1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
|
//
// Lynkeos
// $Id$
//
// Created by Jean-Etienne LAMIAUD on Fri Mar 07 2005.
// Copyright (c) 2005-2025. Jean-Etienne LAMIAUD
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
#ifdef GNUSTEP
#include <sys/sysinfo.h>
#include <unistd.h>
#else
#include <sys/sysctl.h>
#include <CoreServices/CoreServices.h>
#endif
#include <pthread.h>
#include <fftw3.h>
#include "processing_core.h"
#include "LynkeosFourierBuffer.h"
#include "LynkeosImageBufferAdditions.h"
#ifndef DOUBLE_PIXELS
#define FFTW_COMPLEX fftwf_complex
#define FFTW_INIT_THREADS fftwf_init_threads //!< Initialize the FFTW threads
#define FFT_MALLOC fftwf_malloc //!< Allocate aligned on SIMD
//! Prepare N threads for FFTW
#define FFTW_PLAN_WITH_NTHREADS fftwf_plan_with_nthreads
#define FFT_PLAN_R2C fftwf_plan_many_dft_r2c //!< Plan a direct transform
#define FFT_PLAN_C2R fftwf_plan_many_dft_c2r //!< Plan an inverse transform
#define FFT_EXECUTE fftwf_execute //!< Execute a planned transform
#define FFT_FREE fftwf_free //!< Deallocate the buffer
#define FFT_DESTROY_PLAN fftwf_destroy_plan //!< Deallocate a plan
#define FFT_EXPORT_WISDOM fftwf_export_wisdom_to_filename //!< Store plans to disk
#define FFT_IMPORT_WISDOM fftwf_import_wisdom_from_filename //!< Restore saved plans
#else
#define FFTW_COMPLEX fftw_complex
#define FFTW_INIT_THREADS fftw_init_threads
#define FFT_MALLOC fftw_malloc
#define FFTW_PLAN_WITH_NTHREADS fftw_plan_with_nthreads
#define FFT_PLAN_R2C fftw_plan_many_dft_r2c
#define FFT_PLAN_C2R fftw_plan_many_dft_c2r
#define FFT_EXECUTE fftw_execute
#define FFT_FREE fftw_free
#define FFT_DESTROY_PLAN fftw_destroy_plan
#define FFT_EXPORT_WISDOM fftw_export_wisdom_to_filename
#define FFT_IMPORT_WISDOM fftw_import_wisdom_from_filename
#endif
u_char hasSIMD;
u_short numberOfCpus;
static unsigned fftwDefaultFlag;
// Mutex used to protect every call to FFTW except fftw_execute
static pthread_mutex_t fftwLock;
static NSURL *wisdomFile = nil;
/*!
* To initialize the processing, we need to check if the processor
* support Altivec instructions and configure FFTW3 calls accordingly ; and
* then to retrieve the number of processors.
