1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
|
#LyX 1.1 created this file. For more info see http://www.lyx.org/
\lyxformat 218
\textclass aa
\begin_preamble
\usepackage{graphicx}
%
\end_preamble
\language english
\inputencoding auto
\fontscheme default
\graphics default
\paperfontsize default
\spacing single
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 2
\papersides 2
\paperpagestyle default
\layout Title
Hydrodynamics of giant planet formation
\layout Subtitle
I.
Overviewing the
\begin_inset Formula \( \kappa \)
\end_inset
-mechanism
\layout Author
G.
Wuchterl
\latex latex
\backslash
inst{1}
\backslash
and
\newline
\latex default
C.
Ptolemy
\latex latex
\backslash
inst{2}
\backslash
fnmsep
\begin_float footnote
\layout Standard
Just to show the usage of the elements in the author field
\end_float
\layout Offprint
G.
Wuchterl
\layout Address
Institute for Astronomy (IfA), University of Vienna, T\i \"{u}
rkenschanzstrasse
17, A-1180 Vienna
\newline
\latex latex
\backslash
email{wuchterl@amok.ast.univie.ac.at}
\backslash
and
\newline
\latex default
University of Alexandria, Department of Geography, ...
\newline
\latex latex
\backslash
email{c.ptolemy@hipparch.uheaven.space}
\latex default
\begin_float footnote
\layout Standard
The university of heaven temporarily does not accept e-mails
\end_float
\layout Date
Received September 15, 1996; accepted March 16, 1997
\layout Abstract
To investigate the physical nature of the `nuc\SpecialChar \-
leated instability' of proto
giant planets (Mizuno
\begin_inset LatexCommand \cite{mizuno}
\end_inset
), the stability of layers in static, radiative gas spheres is analysed
on the basis of Baker's
\begin_inset LatexCommand \cite{baker}
\end_inset
standard one-zone model.
It is shown that stability depends only upon the equations of state, the
opacities and the local thermodynamic state in the layer.
Stability and instability can therefore be expressed in the form of stability
equations of state which are universal for a given composition.
The stability equations of state are calculated for solar composition and
are displayed in the domain
\begin_inset Formula \( -14\leq \lg \rho /[\mathrm{g}\, \mathrm{cm}^{-3}]\leq 0 \)
\end_inset
,
\begin_inset Formula \( 8.8\leq \lg e/[\mathrm{erg}\, \mathrm{g}^{-1}]\leq 17.7 \)
\end_inset
.
These displays may be used to determine the one-zone stability of layers
in stellar or planetary structure models by directly reading off the value
of the stability equations for the thermodynamic state of these layers,
specified by state quantities as density
\begin_inset Formula \( \rho \)
\end_inset
, temperature
\begin_inset Formula \( T \)
\end_inset
or specific internal energy
\begin_inset Formula \( e \)
\end_inset
.
Regions of instability in the
\begin_inset Formula \( (\rho ,e) \)
\end_inset
-plane are described and related to the underlying microphysical processes.
Vibrational instability is found to be a common phenomenon at temperatures
lower than the second He ionisation zone.
The
\begin_inset Formula \( \kappa \)
\end_inset
-mechanism is widespread under `cool' conditions.
\latex latex
\newline
\backslash
keywords{giant planet formation --
\backslash
(
\backslash
kappa
\backslash
)-mechanism -- stability of gas spheres }
\latex default
\layout Section
Introduction
\layout Standard
In the
\emph on
nucleated instability
\latex latex
\backslash
/{}
\emph default
\latex default
(also called core instability) hypothesis of giant planet formation, a
critical mass for static core envelope protoplanets has been found.
Mizuno (
\begin_inset LatexCommand \cite{mizuno}
\end_inset
) determined the critical mass of the core to be about
\begin_inset Formula \( 12\, M_{\oplus } \)
\end_inset
(
\begin_inset Formula \( M_{\oplus }=5.975\, 10^{27}\, \mathrm{g} \)
\end_inset
is the Earth mass), which is independent of the outer boundary conditions
and therefore independent of the location in the solar nebula.
This critical value for the core mass corresponds closely to the cores
of today's giant planets.
\layout Standard
Although no hydrodynamical study has been available many workers conjectured
that a collapse or rapid contraction will ensue after accumulating the
critical mass.
The main motivation for this article is to investigate the stability of
the static envelope at the critical mass.
