however, inherit namespaces implicitly:
.. sourcecode:: pycon
>>> print(root.b.tag)
{http://ns/}b
>>> print(root.c)
Traceback (most recent call last):
...
AttributeError: no such child: {http://ns/}c
To access an element in a different namespace than its parent, you can
use ``getattr()``:
.. sourcecode:: pycon
>>> c = getattr(root, "{http://other/}c")
>>> print(c.tag)
{http://other/}c
For convenience, there is also a quick way through item access:
.. sourcecode:: pycon
>>> c = root["{http://other/}c"]
>>> print(c.tag)
{http://other/}c
The same approach must be used to access children with tag names that are not
valid Python identifiers:
.. sourcecode:: pycon
>>> el = objectify.SubElement(root, "{http://ns/}tag-name")
>>> print(root["tag-name"].tag)
{http://ns/}tag-name
>>> new_el = objectify.Element("{http://ns/}new-element")
>>> el = objectify.SubElement(new_el, "{http://ns/}child")
>>> el = objectify.SubElement(new_el, "{http://ns/}child")
>>> el = objectify.SubElement(new_el, "{http://ns/}child")
>>> root["tag-name"] = [ new_el, new_el ]
>>> print(len(root["tag-name"]))
2
>>> print(root["tag-name"].tag)
{http://ns/}tag-name
>>> print(len(root["tag-name"].child))
3
>>> print(root["tag-name"].child.tag)
{http://ns/}child
>>> print(root["tag-name"][1].child.tag)
{http://ns/}child
or for names that have a special meaning in lxml.objectify:
.. sourcecode:: pycon
>>> root = objectify.XML("<root><text>TEXT</text></root>")
>>> print(root.text.text)
Traceback (most recent call last):
...
AttributeError: 'NoneType' object has no attribute 'text'
>>> print(root["text"].text)
TEXT
Asserting a Schema
==================
When dealing with XML documents from different sources, you will often
require them to follow a common schema. In lxml.objectify, this
directly translates to enforcing a specific object tree, i.e. expected
object attributes are ensured to be there and to have the expected
type. This can easily be achieved through XML Schema validation at
parse time. Also see the `documentation on validation`_ on this
topic.
.. _`documentation on validation`: validation.html
First of all, we need a parser that knows our schema, so let's say we
parse the schema from a file-like object (or file or filename):
.. sourcecode:: pycon
>>> f = StringIO('''\
... <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <xsd:element name="a" type="AType"/>
... <xsd:complexType name="AType">
... <xsd:sequence>
... <xsd:element name="b" type="xsd:string" />
... </xsd:sequence>
... </xsd:complexType>
... </xsd:schema>
... ''')
>>> schema = etree.XMLSchema(file=f)
When creating the validating parser, we must make sure it `returns
objectify trees`_. This is best done with the ``makeparser()``
function:
.. sourcecode:: pycon
>>> parser = objectify.makeparser(schema = schema)
.. _`returns objectify trees`: #advance-element-class-lookup
Now we can use it to parse a valid document:
.. sourcecode:: pycon
>>> xml = "<a><b>test</b></a>"
>>> a = objectify.fromstring(xml, parser)
>>> print(a.b)
test
Or an invalid document:
.. sourcecode:: pycon
>>> xml = b"<a><b>test</b><c/></a>"
>>> a = objectify.fromstring(xml, parser) # doctest: +ELLIPSIS
Traceback (most recent call last):
lxml.etree.XMLSyntaxError: Element 'c': This element is not expected...
Note that the same works for parse-time DTD validation, except that
DTDs do not support any data types by design.
ObjectPath
==========
For both convenience and speed, objectify supports its own path language,
represented by the ``ObjectPath`` class:
.. sourcecode:: pycon
>>> root = objectify.Element("{http://ns/}root")
>>> b1 = objectify.SubElement(root, "{http://ns/}b")
>>> c = objectify.SubElement(b1, "{http://ns/}c")
>>> b2 = objectify.SubElement(root, "{http://ns/}b")
>>> d = objectify.SubElement(root, "{http://other/}d")
>>> path = objectify.ObjectPath("root.b.c")
>>> print(path)
root.b.c
>>> path.hasattr(root)
True
>>> print(path.find(root).tag)
{http://ns/}c
>>> find = objectify.ObjectPath("root.b.c")
>>> print(find(root).tag)
{http://ns/}c
>>> find = objectify.ObjectPath("root.{http://other/}d")
>>> print(find(root).tag)
{http://other/}d
>>> find = objectify.ObjectPath("root.{not}there")
>>> print(find(root).tag)
Traceback (most recent call last):
...