*/
void initializeProcessing(void)
{
// First evaluate if the CPU has Altivec capacity
#ifdef GNUSTEP
int hasVectorUnit = 1; // No single binary for vector/non vector on this arch
int error = 0;
#else
int selectors[2] = { CTL_HW, HW_VECTORUNIT };
int hasVectorUnit = 0;
size_t length = sizeof(hasVectorUnit);
int error = sysctl(selectors, 2, &hasVectorUnit, &length, NULL, 0);
#endif
if ( error == 0 && hasVectorUnit )
fftwDefaultFlag = 0;
else
fftwDefaultFlag = FFTW_NO_SIMD;
hasSIMD = ((fftwDefaultFlag & FFTW_NO_SIMD) == 0);
// Then read the number of CPUs we are running on
#ifdef GNUSTEP
numberOfCpus = sysconf(_SC_NPROCESSORS_ONLN);
if ( numberOfCpus == 0 )
numberOfCpus = 1;
#else
numberOfCpus = [[NSProcessInfo processInfo] activeProcessorCount];
#endif
// Create a lock for FFTW non thread safe functions
pthread_mutex_init( &fftwLock, NULL );
// Prepare FFTW to work with threads
FFTW_INIT_THREADS();
// Reload FFTW wisdom
NSFileManager *fileMgr = [NSFileManager defaultManager];
#ifdef GNUSTEP
CREATE_AUTORELEASE_POOL(pool);
#endif
NSURL *supportDir = [fileMgr URLForDirectory:NSApplicationSupportDirectory
inDomain:NSUserDomainMask
appropriateForURL:nil
create:YES
error:NULL];
if (supportDir != nil)
{
wisdomFile = [supportDir URLByAppendingPathComponent:
[NSString stringWithFormat:@"Lynkeos/fftw-wisdom%.2f", CURRENT_PROJECT_VERSION]];
if (wisdomFile != nil)
{
const char *wisdomPath;
#ifdef GNUSTEP
wisdomPath = [[wisdomFile absoluteString] fileSystemRepresentation];
#else
wisdomPath = [wisdomFile fileSystemRepresentation];
#endif
if ([fileMgr fileExistsAtPath:
[NSString stringWithCString:wisdomPath encoding:NSUTF8StringEncoding]])
FFT_IMPORT_WISDOM(wisdomPath);
#if !__OBJC_GNUSTEP_RUNTIME_ABI__
GSNotificationBlock block;
void blockfunc(void *p, NSNotification *not)
{
const char *file;
file = [[wisdomFile absoluteString] fileSystemRepresentation];
FFT_EXPORT_WISDOM(file);
RELEASE(wisdomFile);
}
/* Memory leak here -- I couldn't find a way to solve it. In
* practice it's not a problem because the program terminates
* so all memory is returned to the system. */
block = malloc(sizeof(*block));
block->invoke = blockfunc;
RETAIN(wisdomFile);
#endif
[[NSNotificationCenter defaultCenter] addObserverForName:NSApplicationWillTerminateNotification
object:nil
queue:nil
#if !GNUSTEP || __OBJC_GNUSTEP_RUNTIME_ABI__
usingBlock:^(NSNotification * _Nonnull note) {
FFT_EXPORT_WISDOM([wisdomFile fileSystemRepresentation]);
}];
#else
usingBlock:block];
#endif
}
}
#ifdef GNUSTEP
RELEASE(pool);
#endif
}
/*!
* @abstract Multiply method for strategy "without vectors"
*/
static void std_spectrum_mul_one_line(LynkeosFourierBuffer *a,
ArithmeticOperand_t *op,
LynkeosFourierBuffer *res,
u_short y )
{
LynkeosFourierBuffer *b = (LynkeosFourierBuffer*)op->term;
u_short x, c, ct;
for( x = 0; x < a->_halfw; x++ )
for( c = 0; c < a->_nPlanes; c++ )
{
if ( b->_nPlanes == 1 )
ct = 0;
else
ct = c;
LNKCOMPLEX r = colorComplexValue(a,x,y,c)
* colorComplexValue(b,x,y,ct);
colorComplexValue(res,x,y,c) = r;
}
}
#if !defined(DOUBLE_PIXELS) || defined(__SSE2__) || defined(__SSE3__)
static void vect_spectrum_mul_one_line(LynkeosFourierBuffer *a,
ArithmeticOperand_t *op,
LynkeosFourierBuffer *res,
u_short y )
{
LynkeosFourierBuffer *b = (LynkeosFourierBuffer*)op->term;
u_short x, c, ct;
union { REALVECT val; REAL vct[4]; } t1, t2, r1, r;
for( x = 0; x < a->_halfw; x+=2 )
for( c = 0; c < a->_nPlanes; c++ )
{
if ( b->_nPlanes == 1 )
ct = 0;
else
ct = c;
t1.val = *((REALVECT*)&colorComplexValue(a,x,y,c));
t2.val = *((REALVECT*)&colorComplexValue(b,x,y,ct));
r1.val = t1.val * t2.val; // Direct product
r.vct[0] = r1.vct[0] - r1.vct[1]; // 1st cplx real
r.vct[1] = t1.vct[0]*t2.vct[1] + t1.vct[1]*t2.vct[0]; // 1st cplx imag
r.vct[2] = r1.vct[2] - r1.vct[3]; // 2nd cplx real
r.vct[3] = t1.vct[2]*t2.vct[3] + t1.vct[3]*t2.vct[2]; // 1st cplx imag
*((REALVECT*)&colorComplexValue(res,x,y,c)) = r.val;
}
}
#endif
/*!