With this aim the local, linear stability of static radiative gas spheres
is investigated on the basis of Baker's (
\begin_inset LatexCommand \cite{baker}
\end_inset
) standard one-zone model.
\layout Standard
Phenomena similar to the ones described above for giant planet formation
have been found in hydrodynamical models concerning star formation where
protostellar cores explode (Tscharnuter
\begin_inset LatexCommand \cite{tscharnuter}
\end_inset
, Balluch
\begin_inset LatexCommand \cite{balluch}
\end_inset
), whereas earlier studies found quasi-steady collapse flows.
The similarities in the (micro)physics, i.e., constitutive relations of protostel
lar cores and protogiant planets serve as a further motivation for this
study.
\layout Section
Baker's standard one-zone model
\layout Standard
\begin_float wide-fig
\layout Caption
Adiabatic exponent
\begin_inset Formula \( \Gamma _{1} \)
\end_inset
.
\begin_inset Formula \( \Gamma _{1} \)
\end_inset
is plotted as a function of
\begin_inset Formula \( \lg \)
\end_inset
internal energy
\begin_inset Formula \( [\mathrm{erg}\, \mathrm{g}^{-1}] \)
\end_inset
and
\begin_inset Formula \( \lg \)
\end_inset
density
\begin_inset Formula \( [\mathrm{g}\, \mathrm{cm}^{-3}] \)
\end_inset
\layout Standard
\begin_inset LatexCommand \label{FigGam}
\end_inset
\end_float
In this section the one-zone model of Baker (
\begin_inset LatexCommand \cite{baker}
\end_inset
), originally used to study the Cephe\i \"{\i}
d pulsation mechanism, will be briefly
reviewed.
The resulting stability criteria will be rewritten in terms of local state
variables, local timescales and constitutive relations.
\layout Standard
Baker (
\begin_inset LatexCommand \cite{baker}
\end_inset
) investigates the stability of thin layers in self-gravitating, spherical
gas clouds with the following properties:
\layout Itemize
hydrostatic equilibrium,
\layout Itemize
thermal equilibrium,
\layout Itemize
energy transport by grey radiation diffusion.
\layout Standard
\noindent
For the one-zone-model Baker obtains necessary conditions for dynamical,
secular and vibrational (or pulsational) stability (Eqs.
\latex latex
\backslash
\latex default
(34a,
\latex latex
\backslash
,
\latex default
b,
\latex latex
\backslash
,
\latex default
c) in Baker
\begin_inset LatexCommand \cite{baker}
\end_inset
).
Using Baker's notation:
\layout Standard
\align left
\begin_inset Formula \begin{eqnarray*}
M_{r} & & \textrm{mass internal to the radius }r\\
m & & \textrm{mass of the zone}\\
r_{0} & & \textrm{unperturbed zone radius}\\
\rho _{0} & & \textrm{unperturbed density in the zone}\\
T_{0} & & \textrm{unperturbed temperature in the zone}\\
L_{r0} & & \textrm{unperturbed luminosity}\\
E_{\textrm{th}} & & \textrm{thermal energy of the zone}
\end{eqnarray*}
\end_inset
\layout Standard
\noindent
and with the definitions of the
\emph on
local cooling time
\latex latex
\backslash
/{}
\emph default
\latex default
(see Fig.\SpecialChar ~
\begin_inset LatexCommand \ref{FigGam}
\end_inset
)
\begin_inset Formula \begin{equation}
\tau _{\mathrm{co}}=\frac{E_{\mathrm{th}}}{L_{r0}}\, ,
\end{equation}
\end_inset
and the
\emph on
local free-fall time
\emph default
\begin_inset Formula \begin{equation}
\tau _{\mathrm{ff}}=\sqrt{\frac{3\pi }{32G}\frac{4\pi r_{0}^{3}}{3M_{\mathrm{r}}}}\, ,
\end{equation}
\end_inset
Baker's
\begin_inset Formula \( K \)
\end_inset
and
\begin_inset Formula \( \sigma _{0} \)
\end_inset
have the following form:
\begin_inset Formula \begin{eqnarray}
\sigma _{0} & = & \frac{\pi }{\sqrt{8}}\frac{1}{\tau _{\mathrm{ff}}}\\
K & = & \frac{\sqrt{32}}{\pi }\frac{1}{\delta }\frac{\tau _{\mathrm{ff}}}{\tau _{\mathrm{co}}}\, ;
\end{eqnarray}
\end_inset
where
\begin_inset Formula \( E_{\mathrm{th}}\approx m(P_{0}/{\rho _{0}}) \)
\end_inset
has been used and
\begin_inset Formula \begin{equation}
\begin{array}{l}
\delta =-\left( \frac{\partial \ln \rho }{\partial \ln T}\right) _{P}\\
e=mc^{2}
\end{array}
\end{equation}
\end_inset
is a thermodynamical quantity which is of order
\begin_inset Formula \( 1 \)
\end_inset
and equal to
\begin_inset Formula \( 1 \)
\end_inset
for nonreacting mixtures of classical perfect gases.