AttributeError: no such child: {not}there
>>> find = objectify.ObjectPath("{not}there")
>>> print(find(root).tag)
Traceback (most recent call last):
...
ValueError: root element does not match: need {not}there, got {http://ns/}root
>>> find = objectify.ObjectPath("root.b[1]")
>>> print(find(root).tag)
{http://ns/}b
>>> find = objectify.ObjectPath("root.{http://ns/}b[1]")
>>> print(find(root).tag)
{http://ns/}b
Apart from strings, ObjectPath also accepts lists of path segments:
.. sourcecode:: pycon
>>> find = objectify.ObjectPath(['root', 'b', 'c'])
>>> print(find(root).tag)
{http://ns/}c
>>> find = objectify.ObjectPath(['root', '{http://ns/}b[1]'])
>>> print(find(root).tag)
{http://ns/}b
You can also use relative paths starting with a '.' to ignore the actual root
element and only inherit its namespace:
.. sourcecode:: pycon
>>> find = objectify.ObjectPath(".b[1]")
>>> print(find(root).tag)
{http://ns/}b
>>> find = objectify.ObjectPath(['', 'b[1]'])
>>> print(find(root).tag)
{http://ns/}b
>>> find = objectify.ObjectPath(".unknown[1]")
>>> print(find(root).tag)
Traceback (most recent call last):
...
AttributeError: no such child: {http://ns/}unknown
>>> find = objectify.ObjectPath(".{http://other/}unknown[1]")
>>> print(find(root).tag)
Traceback (most recent call last):
...
AttributeError: no such child: {http://other/}unknown
For convenience, a single dot represents the empty ObjectPath (identity):
.. sourcecode:: pycon
>>> find = objectify.ObjectPath(".")
>>> print(find(root).tag)
{http://ns/}root
ObjectPath objects can be used to manipulate trees:
.. sourcecode:: pycon
>>> root = objectify.Element("{http://ns/}root")
>>> path = objectify.ObjectPath(".some.child.{http://other/}unknown")
>>> path.hasattr(root)
False
>>> path.find(root)
Traceback (most recent call last):
...
AttributeError: no such child: {http://ns/}some
>>> path.setattr(root, "my value") # creates children as necessary
>>> path.hasattr(root)
True
>>> print(path.find(root).text)
my value
>>> print(root.some.child["{http://other/}unknown"].text)
my value
>>> print(len( path.find(root) ))
1
>>> path.addattr(root, "my new value")
>>> print(len( path.find(root) ))
2
>>> [ el.text for el in path.find(root) ]
['my value', 'my new value']
As with attribute assignment, ``setattr()`` accepts lists:
.. sourcecode:: pycon
>>> path.setattr(root, ["v1", "v2", "v3"])
>>> [ el.text for el in path.find(root) ]
['v1', 'v2', 'v3']
Note, however, that indexing is only supported in this context if the children
exist. Indexing of non existing children will not extend or create a list of
such children but raise an exception:
.. sourcecode:: pycon
>>> path = objectify.ObjectPath(".{non}existing[1]")
>>> path.setattr(root, "my value")
Traceback (most recent call last):
...
TypeError: creating indexed path attributes is not supported
It is worth noting that ObjectPath does not depend on the ``objectify`` module
or the ObjectifiedElement implementation. It can also be used in combination
with Elements from the normal lxml.etree API.
Python data types
=================
The objectify module knows about Python data types and tries its best to let
element content behave like them. For example, they support the normal math
operators:
.. sourcecode:: pycon
>>> root = objectify.fromstring(
... "<root><a>5</a><b>11</b><c>true</c><d>hoi</d></root>")
>>> root.a + root.b
16
>>> root.a += root.b
>>> print(root.a)
16
>>> root.a = 2
>>> print(root.a + 2)
4
>>> print(1 + root.a)
3
>>> print(root.c)
True
>>> root.c = False
>>> if not root.c:
... print("false!")
false!