* @abstract "Multiply with conjugate" method for strategy "without vectors"
*/
static void std_spectrum_mul_conjugate_one_line(LynkeosFourierBuffer *a,
ArithmeticOperand_t *op,
LynkeosFourierBuffer *res,
u_short y )
{
LynkeosFourierBuffer *b = (LynkeosFourierBuffer*)op->term;
u_short x, c, ct;
for( x = 0; x < a->_halfw; x++ )
for( c = 0; c < a->_nPlanes; c++ )
{
if ( b->_nPlanes == 1 )
ct = 0;
else
ct = c;
LNKCOMPLEX t1 = colorComplexValue(a,x,y,c),
t2 = colorComplexValue(b,x,y,ct);
LNKCOMPLEX r = (__real__ t1 * __real__ t2) + (__imag__ t1 * __imag__ t2)
+ I * ((__real__ t2 * __imag__ t1) - (__real__ t1 * __imag__ t2));
colorComplexValue(res,x,y,c) = r;
}
}
#if !defined(DOUBLE_PIXELS) || defined(__SSE2__) || defined(__SSE3__)
/*!
* @abstract "Multiply with conjugate" method for strategy "with vectors"
*/
static void vect_spectrum_mul_conjugate_one_line(LynkeosFourierBuffer *a,
ArithmeticOperand_t *op,
LynkeosFourierBuffer *res,
u_short y )
{
LynkeosFourierBuffer *b = (LynkeosFourierBuffer*)op->term;
u_short x, c, ct;
union { REALVECT val; REAL vect[4]; } t1, t2, r1, r;
for( x = 0; x < a->_halfw; x+=2 )
for( c = 0; c < a->_nPlanes; c++ )
{
if ( b->_nPlanes == 1 )
ct = 0;
else
ct = c;
t1.val = *((REALVECT*)&colorComplexValue(a,x,y,c));
t2.val = *((REALVECT*)&colorComplexValue(b,x,y,ct));
r1.val = t1.val * t2.val; // Direct product
r.vect[0] = r1.vect[0] + r1.vect[1];
r.vect[1] = t2.vect[0] * t1.vect[1] - t1.vect[0] * t2.vect[1];
r.vect[2] = r1.vect[2] + r1.vect[3];
r.vect[3] = t2.vect[2] * t1.vect[3] - t1.vect[2] * t2.vect[3];
*((REALVECT*)&colorComplexValue(res,x,y,c)) = r.val;
}
}
#endif
/*!
* @abstract Scaling method for strategy "without vectors"
*/
static void std_spectrum_scale_one_line(LynkeosFourierBuffer *a,
ArithmeticOperand_t *op,
LynkeosFourierBuffer *res,
u_short y )
{
const REAL scalar =
#ifdef DOUBLE_PIXELS
op->dscalar
#else
op->fscalar
#endif
;
u_short x, c;
for( x = 0; x < a->_halfw; x++ )
for( c = 0; c < a->_nPlanes; c++ )
{
LNKCOMPLEX r = colorComplexValue(a,x,y,c) * scalar;
colorComplexValue(res,x,y,c) = r;
}
}
#if !defined(DOUBLE_PIXELS) || defined(__SSE2__) || defined(__SSE3__)
/*!
