File: aa_sample.lyx

package info (click to toggle)
lyx 1.1.6fix4-2
  • links: PTS
  • area: contrib
  • in suites: woody
  • size: 26,136 kB
  • ctags: 13,679
  • sloc: cpp: 93,591; sh: 9,563; ansic: 8,253; perl: 3,489; makefile: 1,332; tcl: 163; sed: 150; python: 112; yacc: 38
file content (963 lines) | stat: -rw-r--r-- 21,677 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
#LyX 1.1 created this file. For more info see http://www.lyx.org/
\lyxformat 218
\textclass aa
\begin_preamble
\usepackage{graphicx}
%
\end_preamble
\language english
\inputencoding auto
\fontscheme default
\graphics default
\paperfontsize default
\spacing single 
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 2
\papersides 2
\paperpagestyle default

\layout Title

Hydrodynamics of giant planet formation
\layout Subtitle

I.
 Overviewing the 
\begin_inset Formula \( \kappa  \)
\end_inset 

-mechanism
\layout Author

G.
 Wuchterl 
\latex latex 

\backslash 
inst{1} 
\backslash 
and
\newline 
          
\latex default 
C.
 Ptolemy
\latex latex 

\backslash 
inst{2}
\backslash 
fnmsep
\begin_float footnote 
\layout Standard

Just to show the usage of the elements in the author field
\end_float 
 
\layout Offprint

G.
 Wuchterl
\layout Address

Institute for Astronomy (IfA), University of Vienna, T\i \"{u}
rkenschanzstrasse
 17, A-1180 Vienna
\newline 

\latex latex 

\backslash 
email{wuchterl@amok.ast.univie.ac.at} 
\backslash 
and
\newline 

\latex default 
University of Alexandria, Department of Geography, ...
\newline 

\latex latex 

\backslash 
email{c.ptolemy@hipparch.uheaven.space}
\latex default 
 
\begin_float footnote 
\layout Standard

The university of heaven temporarily does not accept e-mails
\end_float 
 
\layout Date

Received September 15, 1996; accepted March 16, 1997
\layout Abstract

To investigate the physical nature of the `nuc\SpecialChar \-
leated instability' of proto
 giant planets (Mizuno 
\begin_inset LatexCommand \cite{mizuno}

\end_inset 

), the stability of layers in static, radiative gas spheres is analysed
 on the basis of Baker's 
\begin_inset LatexCommand \cite{baker}

\end_inset 

 standard one-zone model.
 It is shown that stability depends only upon the equations of state, the
 opacities and the local thermodynamic state in the layer.
 Stability and instability can therefore be expressed in the form of stability
 equations of state which are universal for a given composition.
 The stability equations of state are calculated for solar composition and
 are displayed in the domain 
\begin_inset Formula \( -14\leq \lg \rho /[\mathrm{g}\, \mathrm{cm}^{-3}]\leq 0 \)
\end_inset 

, 
\begin_inset Formula \( 8.8\leq \lg e/[\mathrm{erg}\, \mathrm{g}^{-1}]\leq 17.7 \)
\end_inset 

.
 These displays may be used to determine the one-zone stability of layers
 in stellar or planetary structure models by directly reading off the value
 of the stability equations for the thermodynamic state of these layers,
 specified by state quantities as density 
\begin_inset Formula \( \rho  \)
\end_inset 

, temperature 
\begin_inset Formula \( T \)
\end_inset 

 or specific internal energy 
\begin_inset Formula \( e \)
\end_inset 

.
 Regions of instability in the 
\begin_inset Formula \( (\rho ,e) \)
\end_inset 

-plane are described and related to the underlying microphysical processes.
 Vibrational instability is found to be a common phenomenon at temperatures
 lower than the second He ionisation zone.
 The 
\begin_inset Formula \( \kappa  \)
\end_inset 

-mechanism is widespread under `cool' conditions.
\latex latex 

\newline 

\backslash 
keywords{giant planet formation -- 
\backslash 
(
\backslash 
kappa
\backslash 
)-mechanism -- stability of gas spheres }
\latex default 
 