>>> print(root.d + " test !")
hoi test !
>>> root.d = "%s - %s"
>>> print(root.d % (1234, 12345))
1234 - 12345
However, data elements continue to provide the objectify API. This means that
sequence operations such as ``len()``, slicing and indexing (e.g. of strings)
cannot behave as the Python types. Like all other tree elements, they show
the normal slicing behaviour of objectify elements:
.. sourcecode:: pycon
>>> root = objectify.fromstring("<root><a>test</a><b>toast</b></root>")
>>> print(root.a + ' me') # behaves like a string, right?
test me
>>> len(root.a) # but there's only one 'a' element!
1
>>> [ a.tag for a in root.a ]
['a']
>>> print(root.a[0].tag)
a
>>> print(root.a)
test
>>> [ str(a) for a in root.a[:1] ]
['test']
If you need to run sequence operations on data types, you must ask the API for
the *real* Python value. The string value is always available through the
normal ElementTree ``.text`` attribute. Additionally, all data classes
provide a ``.pyval`` attribute that returns the value as plain Python type:
.. sourcecode:: pycon
>>> root = objectify.fromstring("<root><a>test</a><b>5</b></root>")
>>> root.a.text
'test'
>>> root.a.pyval
'test'
>>> root.b.text
'5'
>>> root.b.pyval
5
Note, however, that both attributes are read-only in objectify. If you want
to change values, just assign them directly to the attribute:
.. sourcecode:: pycon
>>> root.a.text = "25"
Traceback (most recent call last):
...
TypeError: attribute 'text' of 'StringElement' objects is not writable
>>> root.a.pyval = 25
Traceback (most recent call last):
...
TypeError: attribute 'pyval' of 'StringElement' objects is not writable
>>> root.a = 25
>>> print(root.a)
25
>>> print(root.a.pyval)
25
In other words, ``objectify`` data elements behave like immutable Python
types. You can replace them, but not modify them.
Recursive tree dump
-------------------
To see the data types that are currently used, you can call the module level
``dump()`` function that returns a recursive string representation for
elements:
.. sourcecode:: pycon
>>> root = objectify.fromstring("""
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
... <a attr1="foo" attr2="bar">1</a>
... <a>1.2</a>
... <b>1</b>
... <b>true</b>
... <c>what?</c>
... <d xsi:nil="true"/>
... </root>
... """)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = 1 [IntElement]
* attr1 = 'foo'
* attr2 = 'bar'
a = 1.2 [FloatElement]
b = 1 [IntElement]
b = True [BoolElement]
c = 'what?' [StringElement]
d = None [NoneElement]
* xsi:nil = 'true'
You can freely switch between different types for the same child:
.. sourcecode:: pycon
>>> root = objectify.fromstring("<root><a>5</a></root>")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = 5 [IntElement]
>>> root.a = 'nice string!'
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = 'nice string!' [StringElement]
* py:pytype = 'str'
>>> root.a = True
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = True [BoolElement]
* py:pytype = 'bool'
>>> root.a = [1, 2, 3]
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = 1 [IntElement]
* py:pytype = 'int'
a = 2 [IntElement]
* py:pytype = 'int'
a = 3 [IntElement]
* py:pytype = 'int'
>>> root.a = (1, 2, 3)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = 1 [IntElement]
* py:pytype = 'int'
a = 2 [IntElement]
* py:pytype = 'int'
a = 3 [IntElement]
* py:pytype = 'int'
Recursive string representation of elements
-------------------------------------------
Normally, elements use the standard string representation for str() that is
provided by lxml.etree. You can enable a pretty-print representation for
objectify elements like this:
.. sourcecode:: pycon
>>> objectify.enable_recursive_str()
>>> root = objectify.fromstring("""
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
... <a attr1="foo" attr2="bar">1</a>
... <a>1.2</a>
... <b>1</b>
... <b>true</b>
... <c>what?</c>
... <d xsi:nil="true"/>
... </root>
... """)
>>> print(str(root))
root = None [ObjectifiedElement]
a = 1 [IntElement]
* attr1 = 'foo'
* attr2 = 'bar'
a = 1.2 [FloatElement]
b = 1 [IntElement]
b = True [BoolElement]
c = 'what?' [StringElement]
d = None [NoneElement]
* xsi:nil = 'true'
This behaviour can be switched off in the same way:
.. sourcecode:: pycon
>>> objectify.enable_recursive_str(False)
How data types are matched
==========================
Objectify uses two different types of Elements. Structural Elements (or tree
Elements) represent the object tree structure. Data Elements represent the
data containers at the leafs. You can explicitly create tree Elements with
the ``objectify.Element()`` factory and data Elements with the
``objectify.DataElement()`` factory.