The physical meaning of
\begin_inset Formula \( \sigma _{0} \)
\end_inset
and
\begin_inset Formula \( K \)
\end_inset
is clearly visible in the equations above.
\begin_inset Formula \( \sigma _{0} \)
\end_inset
represents a frequency of the order one per free-fall time.
\begin_inset Formula \( K \)
\end_inset
is proportional to the ratio of the free-fall time and the cooling time.
Substituting into Baker's criteria, using thermodynamic identities and
definitions of thermodynamic quantities,
\begin_inset Formula \[
\Gamma _{1}=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{S}\, ,\; \chi ^{}_{\rho }=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{T}\, ,\; \kappa ^{}_{P}=\left( \frac{\partial \ln \kappa }{\partial \ln P}\right) _{T}\]
\end_inset
\begin_inset Formula \[
\nabla _{\mathrm{ad}}=\left( \frac{\partial \ln T}{\partial \ln P}\right) _{S}\, ,\; \chi ^{}_{T}=\left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho }\, ,\; \kappa ^{}_{T}=\left( \frac{\partial \ln \kappa }{\partial \ln T}\right) _{T}\]
\end_inset
one obtains, after some pages of algebra, the conditions for
\emph on
stability
\latex latex
\backslash
/{}
\emph default
\latex default
given below:
\begin_inset Formula \begin{eqnarray}
\frac{\pi ^{2}}{8}\frac{1}{\tau _{\mathrm{ff}}^{2}}(3\Gamma _{1}-4) & > & 0\label{ZSDynSta} \\
\frac{\pi ^{2}}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}\nabla _{\mathrm{ad}}\left[ \frac{1-3/4\chi ^{}_{\rho }}{\chi ^{}_{T}}(\kappa ^{}_{T}-4)+\kappa ^{}_{P}+1\right] & > & 0\label{ZSSecSta} \\
\frac{\pi ^{2}}{4}\frac{3}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}^{2}\, \nabla _{\mathrm{ad}}\left[ 4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa ^{}_{T}+\kappa ^{}_{P})-\frac{4}{3\Gamma _{1}}\right] & > & 0\label{ZSVibSta}
\end{eqnarray}
\end_inset
For a physical discussion of the stability criteria see Baker (
\begin_inset LatexCommand \cite{baker}
\end_inset
) or Cox (
\begin_inset LatexCommand \cite{cox}
\end_inset
).
\layout Standard
We observe that these criteria for dynamical, secular and vibrational stability,
respectively, can be factorized into
\layout Enumerate
a factor containing local timescales only,
\layout Enumerate
a factor containing only constitutive relations and their derivatives.
\layout Standard
The first factors, depending on only timescales, are positive by definition.
The signs of the left hand sides of the inequalities\SpecialChar ~
(
\begin_inset LatexCommand \ref{ZSDynSta}
\end_inset
), (
\begin_inset LatexCommand \ref{ZSSecSta}
\end_inset
) and (
\begin_inset LatexCommand \ref{ZSVibSta}
\end_inset
) therefore depend exclusively on the second factors containing the constitutive
relations.
Since they depend only on state variables, the stability criteria themselves
are
\emph on
functions of the thermodynamic state in the local zone
\emph default
.
The one-zone stability can therefore be determined from a simple equation
of state, given for example, as a function of density and temperature.
Once the microphysics, i.e.
\latex latex
\backslash
\latex default
the thermodynamics and opacities (see Table\SpecialChar ~
\begin_inset LatexCommand \ref{KapSou}
\end_inset
), are specified (in practice by specifying a chemical composition) the
one-zone stability can be inferred if the thermodynamic state is specified.