\layout Section

Introduction
\layout Standard

In the 
\emph on 
nucleated instability
\latex latex 

\backslash 
/{}
\emph default 
\latex default 
 (also called core instability) hypothesis of giant planet formation, a
 critical mass for static core envelope protoplanets has been found.
 Mizuno (
\begin_inset LatexCommand \cite{mizuno}

\end_inset 

) determined the critical mass of the core to be about 
\begin_inset Formula \( 12\, M_{\oplus } \)
\end_inset 

 (
\begin_inset Formula \( M_{\oplus }=5.975\, 10^{27}\, \mathrm{g} \)
\end_inset 

 is the Earth mass), which is independent of the outer boundary conditions
 and therefore independent of the location in the solar nebula.
 This critical value for the core mass corresponds closely to the cores
 of today's giant planets.
\layout Standard

Although no hydrodynamical study has been available many workers conjectured
 that a collapse or rapid contraction will ensue after accumulating the
 critical mass.
 The main motivation for this article is to investigate the stability of
 the static envelope at the critical mass.
 With this aim the local, linear stability of static radiative gas spheres
 is investigated on the basis of Baker's (
\begin_inset LatexCommand \cite{baker}

\end_inset 

) standard one-zone model.
\layout Standard

Phenomena similar to the ones described above for giant planet formation
 have been found in hydrodynamical models concerning star formation where
 protostellar cores explode (Tscharnuter 
\begin_inset LatexCommand \cite{tscharnuter}

\end_inset 

, Balluch 
\begin_inset LatexCommand \cite{balluch}

\end_inset 

), whereas earlier studies found quasi-steady collapse flows.
 The similarities in the (micro)physics, i.e., constitutive relations of protostel
lar cores and protogiant planets serve as a further motivation for this
 study.
\layout Section

Baker's standard one-zone model
\layout Standard

\begin_float wide-fig 
\layout Caption

Adiabatic exponent 
\begin_inset Formula \( \Gamma _{1} \)
\end_inset 

.
 
\begin_inset Formula \( \Gamma _{1} \)
\end_inset 

 is plotted as a function of 
\begin_inset Formula \( \lg  \)
\end_inset 

 internal energy 
\begin_inset Formula \( [\mathrm{erg}\, \mathrm{g}^{-1}] \)
\end_inset 

 and 
\begin_inset Formula \( \lg  \)
\end_inset 

 density 
\begin_inset Formula \( [\mathrm{g}\, \mathrm{cm}^{-3}] \)
\end_inset 


\layout Standard


\begin_inset LatexCommand \label{FigGam}

\end_inset 


\end_float 
 In this section the one-zone model of Baker (
\begin_inset LatexCommand \cite{baker}

\end_inset 

), originally used to study the Cephe\i \"{\i}
d pulsation mechanism, will be briefly
 reviewed.
 The resulting stability criteria will be rewritten in terms of local state
 variables, local timescales and constitutive relations.
\layout Standard

Baker (
\begin_inset LatexCommand \cite{baker}

\end_inset 

) investigates the stability of thin layers in self-gravitating, spherical
 gas clouds with the following properties: 
\layout Itemize

hydrostatic equilibrium, 
\layout Itemize

thermal equilibrium, 
\layout Itemize

energy transport by grey radiation diffusion.
 