When Element objects are created, lxml.objectify must determine which
implementation class to use for them. This is relatively easy for tree
Elements and less so for data Elements. The algorithm is as follows:
1. If an element has children, use the default tree class.
2. If an element is defined as xsi:nil, use the NoneElement class.
3. If a "Python type hint" attribute is given, use this to determine the element
class, see below.
4. If an XML Schema xsi:type hint is given, use this to determine the element
class, see below.
5. Try to determine the element class from the text content type by trial and
error.
6. If the element is a root node then use the default tree class.
7. Otherwise, use the default class for empty data classes.
You can change the default classes for tree Elements and empty data Elements
at setup time. The ``ObjectifyElementClassLookup()`` call accepts two keyword
arguments, ``tree_class`` and ``empty_data_class``, that determine the Element
classes used in these cases. By default, ``tree_class`` is a class called
``ObjectifiedElement`` and ``empty_data_class`` is a ``StringElement``.
Type annotations
----------------
The "type hint" mechanism deploys an XML attribute defined as
``lxml.objectify.PYTYPE_ATTRIBUTE``. It may contain any of the following
string values: int, long, float, str, unicode, NoneType:
.. sourcecode:: pycon
>>> print(objectify.PYTYPE_ATTRIBUTE)
{http://codespeak.net/lxml/objectify/pytype}pytype
>>> ns, name = objectify.PYTYPE_ATTRIBUTE[1:].split('}')
>>> root = objectify.fromstring("""\
... <root xmlns:py='%s'>
... <a py:pytype='str'>5</a>
... <b py:pytype='int'>5</b>
... <c py:pytype='NoneType' />
... </root>
... """ % ns)
>>> print(root.a + 10)
510
>>> print(root.b + 10)
15
>>> print(root.c)
None
Note that you can change the name and namespace used for this
attribute through the ``set_pytype_attribute_tag(tag)`` module
function, in case your application ever needs to. There is also a
utility function ``annotate()`` that recursively generates this
attribute for the elements of a tree:
.. sourcecode:: pycon
>>> root = objectify.fromstring("<root><a>test</a><b>5</b></root>")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = 'test' [StringElement]
b = 5 [IntElement]
>>> objectify.annotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = 'test' [StringElement]
* py:pytype = 'str'
b = 5 [IntElement]
* py:pytype = 'int'
XML Schema datatype annotation
------------------------------
A second way of specifying data type information uses XML Schema types as
element annotations. Objectify knows those that can be mapped to normal
Python types:
.. sourcecode:: pycon
>>> root = objectify.fromstring('''\
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <d xsi:type="xsd:double">5</d>
... <i xsi:type="xsd:int" >5</i>
... <s xsi:type="xsd:string">5</s>
... </root>
... ''')
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
d = 5.0 [FloatElement]
* xsi:type = 'xsd:double'
i = 5 [IntElement]
* xsi:type = 'xsd:int'
s = '5' [StringElement]
* xsi:type = 'xsd:string'
Again, there is a utility function ``xsiannotate()`` that recursively
generates the "xsi:type" attribute for the elements of a tree:
.. sourcecode:: pycon
>>> root = objectify.fromstring('''\
... <root><a>test</a><b>5</b><c>true</c></root>
... ''')
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = 'test' [StringElement]
b = 5 [IntElement]
c = True [BoolElement]
>>> objectify.xsiannotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
a = 'test' [StringElement]
* xsi:type = 'xsd:string'
b = 5 [IntElement]
* xsi:type = 'xsd:integer'
c = True [BoolElement]
* xsi:type = 'xsd:boolean'
Note, however, that ``xsiannotate()`` will always use the first XML Schema
datatype that is defined for any given Python type, see also
`Defining additional data classes`_.