* @abstract Scaling method for strategy "with vectors"
*/
static void vect_spectrum_scale_one_line(LynkeosFourierBuffer *a,
ArithmeticOperand_t *op,
LynkeosFourierBuffer *res,
u_short y )
{
const REAL scalar =
#ifdef DOUBLE_PIXELS
op->dscalar
#else
op->fscalar
#endif
;
const REALVECT Vscale = { scalar, scalar, scalar, scalar };
u_short x, c;
for( x = 0; x < a->_halfw; x+=2 )
for( c = 0; c < a->_nPlanes; c++ )
{
REALVECT r = *((REALVECT*)&colorComplexValue(a,x,y,c)) * Vscale;
*((REALVECT*)&colorComplexValue(res,x,y,c)) = r;
}
}
#endif
/*!
* @abstract Divide method for strategy "without vectors"
*/
static void std_spectrum_div_one_line(LynkeosFourierBuffer *a,
ArithmeticOperand_t *op,
LynkeosFourierBuffer *res,
u_short y )
{
LynkeosFourierBuffer *b = (LynkeosFourierBuffer*)op->term;
u_short x, c, ct;
for( x = 0; x < a->_halfw; x++ )
for( c = 0; c < a->_nPlanes; c++ )
{
if ( b->_nPlanes == 1 )
ct = 0;
else
ct = c;
LNKCOMPLEX n = colorComplexValue(a,x,y,c),
d = colorComplexValue(b,x,y,ct), r;
if ( d != 0.0 )
r = n / d;
else
r = 0.0; // Arbitrary value to avoid NaN
colorComplexValue(res,x,y,c) = r;
}
}
#if !defined(DOUBLE_PIXELS) || defined(__SSE2__) || defined(__SSE3__)
/*!
* @abstract Divide method for strategy "with vectors"
*/
static void vect_spectrum_div_one_line(LynkeosFourierBuffer *a,
ArithmeticOperand_t *op,
LynkeosFourierBuffer *res,
u_short y )
{
LynkeosFourierBuffer *b = (LynkeosFourierBuffer*)op->term;
u_short x, c, ct;
union { REALVECT val; REAL vect[4]; } n, d, r1, m, r;
REAL m1, m2;
for( x = 0; x < a->_halfw; x+=2 )
for( c = 0; c < a->_nPlanes; c++ )
{
if ( b->_nPlanes == 1 )
ct = 0;
else
ct = c;
// (a+ib)/(c+id) = (ac+bd+i(bc-ad))/(c2+d2)
n.val = *((REALVECT*)&colorComplexValue(a,x,y,c));
d.val = *((REALVECT*)&colorComplexValue(b,x,y,ct));
r1.val = n.val * d.val; // Direct product
m.val = d.val * d.val;
m1 = m.vect[0] + m.vect[1];
if ( m1 > 0.0 )
{
r.vect[0] = (r1.vect[0] + r1.vect[1])/m1;
r.vect[1] = (d.vect[0] * n.vect[1] - n.vect[0] * d.vect[1])/m1;
}
else
{
r.vect[0] = 0.0;
r.vect[1] = 0.0;
}
m2 = m.vect[2] + m.vect[3];
if ( m2 > 0.0 )
{
r.vect[2] = (r1.vect[2] + r1.vect[3])/m2;
r.vect[3] = (d.vect[2] * n.vect[3] - n.vect[2] * d.vect[3])/m2;
}
else
{
r.vect[0] = 0.0;
r.vect[1] = 0.0;
}
*((REALVECT*)&colorComplexValue(res,x,y,c)) = r.val;
}
}
#endif
static const ArithmeticOperation_t Mul_Spectrum
= {.stdProcessOneLine = (ImageProcessOneLine_t)std_spectrum_mul_one_line,
.vectProcessOneLine = (ImageProcessOneLine_t)vect_spectrum_mul_one_line,
.scalar = NO};
static const ArithmeticOperation_t Div_Spectrum
= {.stdProcessOneLine = (ImageProcessOneLine_t)std_spectrum_div_one_line,
.vectProcessOneLine = (ImageProcessOneLine_t)vect_spectrum_div_one_line,
.scalar = NO};
static const ArithmeticOperation_t MulConjugate_Spectrum