\layout Standard
\noindent 
For the one-zone-model Baker obtains necessary conditions for dynamical,
 secular and vibrational (or pulsational) stability (Eqs.
\latex latex 

\backslash 
 
\latex default 
(34a,
\latex latex 

\backslash 
,
\latex default 
b,
\latex latex 

\backslash 
,
\latex default 
c) in Baker 
\begin_inset LatexCommand \cite{baker}

\end_inset 

).
 Using Baker's notation:
\layout Standard
\align left 

\begin_inset Formula \begin{eqnarray*}
M_{r} &  & \textrm{mass internal to the radius }r\\
m &  & \textrm{mass of the zone}\\
r_{0} &  & \textrm{unperturbed zone radius}\\
\rho _{0} &  & \textrm{unperturbed density in the zone}\\
T_{0} &  & \textrm{unperturbed temperature in the zone}\\
L_{r0} &  & \textrm{unperturbed luminosity}\\
E_{\textrm{th}} &  & \textrm{thermal energy of the zone}
\end{eqnarray*}

\end_inset 

 
\layout Standard
\noindent 
and with the definitions of the 
\emph on 
local cooling time
\latex latex 

\backslash 
/{}
\emph default 
\latex default 
 (see Fig.\SpecialChar ~

\begin_inset LatexCommand \ref{FigGam}

\end_inset 

) 
\begin_inset Formula \begin{equation}
\tau _{\mathrm{co}}=\frac{E_{\mathrm{th}}}{L_{r0}}\, ,
\end{equation}

\end_inset 

 and the 
\emph on 
local free-fall time
\emph default 

\begin_inset Formula \begin{equation}
\tau _{\mathrm{ff}}=\sqrt{\frac{3\pi }{32G}\frac{4\pi r_{0}^{3}}{3M_{\mathrm{r}}}}\, ,
\end{equation}

\end_inset 

 Baker's 
\begin_inset Formula \( K \)
\end_inset 

 and 
\begin_inset Formula \( \sigma _{0} \)
\end_inset 

 have the following form: 
\begin_inset Formula \begin{eqnarray}
\sigma _{0} & = & \frac{\pi }{\sqrt{8}}\frac{1}{\tau _{\mathrm{ff}}}\\
K & = & \frac{\sqrt{32}}{\pi }\frac{1}{\delta }\frac{\tau _{\mathrm{ff}}}{\tau _{\mathrm{co}}}\, ;
\end{eqnarray}

\end_inset 

 where 
\begin_inset Formula \( E_{\mathrm{th}}\approx m(P_{0}/{\rho _{0}}) \)
\end_inset 

 has been used and 
\begin_inset Formula \begin{equation}
\begin{array}{l}
\delta =-\left( \frac{\partial \ln \rho }{\partial \ln T}\right) _{P}\\
e=mc^{2}
\end{array}
\end{equation}

\end_inset 

 is a thermodynamical quantity which is of order 
\begin_inset Formula \( 1 \)
\end_inset 

 and equal to 
\begin_inset Formula \( 1 \)
\end_inset 

 for nonreacting mixtures of classical perfect gases.
 The physical meaning of 
\begin_inset Formula \( \sigma _{0} \)
\end_inset 

 and 
\begin_inset Formula \( K \)
\end_inset 

 is clearly visible in the equations above.
 
\begin_inset Formula \( \sigma _{0} \)
\end_inset 

 represents a frequency of the order one per free-fall time.
 
\begin_inset Formula \( K \)
\end_inset 

 is proportional to the ratio of the free-fall time and the cooling time.
 Substituting into Baker's criteria, using thermodynamic identities and
 definitions of thermodynamic quantities, 
\begin_inset Formula \[
\Gamma _{1}=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{S}\, ,\; \chi ^{}_{\rho }=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{T}\, ,\; \kappa ^{}_{P}=\left( \frac{\partial \ln \kappa }{\partial \ln P}\right) _{T}\]

\end_inset 


\begin_inset Formula \[
\nabla _{\mathrm{ad}}=\left( \frac{\partial \ln T}{\partial \ln P}\right) _{S}\, ,\; \chi ^{}_{T}=\left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho }\, ,\; \kappa ^{}_{T}=\left( \frac{\partial \ln \kappa }{\partial \ln T}\right) _{T}\]

\end_inset 

 one obtains, after some pages of algebra, the conditions for 
\emph on 
stability
\latex latex 