The utility function ``deannotate()`` can be used to get rid of 'py:pytype'
and/or 'xsi:type' information:
.. sourcecode:: pycon
>>> root = objectify.fromstring('''\
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <d xsi:type="xsd:double">5</d>
... <i xsi:type="xsd:int" >5</i>
... <s xsi:type="xsd:string">5</s>
... </root>''')
>>> objectify.annotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
d = 5.0 [FloatElement]
* py:pytype = 'float'
* xsi:type = 'xsd:double'
i = 5 [IntElement]
* py:pytype = 'int'
* xsi:type = 'xsd:int'
s = '5' [StringElement]
* py:pytype = 'str'
* xsi:type = 'xsd:string'
>>> objectify.deannotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
d = 5 [IntElement]
i = 5 [IntElement]
s = 5 [IntElement]
You can control which type attributes should be de-annotated with the keyword
arguments 'pytype' (default: True) and 'xsi' (default: True).
``deannotate()`` can also remove 'xsi:nil' attributes by setting 'xsi_nil=True'
(default: False):
.. sourcecode:: pycon
>>> root = objectify.fromstring('''\
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <d xsi:type="xsd:double">5</d>
... <i xsi:type="xsd:int" >5</i>
... <s xsi:type="xsd:string">5</s>
... <n xsi:nil="true"/>
... </root>''')
>>> objectify.annotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
d = 5.0 [FloatElement]
* py:pytype = 'float'
* xsi:type = 'xsd:double'
i = 5 [IntElement]
* py:pytype = 'int'
* xsi:type = 'xsd:int'
s = '5' [StringElement]
* py:pytype = 'str'
* xsi:type = 'xsd:string'
n = None [NoneElement]
* py:pytype = 'NoneType'
* xsi:nil = 'true'
>>> objectify.deannotate(root, xsi_nil=True)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
d = 5 [IntElement]
i = 5 [IntElement]
s = 5 [IntElement]
n = '' [StringElement]
Note that ``deannotate()`` does not remove the namespace declarations
of the ``pytype`` namespace by default. To remove them as well, and
to generally clean up the namespace declarations in the document
(usually when done with the whole processing), pass the option
``cleanup_namespaces=True``. This option is new in lxml 2.3.2. In
older versions, use the function ``lxml.etree.cleanup_namespaces()``
instead.
The DataElement factory
-----------------------
For convenience, the ``DataElement()`` factory creates an Element with a
Python value in one step. You can pass the required Python type name or the
XSI type name:
.. sourcecode:: pycon
>>> root = objectify.Element("root")
>>> root.x = objectify.DataElement(5, _pytype="int")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
x = 5 [IntElement]
* py:pytype = 'int'
>>> root.x = objectify.DataElement(5, _pytype="str", myattr="someval")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
x = '5' [StringElement]
* myattr = 'someval'
* py:pytype = 'str'
>>> root.x = objectify.DataElement(5, _xsi="integer")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]
x = 5 [IntElement]
* py:pytype = 'int'
* xsi:type = 'xsd:integer'
XML Schema types reside in the XML schema namespace thus ``DataElement()``
tries to correctly prefix the xsi:type attribute value for you:
.. sourcecode:: pycon
>>> root = objectify.Element("root")
>>> root.s = objectify.DataElement(5, _xsi="string")
>>> objectify.deannotate(root, xsi=False)
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<s xsi:type="xsd:string">5</s>
</root>
``DataElement()`` uses a default nsmap to set these prefixes:
.. sourcecode:: pycon
>>> el = objectify.DataElement('5', _xsi='string')
>>> namespaces = list(el.nsmap.items())
>>> namespaces.sort()
>>> for prefix, namespace in namespaces:
... print("%s - %s" % (prefix, namespace))
py - http://codespeak.net/lxml/objectify/pytype
xsd - http://www.w3.org/2001/XMLSchema
xsi - http://www.w3.org/2001/XMLSchema-instance
>>> print(el.get("{http://www.w3.org/2001/XMLSchema-instance}type"))
xsd:string
While you can set custom namespace prefixes, it is necessary to provide valid
namespace information if you choose to do so:
.. sourcecode:: pycon
>>> el = objectify.DataElement('5', _xsi='foo:string',