= {.stdProcessOneLine = (ImageProcessOneLine_t)std_spectrum_mul_conjugate_one_line,
.vectProcessOneLine = (ImageProcessOneLine_t)vect_spectrum_mul_conjugate_one_line,
.scalar = NO};
static const ArithmeticOperation_t Scale_Spectrum
= {.stdProcessOneLine = (ImageProcessOneLine_t)std_spectrum_scale_one_line,
.vectProcessOneLine = (ImageProcessOneLine_t)vect_spectrum_scale_one_line,
.scalar = YES};
@implementation LynkeosFourierBuffer
- (id) init
{
if ( (self = [super init]) != nil )
{
_halfw = 0;
_spadw = 0;
_goal = 0;
_direct = NULL;
_inverse = NULL;
_isSpectrum = NO;
}
return( self );
}
- (id) initWithNumberOfPlanes:(u_char)nPlanes
width:(u_short)w height:(u_short)h
withGoal:(u_char)goal
{
return( [self initWithNumberOfPlanes:nPlanes width:w height:h
withGoal:goal isSpectrum:NO] );
}
- (id) initWithNumberOfPlanes:(u_char)nPlanes
width:(u_short)w height:(u_short)h
withGoal:(u_char)goal
isSpectrum:(BOOL)isSpectrum
{
NSAssert( nPlanes == 1 || nPlanes == 3,
@"MyFourierBuffer handles only monochrome or RGB images" );
if ( (self = [self init]) != nil )
{
int sizes[2], realPaddedSizes[2], complexPaddedSizes[2];
u_char c;
_nPlanes = nPlanes;
_w = w;
_halfw = w/2+1;
// Line width is padded for Altivec
_spadw = (_halfw*sizeof(LNKCOMPLEX) + 4*sizeof(float) - 1)/4/sizeof(float);
_spadw *= 4*sizeof(float)/sizeof(LNKCOMPLEX);
_padw = _spadw*sizeof(LNKCOMPLEX)/sizeof(REAL); // Padded real pixels
_h = h;
_padh = h;
_goal = goal;
_isSpectrum = isSpectrum;
pthread_mutex_lock( &fftwLock );
_data = FFT_MALLOC( _nPlanes*sizeof(LNKCOMPLEX)*_spadw*_h );
NSAssert( _data != NULL, @"FFT buffer allocation failed" );
_freeWhenDone = YES;
sizes[0] = _h;
sizes[1] = _w;
realPaddedSizes[0] = _h;
realPaddedSizes[1] = _padw;
complexPaddedSizes[0] = _h;
complexPaddedSizes[1] = _spadw;
if ( _goal & FOR_DIRECT )
_direct = FFT_PLAN_R2C( 2, sizes, _nPlanes,
_data, realPaddedSizes, 1, _padw*h,
(FFTW_COMPLEX*)_data, complexPaddedSizes, 1, _spadw*h,
fftwDefaultFlag | FFTW_MEASURE );
if ( _goal & FOR_INVERSE )
_inverse = FFT_PLAN_C2R( 2, sizes, _nPlanes,
(FFTW_COMPLEX*)_data, complexPaddedSizes, 1, _spadw*h,
_data, realPaddedSizes, 1, _padw*h,
fftwDefaultFlag | FFTW_MEASURE );
pthread_mutex_unlock( &fftwLock );
for( c = 0; c < nPlanes; c++ )
_planes[c] = &((REAL*)_data)[c*_h*_padw];
}
return( self );
}
- (id) initWithCoder:(NSCoder *)coder
{
if ((self = [super initWithCoder:coder]) != nil)
{
_halfw = _w/2+1;
_spadw = _padw*sizeof(REAL)/sizeof(LNKCOMPLEX);
}
return self;
}
- (void) dealloc
{
pthread_mutex_lock( &fftwLock );
if ( _goal & FOR_DIRECT )
FFT_DESTROY_PLAN( _direct );
if ( _goal & FOR_INVERSE )
FFT_DESTROY_PLAN( _inverse );
pthread_mutex_unlock( &fftwLock );
[super dealloc];
}
- (id) copyWithZone:(NSZone *)zone
{
LynkeosFourierBuffer *buf =