The zone -- or in other words the layer -- will be stable or unstable in
whatever object it is imbedded as long as it satisfies the one-zone-model
assumptions.
Only the specific growth rates (depending upon the time scales) will be
different for layers in different objects.
\layout Standard
\begin_float tab
\layout Caption
\begin_inset LatexCommand \label{KapSou}
\end_inset
Opacity sources
\layout Standard
\begin_inset Tabular
<lyxtabular version="2" rows="4" columns="2">
<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
<column alignment="left" valignment="top" leftline="false" rightline="false" width="" special="">
<column alignment="left" valignment="top" leftline="false" rightline="false" width="" special="">
<row topline="true" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Source
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
\begin_inset Formula \( T/[\textrm{K}] \)
\end_inset
\end_inset
</cell>
</row>
<row topline="true" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Yorke 1979, Yorke 1980a
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
\begin_inset Formula \( \leq 1700^{\textrm{a}} \)
\end_inset
\end_inset
</cell>
</row>
<row topline="false" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Krgel 1971
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
\begin_inset Formula \( 1700\leq T\leq 5000 \)
\end_inset
\end_inset
</cell>
</row>
<row topline="false" bottomline="true" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Cox & Stewart 1969
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
\begin_inset Formula \( 5000\leq \)
\end_inset
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\layout Standard
\begin_inset Formula \( ^{\textrm{a}} \)
\end_inset
This is footnote a
\end_float
We will now write down the sign (and therefore stability) determining parts
of the left-hand sides of the inequalities (
\begin_inset LatexCommand \ref{ZSDynSta}
\end_inset
), (
\begin_inset LatexCommand \ref{ZSSecSta}
\end_inset
) and (
\begin_inset LatexCommand \ref{ZSVibSta}
\end_inset
) and thereby obtain
\emph on
stability equations of state
\emph default
.
\layout Standard
The sign determining part of inequality\SpecialChar ~
(
\begin_inset LatexCommand \ref{ZSDynSta}
\end_inset
) is
\begin_inset Formula \( 3\Gamma _{1}-4 \)
\end_inset
and it reduces to the criterion for dynamical stability
\begin_inset Formula \begin{equation}
\Gamma _{1}>\frac{4}{3}\, \cdot
\end{equation}
\end_inset
Stability of the thermodynamical equilibrium demands
\begin_inset Formula \begin{equation}
\chi ^{}_{\rho }>0,\; \; c_{v}>0\, ,
\end{equation}
\end_inset
and
\begin_inset Formula \begin{equation}
\chi ^{}_{T}>0
\end{equation}
\end_inset
holds for a wide range of physical situations.
With
\begin_inset Formula \begin{eqnarray}
\Gamma _{3}-1=\frac{P}{\rho T}\frac{\chi ^{}_{T}}{c_{v}} & > & 0\\
\Gamma _{1}=\chi _{\rho }^{}+\chi _{T}^{}(\Gamma _{3}-1) & > & 0\\
\nabla _{\mathrm{ad}}=\frac{\Gamma _{3}-1}{\Gamma _{1}} & > & 0
\end{eqnarray}
\end_inset
we find the sign determining terms in inequalities\SpecialChar ~
(
\begin_inset LatexCommand \ref{ZSSecSta}
\end_inset
) and (
\begin_inset LatexCommand \ref{ZSVibSta}
\end_inset
) respectively and obtain the following form of the criteria for dynamical,
secular and vibrational
\emph on
stability
\emph default
, respectively:
\begin_inset Formula \begin{eqnarray}
3\Gamma _{1}-4=:S_{\mathrm{dyn}}> & 0 & \label{DynSta} \\
\frac{1-3/4\chi ^{}_{\rho }}{\chi ^{}_{T}}(\kappa ^{}_{T}-4)+\kappa ^{}_{P}+1=:S_{\mathrm{sec}}> & 0 & \label{SecSta} \\
4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa ^{}_{T}+\kappa ^{}_{P})-\frac{4}{3\Gamma _{1}}=:S_{\mathrm{vib}}> & 0\, . & \label{VibSta}
\end{eqnarray}
\end_inset
The constitutive relations are to be evaluated for the unperturbed thermodynami
c state (say
\begin_inset Formula \( (\rho _{0},T_{0}) \)
\end_inset
) of the zone.