... nsmap={'foo': 'http://www.w3.org/2001/XMLSchema'})
>>> namespaces = list(el.nsmap.items())
>>> namespaces.sort()
>>> for prefix, namespace in namespaces:
... print("%s - %s" % (prefix, namespace))
foo - http://www.w3.org/2001/XMLSchema
py - http://codespeak.net/lxml/objectify/pytype
xsi - http://www.w3.org/2001/XMLSchema-instance
>>> print(el.get("{http://www.w3.org/2001/XMLSchema-instance}type"))
foo:string
Note how lxml chose a default prefix for the XML Schema Instance
namespace. We can override it as in the following example:
.. sourcecode:: pycon
>>> el = objectify.DataElement('5', _xsi='foo:string',
... nsmap={'foo': 'http://www.w3.org/2001/XMLSchema',
... 'myxsi': 'http://www.w3.org/2001/XMLSchema-instance'})
>>> namespaces = list(el.nsmap.items())
>>> namespaces.sort()
>>> for prefix, namespace in namespaces:
... print("%s - %s" % (prefix, namespace))
foo - http://www.w3.org/2001/XMLSchema
myxsi - http://www.w3.org/2001/XMLSchema-instance
py - http://codespeak.net/lxml/objectify/pytype
>>> print(el.get("{http://www.w3.org/2001/XMLSchema-instance}type"))
foo:string
Care must be taken if different namespace prefixes have been used for the same
namespace. Namespace information gets merged to avoid duplicate definitions
when adding a new sub-element to a tree, but this mechanism does not adapt the
prefixes of attribute values:
.. sourcecode:: pycon
>>> root = objectify.fromstring("""<root xmlns:schema="http://www.w3.org/2001/XMLSchema"/>""")
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:schema="http://www.w3.org/2001/XMLSchema"/>
>>> s = objectify.DataElement("17", _xsi="string")
>>> print(etree.tostring(s, pretty_print=True))
<value xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" py:pytype="str" xsi:type="xsd:string">17</value>
>>> root.s = s
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:schema="http://www.w3.org/2001/XMLSchema">
<s xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" py:pytype="str" xsi:type="xsd:string">17</s>
</root>
It is your responsibility to fix the prefixes of attribute values if you
choose to deviate from the standard prefixes. A convenient way to do this for
xsi:type attributes is to use the ``xsiannotate()`` utility:
.. sourcecode:: pycon
>>> objectify.xsiannotate(root)
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:schema="http://www.w3.org/2001/XMLSchema">
<s xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" py:pytype="str" xsi:type="schema:string">17</s>
</root>
Of course, it is discouraged to use different prefixes for one and the same
namespace when building up an objectify tree.
Defining additional data classes
--------------------------------
You can plug additional data classes into objectify that will be used in
exactly the same way as the predefined types. Data classes can either inherit
from ``ObjectifiedDataElement`` directly or from one of the specialised
classes like ``NumberElement`` or ``BoolElement``. The numeric types require
an initial call to the NumberElement method ``self._setValueParser(function)``
to set their type conversion function (string -> numeric Python type). This
call should be placed into the element ``_init()`` method.
The registration of data classes uses the ``PyType`` class:
.. sourcecode:: pycon
>>> class ChristmasDate(objectify.ObjectifiedDataElement):
... def call_santa(self):
... print("Ho ho ho!")
>>> def checkChristmasDate(date_string):
... if not date_string.startswith('24.12.'):
... raise ValueError # or TypeError
>>> xmas_type = objectify.PyType('date', checkChristmasDate, ChristmasDate)
The PyType constructor takes a string type name, an (optional) callable type
check and the custom data class. If a type check is provided it must accept a
string as argument and raise ValueError or TypeError if it cannot handle the
string value.
PyTypes are used if an element carries a ``py:pytype`` attribute denoting its
data type or, in absence of such an attribute, if the given type check callable
does not raise a ValueError/TypeError exception when applied to the element
text.