[[LynkeosFourierBuffer allocWithZone:zone] initWithNumberOfPlanes:_nPlanes
width:_w
height:_h
withGoal:_goal];
// Copy line by line, as the padding may differ between original and copy
for (int p = 0; p < buf->_nPlanes; p++)
for (int y = 0; y < buf->_h; y++)
memcpy( buf->_planes[p] + y*buf->_padw, _planes[p] + y*_padw, sizeof(REAL)*buf->_padw );
buf->_isSpectrum = _isSpectrum;
return( buf );
}
- (BOOL) hasCustomFormat {return _isSpectrum;}
- (void) clear
{
u_short x, y, c;
[self resetMinMax];
for( c = 0; c < _nPlanes; c++ )
for( y = 0; y < _h; y++ )
for( x = 0; x < _halfw; x++ )
colorComplexValue(self,x,y,c) = 0.0;
}
- (void) getMinLevel:(double*)vmin maxLevel:(double*)vmax
{
NSAssert( !_isSpectrum, @"GetMinLevel:maxLevel: called on a spectrum" );
[super getMinLevel:vmin maxLevel:vmax];
}
- (BOOL) isSpectrum { return( _isSpectrum ); }
- (void) directTransform
{
NSAssert( _goal & FOR_DIRECT, @"Non scheduled direct transform" );
NSAssert( !_isSpectrum, @"Target is already transformed" );
[self resetMinMax];
FFT_EXECUTE( _direct );
_isSpectrum = YES;
}
- (void) inverseTransform
{
const REAL area = _w*_h;
u_short x, y, c;
NSAssert( _goal & FOR_INVERSE, @"Non scheduled inverse transform" );
NSAssert( _isSpectrum, @"Target is not a spectrum" );
FFT_EXECUTE( _inverse );
_isSpectrum = NO;
[self resetMinMax];
for( c = 0; c < _nPlanes; c++ )
{
for( y = 0; y < _h; y++ )
{
for( x = 0; x < _w; x++ )
{
REAL *v = &colorValue(self,x,y,c);
*v /= area;
/* Update the range */
if ( *v < _min[c] )
_min[c] = *v;
if ( *v > _max[c] )
_max[c] = *v;
}
}
if ( _min[c] < _min[_nPlanes] )
_min[_nPlanes] = _min[c];
if ( _max[c] > _max[_nPlanes] )
_max[_nPlanes] = _max[c];
}
}
- (void) normalizeWithFactor:(double)factor mono:(BOOL)mono
{
unsigned short int x, y, c;
if ( _isSpectrum )
{
REAL f = factor;
// The (0,0) sample of the spectrum is the integral on the domain
if (factor == 0.0 && !mono)
{
REAL weight = 0;
for( c = 0; c < _nPlanes; c++ )
{
const REAL colorWeight = __real__ colorComplexValue(self,0,0,c);
if (colorWeight > weight)
weight = colorWeight;
}
f = 1.0/weight;
}
for( c = 0; c < _nPlanes; c++ )
{
if (factor == 0.0 && mono)
f = 1.0 / __real__ colorComplexValue(self,0,0,c);
for( y = 0; y < _h; y++ )
for( x = 0; x < _halfw; x++ )
colorComplexValue(self,x,y,c) *= f;
}
}
else
[super normalizeWithFactor:0.0 mono:mono];
}
- (void) normalize
{
if (_isSpectrum)
// A normalized spectrum shall not scale the spectrum to which it is multiplied,
// in any color. Mono is hence the default
[self normalizeWithFactor:0.0 mono:YES];
else
[super normalize];
}
- (void) conjugate
{
unsigned short int x, y, c;
NSAssert( _isSpectrum, @"Target is not a spectrum" );
for( c = 0; c < _nPlanes; c++ )
{
for( y = 0; y < _h; y++ )
for( x = 0; x < _halfw; x++ )
__imag__ colorComplexValue(self,x,y,c) *= -1.0;
}
}