We see that the one-zone stability of the layer depends only on the constitutiv
e relations
\begin_inset Formula \( \Gamma _{1} \)
\end_inset
,
\begin_inset Formula \( \nabla _{\mathrm{ad}} \)
\end_inset
,
\begin_inset Formula \( \chi _{T}^{},\, \chi _{\rho }^{} \)
\end_inset
,
\begin_inset Formula \( \kappa _{P}^{},\, \kappa _{T}^{} \)
\end_inset
.
These depend only on the unperturbed thermodynamical state of the layer.
Therefore the above relations define the one-zone-stability equations of
state
\begin_inset Formula \( S_{\mathrm{dyn}},\, S_{\mathrm{sec}} \)
\end_inset
and
\begin_inset Formula \( S_{\mathrm{vib}} \)
\end_inset
.
See Fig.\SpecialChar ~
\begin_inset LatexCommand \ref{FigVibStab}
\end_inset
for a picture of
\begin_inset Formula \( S_{\mathrm{vib}} \)
\end_inset
.
Regions of secular instability are listed in Table\SpecialChar ~
1.
\layout Standard
\begin_float fig
\layout Caption
Vibrational stability equation of state
\begin_inset Formula \( S_{\mathrm{vib}}(\lg e,\lg \rho ) \)
\end_inset
.
\begin_inset Formula \( >0 \)
\end_inset
means vibrational stability
\layout Standard
\begin_inset LatexCommand \label{FigVibStab}
\end_inset
\end_float
\layout Section
Conclusions
\layout Enumerate
The conditions for the stability of static, radiative layers in gas spheres,
as described by Baker's (
\begin_inset LatexCommand \cite{baker}
\end_inset
) standard one-zone model, can be expressed as stability equations of state.
These stability equations of state depend only on the local thermodynamic
state of the layer.
\layout Enumerate
If the constitutive relations -- equations of state and Rosseland mean opacities
-- are specified, the stability equations of state can be evaluated without
specifying properties of the layer.
\layout Enumerate
For solar composition gas the
\begin_inset Formula \( \kappa \)
\end_inset
-mechanism is working in the regions of the ice and dust features in the
opacities, the
\begin_inset Formula \( \mathrm{H}_{2} \)
\end_inset
dissociation and the combined H, first He ionization zone, as indicated
by vibrational instability.
These regions of instability are much larger in extent and degree of instabilit
y than the second He ionization zone that drives the Cephe\i \"{\i}
d pulsations.
\layout Acknowledgement
Part of this work was supported by the German
\emph on
Deut\SpecialChar \-
sche For\SpecialChar \-
schungs\SpecialChar \-
ge\SpecialChar \-
mein\SpecialChar \-
schaft, DFG
\latex latex
\backslash
/{}
\emph default
\latex default
project number Ts\SpecialChar ~
17/2--1.
\layout Bibliography
\bibitem [1966]{baker}
Baker, N.
1966, in Stellar Evolution, ed.
\latex latex
\backslash
\latex default
R.
F.
Stein,& A.
G.
W.
Cameron (Plenum, New York) 333
\layout Bibliography
\bibitem [1988]{balluch}
Balluch, M.
1988, A&A, 200, 58
\layout Bibliography
\bibitem [1980]{cox}
Cox, J.
P.
1980, Theory of Stellar Pulsation (Princeton University Press, Princeton)
165
\layout Bibliography
\bibitem [1969]{cox69}
Cox, A.
N.,& Stewart, J.
N.
1969, Academia Nauk, Scientific Information 15, 1
\layout Bibliography
\bibitem [1980]{mizuno}
Mizuno H.
1980, Prog.
Theor.
Phys., 64, 544
\layout Bibliography
\bibitem [1987]{tscharnuter}
Tscharnuter W.
M.
1987, A&A, 188, 55
\layout Bibliography
\bibitem [1992]{terlevich}
Terlevich, R.
1992, in ASP Conf.
Ser.
31, Relationships between Active Galactic Nuclei and Starburst Galaxies,
ed.
A.
V.
Filippenko, 13
\layout Bibliography
\bibitem [1980a]{yorke80a}
Yorke, H.
W.
1980a, A&A, 86, 286
\layout Bibliography
\bibitem [1997]{zheng}
Zheng, W., Davidsen, A.
F., Tytler, D.
& Kriss, G.
A.
1997, preprint
\the_end
|