\backslash 
/{}
\emph default 
\latex default 
 given below: 
\begin_inset Formula \begin{eqnarray}
\frac{\pi ^{2}}{8}\frac{1}{\tau _{\mathrm{ff}}^{2}}(3\Gamma _{1}-4) & > & 0\label{ZSDynSta} \\
\frac{\pi ^{2}}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}\nabla _{\mathrm{ad}}\left[ \frac{1-3/4\chi ^{}_{\rho }}{\chi ^{}_{T}}(\kappa ^{}_{T}-4)+\kappa ^{}_{P}+1\right]  & > & 0\label{ZSSecSta} \\
\frac{\pi ^{2}}{4}\frac{3}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}^{2}\, \nabla _{\mathrm{ad}}\left[ 4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa ^{}_{T}+\kappa ^{}_{P})-\frac{4}{3\Gamma _{1}}\right]  & > & 0\label{ZSVibSta} 
\end{eqnarray}

\end_inset 

 For a physical discussion of the stability criteria see Baker (
\begin_inset LatexCommand \cite{baker}

\end_inset 

) or Cox (
\begin_inset LatexCommand \cite{cox}

\end_inset 

).
\layout Standard

We observe that these criteria for dynamical, secular and vibrational stability,
 respectively, can be factorized into 
\layout Enumerate

a factor containing local timescales only, 
\layout Enumerate

a factor containing only constitutive relations and their derivatives.
 
\layout Standard

The first factors, depending on only timescales, are positive by definition.
 The signs of the left hand sides of the inequalities\SpecialChar ~
(
\begin_inset LatexCommand \ref{ZSDynSta}

\end_inset 

), (
\begin_inset LatexCommand \ref{ZSSecSta}

\end_inset 

) and (
\begin_inset LatexCommand \ref{ZSVibSta}

\end_inset 

) therefore depend exclusively on the second factors containing the constitutive
 relations.
 Since they depend only on state variables, the stability criteria themselves
 are 
\emph on 
 functions of the thermodynamic state in the local zone
\emph default 
.
 The one-zone stability can therefore be determined from a simple equation
 of state, given for example, as a function of density and temperature.
 Once the microphysics, i.e.
\latex latex 

\backslash 
 
\latex default 
the thermodynamics and opacities (see Table\SpecialChar ~

\begin_inset LatexCommand \ref{KapSou}

\end_inset 

), are specified (in practice by specifying a chemical composition) the
 one-zone stability can be inferred if the thermodynamic state is specified.
 The zone -- or in other words the layer -- will be stable or unstable in
 whatever object it is imbedded as long as it satisfies the one-zone-model
 assumptions.
 Only the specific growth rates (depending upon the time scales) will be
 different for layers in different objects.
\layout Standard

\begin_float tab 
\layout Caption


\begin_inset LatexCommand \label{KapSou}

\end_inset 

Opacity sources
\layout Standard


\begin_inset  Tabular
<lyxtabular version="2" rows="4" columns="2">
<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
<column alignment="left" valignment="top" leftline="false" rightline="false" width="" special="">
<column alignment="left" valignment="top" leftline="false" rightline="false" width="" special="">
<row topline="true" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text

\layout Standard

Source
\end_inset 
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text

\layout Standard


\begin_inset Formula \( T/[\textrm{K}] \)
\end_inset 


\end_inset 
</cell>
</row>
<row topline="true" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text

\layout Standard

Yorke 1979, Yorke 1980a
\end_inset 
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text

\layout Standard


\begin_inset Formula \( \leq 1700^{\textrm{a}} \)
\end_inset 


\end_inset 
</cell>
</row>
<row topline="false" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text

\layout Standard

Krgel 1971
\end_inset 
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text

\layout Standard


\begin_inset Formula \( 1700\leq T\leq 5000 \)
\end_inset 

 
\end_inset 
</cell>
</row>
<row topline="false" bottomline="true" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text

\layout Standard

Cox & Stewart 1969
\end_inset 
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text