If you want, you can also register this type under an XML Schema type name:
.. sourcecode:: pycon
>>> xmas_type.xmlSchemaTypes = ("date",)
XML Schema types will be considered if the element has an ``xsi:type``
attribute that specifies its data type. The line above binds the XSD type
``date`` to the newly defined Python type. Note that this must be done before
the next step, which is to register the type. Then you can use it:
.. sourcecode:: pycon
>>> xmas_type.register()
>>> root = objectify.fromstring(
... "<root><a>24.12.2000</a><b>12.24.2000</b></root>")
>>> root.a.call_santa()
Ho ho ho!
>>> root.b.call_santa()
Traceback (most recent call last):
...
AttributeError: no such child: call_santa
If you need to specify dependencies between the type check functions, you can
pass a sequence of type names through the ``before`` and ``after`` keyword
arguments of the ``register()`` method. The PyType will then try to register
itself before or after the respective types, as long as they are currently
registered. Note that this only impacts the currently registered types at the
time of registration. Types that are registered later on will not care about
the dependencies of already registered types.
If you provide XML Schema type information, this will override the type check
function defined above:
.. sourcecode:: pycon
>>> root = objectify.fromstring('''\
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
... <a xsi:type="date">12.24.2000</a>
... </root>
... ''')
>>> print(root.a)
12.24.2000
>>> root.a.call_santa()
Ho ho ho!
To unregister a type, call its ``unregister()`` method:
.. sourcecode:: pycon
>>> root.a.call_santa()
Ho ho ho!
>>> xmas_type.unregister()
>>> root.a.call_santa()
Traceback (most recent call last):
...
AttributeError: no such child: call_santa
Be aware, though, that this does not immediately apply to elements to which
there already is a Python reference. Their Python class will only be changed
after all references are gone and the Python object is garbage collected.
Advanced element class lookup
-----------------------------
In some cases, the normal data class setup is not enough. Being based
on ``lxml.etree``, however, ``lxml.objectify`` supports very
fine-grained control over the Element classes used in a tree. All you
have to do is configure a different `class lookup`_ mechanism (or
write one yourself).
.. _`class lookup`: element_classes.html
The first step for the setup is to create a new parser that builds
objectify documents. The objectify API is meant for data-centric XML
(as opposed to document XML with mixed content). Therefore, we
configure the parser to let it remove whitespace-only text from the
parsed document if it is not enclosed by an XML element. Note that
this alters the document infoset, so if you consider the removed
spaces as data in your specific use case, you should go with a normal
parser and just set the element class lookup. Most applications,
however, will work fine with the following setup:
.. sourcecode:: pycon
>>> parser = objectify.makeparser(remove_blank_text=True)
What this does internally, is:
.. sourcecode:: pycon
>>> parser = etree.XMLParser(remove_blank_text=True)
>>> lookup = objectify.ObjectifyElementClassLookup()
>>> parser.set_element_class_lookup(lookup)
If you want to change the lookup scheme, say, to get additional
support for `namespace specific classes`_, you can register the
objectify lookup as a fallback of the namespace lookup. In this case,
however, you have to take care that the namespace classes inherit from
``objectify.ObjectifiedElement``, not only from the normal
``lxml.etree.ElementBase``, so that they support the ``objectify``
API. The above setup code then becomes:
.. sourcecode:: pycon
>>> lookup = etree.ElementNamespaceClassLookup(
... objectify.ObjectifyElementClassLookup() )
>>> parser.set_element_class_lookup(lookup)
.. _`namespace specific classes`: element_classes.html#namespace-class-lookup
See the documentation on `class lookup`_ schemes for more information.
What is different from lxml.etree?
==================================
Such a different Element API obviously implies some side effects to the normal
behaviour of the rest of the API.
* len(<element>) returns the sibling count, not the number of children of
<element>. You can retrieve the number of children with the
``countchildren()`` method.
* Iteration over elements does not yield the children, but the siblings. You
can access all children with the ``iterchildren()`` method on elements or
retrieve a list by calling the ``getchildren()`` method.
* The find, findall and findtext methods require a different implementation
based on ETXPath. In ``lxml.etree``, they use a Python implementation based
on the original iteration scheme. This has the disadvantage that they may
not be 100% backwards compatible, and the additional advantage that they now
support any XPath expression.
|