- (void) substract:(LynkeosFourierBuffer*)image
{
u_short x, y, c;
for( c = 0; c < _nPlanes; c++ )
for( y = 0; y < _h; y++ )
for( x = 0; x < _halfw; x++ )
colorComplexValue(self,x,y,c) -= colorComplexValue(image,x,y,c);
}
- (void) multiplyWith:(LynkeosFourierBuffer*)term result:(LynkeosFourierBuffer*)result
{
NSAssert( (_nPlanes == term->_nPlanes || term->_nPlanes == 1)
&& _nPlanes == result->_nPlanes
&& _w == term->_w && _h == term->_h
&& _w == result->_w && _h == result->_h
&& _isSpectrum == term->_isSpectrum
&& _isSpectrum == result->_isSpectrum,
@"Incompatible terms in multiplication" );
ArithmeticOperand_t op = { .term=term };
if ( _isSpectrum )
_process_image( self, _process_image_selector, &op, result, &Mul_Spectrum);
else
[super multiplyWith:term result: result];
}
- (void) multiplyWithScalar:(double)scalar
{
if ( _isSpectrum )
{
ArithmeticOperand_t op =
#ifdef DOUBLE_PIXELS
{ .dscalar=scalar }
#else
{ .fscalar=scalar }
#endif
;
_process_image( self, _process_image_selector, &op, self, &Scale_Spectrum);
}
else
[super multiplyWithScalar:scalar];
}
- (void) substractBias:(double)bias andScale:(double)scale
{
NSAssert(!_isSpectrum, @"substractBias:andScale called on spectrum");
[super substractBias:bias andScale:scale];
}
- (void) multiplyWithConjugateOf:(LynkeosFourierBuffer*)term
result:(LynkeosFourierBuffer*)result
{
NSAssert( (_nPlanes == term->_nPlanes || term->_nPlanes == 1)
&& _nPlanes == result->_nPlanes
&& _w == term->_w && _h == term->_h
&& _w == result->_w && _h == result->_h
&& _isSpectrum && term->_isSpectrum && result->_isSpectrum,
@"Incompatible terms in multiplication with conjugate" );
ArithmeticOperand_t op = { .term=term };
if ( _isSpectrum )
_process_image( self, _process_image_selector, &op, result, &MulConjugate_Spectrum);
}
- (void) divideBy:(LynkeosFourierBuffer*)denom result:(LynkeosFourierBuffer*)result
{
NSAssert( (_nPlanes == denom->_nPlanes || denom->_nPlanes == 1)
&& _nPlanes == result->_nPlanes
&& _w == denom->_w && _h == denom->_h
&& _w == result->_w && _h == result->_h
&& _isSpectrum == denom->_isSpectrum
&& _isSpectrum == result->_isSpectrum,
@"Incompatible terms in division" );
ArithmeticOperand_t op = { .term=denom };
if ( _isSpectrum )
_process_image( self, _process_image_selector, &op, result, &Div_Spectrum);
else
[super divideBy:denom result:result];
}
- (void) convertToPlanar:(REAL * const * const)planes
withPlanes:(u_short)nPlanes
lineWidth:(u_short)lineW
{
if (_isSpectrum)
[self inverseTransform];
[super convertToPlanar:planes withPlanes:nPlanes lineWidth:lineW];
}
+ (LynkeosFourierBuffer*) fourierBufferWithNumberOfPlanes:(u_char)nPlanes
width:(u_short)w
height:(u_short)h
withGoal:(u_char)goal
{
return( [[[self alloc] initWithNumberOfPlanes:nPlanes
width:w height:h
withGoal:goal] autorelease] );
}
@end
|