\layout Standard


\begin_inset Formula \( 5000\leq  \)
\end_inset 


\end_inset 
</cell>
</row>
</lyxtabular>

\end_inset 


\layout Standard


\begin_inset Formula \( ^{\textrm{a}} \)
\end_inset 

This is footnote a
\end_float 
 We will now write down the sign (and therefore stability) determining parts
 of the left-hand sides of the inequalities (
\begin_inset LatexCommand \ref{ZSDynSta}

\end_inset 

), (
\begin_inset LatexCommand \ref{ZSSecSta}

\end_inset 

) and (
\begin_inset LatexCommand \ref{ZSVibSta}

\end_inset 

) and thereby obtain 
\emph on 
stability equations of state
\emph default 
.
\layout Standard

The sign determining part of inequality\SpecialChar ~
(
\begin_inset LatexCommand \ref{ZSDynSta}

\end_inset 

) is 
\begin_inset Formula \( 3\Gamma _{1}-4 \)
\end_inset 

 and it reduces to the criterion for dynamical stability 
\begin_inset Formula \begin{equation}
\Gamma _{1}>\frac{4}{3}\, \cdot 
\end{equation}

\end_inset 

 Stability of the thermodynamical equilibrium demands 
\begin_inset Formula \begin{equation}
\chi ^{}_{\rho }>0,\; \; c_{v}>0\, ,
\end{equation}

\end_inset 

 and 
\begin_inset Formula \begin{equation}
\chi ^{}_{T}>0
\end{equation}

\end_inset 

 holds for a wide range of physical situations.
 With 
\begin_inset Formula \begin{eqnarray}
\Gamma _{3}-1=\frac{P}{\rho T}\frac{\chi ^{}_{T}}{c_{v}} & > & 0\\
\Gamma _{1}=\chi _{\rho }^{}+\chi _{T}^{}(\Gamma _{3}-1) & > & 0\\
\nabla _{\mathrm{ad}}=\frac{\Gamma _{3}-1}{\Gamma _{1}} & > & 0
\end{eqnarray}

\end_inset 

 we find the sign determining terms in inequalities\SpecialChar ~
(
\begin_inset LatexCommand \ref{ZSSecSta}

\end_inset 

) and (
\begin_inset LatexCommand \ref{ZSVibSta}

\end_inset 

) respectively and obtain the following form of the criteria for dynamical,
 secular and vibrational 
\emph on 
stability
\emph default 
, respectively: 
\begin_inset Formula \begin{eqnarray}
3\Gamma _{1}-4=:S_{\mathrm{dyn}}> & 0 & \label{DynSta} \\
\frac{1-3/4\chi ^{}_{\rho }}{\chi ^{}_{T}}(\kappa ^{}_{T}-4)+\kappa ^{}_{P}+1=:S_{\mathrm{sec}}> & 0 & \label{SecSta} \\
4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa ^{}_{T}+\kappa ^{}_{P})-\frac{4}{3\Gamma _{1}}=:S_{\mathrm{vib}}> & 0\, . & \label{VibSta} 
\end{eqnarray}

\end_inset 

 The constitutive relations are to be evaluated for the unperturbed thermodynami
c state (say 
\begin_inset Formula \( (\rho _{0},T_{0}) \)
\end_inset 

) of the zone.
 We see that the one-zone stability of the layer depends only on the constitutiv
e relations 
\begin_inset Formula \( \Gamma _{1} \)
\end_inset 

, 
\begin_inset Formula \( \nabla _{\mathrm{ad}} \)
\end_inset 

, 
\begin_inset Formula \( \chi _{T}^{},\, \chi _{\rho }^{} \)
\end_inset 

, 
\begin_inset Formula \( \kappa _{P}^{},\, \kappa _{T}^{} \)
\end_inset 

.
 These depend only on the unperturbed thermodynamical state of the layer.
 Therefore the above relations define the one-zone-stability equations of
 state 
\begin_inset Formula \( S_{\mathrm{dyn}},\, S_{\mathrm{sec}} \)
\end_inset 

 and 
\begin_inset Formula \( S_{\mathrm{vib}} \)
\end_inset 

.
 See Fig.\SpecialChar ~

\begin_inset LatexCommand \ref{FigVibStab}

\end_inset 

 for a picture of 
\begin_inset Formula \( S_{\mathrm{vib}} \)
\end_inset 

.
 Regions of secular instability are listed in Table\SpecialChar ~
1.
\layout Standard

\begin_float fig 
\layout Caption

Vibrational stability equation of state 
\begin_inset Formula \( S_{\mathrm{vib}}(\lg e,\lg \rho ) \)
\end_inset 

.
 
\begin_inset Formula \( >0 \)
\end_inset 

 means vibrational stability 
\layout Standard


\begin_inset LatexCommand \label{FigVibStab}

\end_inset 


\end_float 
\layout Section

Conclusions
\layout Enumerate

The conditions for the stability of static, radiative layers in gas spheres,
 as described by Baker's (
\begin_inset LatexCommand \cite{baker}

\end_inset 

) standard one-zone model, can be expressed as stability equations of state.
 These stability equations of state depend only on the local thermodynamic
 state of the layer.
 
\layout Enumerate

If the constitutive relations -- equations of state and Rosseland mean opacities
 -- are specified, the stability equations of state can be evaluated without
 specifying properties of the layer.
 
\layout Enumerate

For solar composition gas the 
\begin_inset Formula \( \kappa  \)
\end_inset 

-mechanism is working in the regions of the ice and dust features in the
 opacities, the 
\begin_inset Formula \( \mathrm{H}_{2} \)
\end_inset 

 dissociation and the combined H, first He ionization zone, as indicated
 by vibrational instability.
 These regions of instability are much larger in extent and degree of instabilit
y than the second He ionization zone that drives the Cephe\i \"{\i}
d pulsations.
 
\layout Acknowledgement

Part of this work was supported by the German 
\emph on 
Deut\SpecialChar \-
sche For\SpecialChar \-
schungs\SpecialChar \-
ge\SpecialChar \-
mein\SpecialChar \-
schaft, DFG
\latex latex 

\backslash 
/{}
\emph default 
\latex default 
 project number Ts\SpecialChar ~
17/2--1.
 
\layout Bibliography
\bibitem [1966]{baker}

 Baker, N.
 1966, in Stellar Evolution, ed.
\latex latex 

\backslash 
 
\latex default 
R.
 F.
 Stein,& A.
 G.
 W.
 Cameron (Plenum, New York) 333
\layout Bibliography
\bibitem [1988]{balluch}

 Balluch, M.
 1988, A&A, 200, 58
\layout Bibliography
\bibitem [1980]{cox}

 Cox, J.
 P.
 1980, Theory of Stellar Pulsation (Princeton University Press, Princeton)
 165
\layout Bibliography
\bibitem [1969]{cox69}

 Cox, A.
 N.,& Stewart, J.
 N.
 1969, Academia Nauk, Scientific Information 15, 1
\layout Bibliography
\bibitem [1980]{mizuno}

 Mizuno H.
 1980, Prog.
 Theor.
 Phys., 64, 544 
\layout Bibliography
\bibitem [1987]{tscharnuter}

 Tscharnuter W.
 M.
 1987, A&A, 188, 55 
\layout Bibliography
\bibitem [1992]{terlevich}

 Terlevich, R.
 1992, in ASP Conf.
 Ser.
 31, Relationships between Active Galactic Nuclei and Starburst Galaxies,
 ed.
 A.
 V.
 Filippenko, 13
\layout Bibliography
\bibitem [1980a]{yorke80a}

 Yorke, H.
 W.
 1980a, A&A, 86, 286
\layout Bibliography
\bibitem [1997]{zheng}

Zheng, W., Davidsen, A.
 F., Tytler, D.
 & Kriss, G.
 A.
 1997, preprint 
\the_end