1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
// FilterCoder.cpp
#include "StdAfx.h"
// #include <stdio.h>
#include "../../Common/Defs.h"
#include "FilterCoder.h"
#include "StreamUtils.h"
#ifdef _WIN32
#define alignedMidBuffer_Alloc g_MidAlloc
#else
#define alignedMidBuffer_Alloc g_AlignedAlloc
#endif
CAlignedMidBuffer::~CAlignedMidBuffer()
{
ISzAlloc_Free(&alignedMidBuffer_Alloc, _buf);
}
void CAlignedMidBuffer::AllocAligned(size_t size)
{
ISzAlloc_Free(&alignedMidBuffer_Alloc, _buf);
_buf = (Byte *)ISzAlloc_Alloc(&alignedMidBuffer_Alloc, size);
}
/*
AES filters need 16-bytes alignment for HARDWARE-AES instructions.
So we call IFilter::Filter(, size), where (size != 16 * N) only for last data block.
AES-CBC filters need data size aligned for 16-bytes.
So the encoder can add zeros to the end of original stream.
Some filters (BCJ and others) don't process data at the end of stream in some cases.
So the encoder and decoder write such last bytes without change.
Most filters process all data, if we send aligned size to filter.
But BCJ filter can process up 4 bytes less than sent size.
And ARMT filter can process 2 bytes less than sent size.
*/
static const UInt32 kBufSize = 1 << 21;
Z7_COM7F_IMF(CFilterCoder::SetInBufSize(UInt32 , UInt32 size)) { _inBufSize = size; return S_OK; }
Z7_COM7F_IMF(CFilterCoder::SetOutBufSize(UInt32 , UInt32 size)) { _outBufSize = size; return S_OK; }
HRESULT CFilterCoder::Alloc()
{
UInt32 size = MyMin(_inBufSize, _outBufSize);
/* minimal bufSize is 16 bytes for AES and IA64 filter.
bufSize for AES must be aligned for 16 bytes.
We use (1 << 12) min size to support future aligned filters. */
const UInt32 kMinSize = 1 << 12;
size &= ~(UInt32)(kMinSize - 1);
if (size < kMinSize)
size = kMinSize;
// size = (1 << 12); // + 117; // for debug
if (!_buf || _bufSize != size)
{
AllocAligned(size);
if (!_buf)
return E_OUTOFMEMORY;
_bufSize = size;
}
return S_OK;
}
HRESULT CFilterCoder::Init_and_Alloc()
{
RINOK(Filter->Init())
return Alloc();
}
CFilterCoder::CFilterCoder(bool encodeMode):
_bufSize(0),
_inBufSize(kBufSize),
_outBufSize(kBufSize),
_encodeMode(encodeMode),
_outSize_Defined(false),
_outSize(0),
_nowPos64(0)
{}
Z7_COM7F_IMF(CFilterCoder::Code(ISequentialInStream *inStream, ISequentialOutStream *outStream,
const UInt64 * /* inSize */, const UInt64 *outSize, ICompressProgressInfo *progress))
{
RINOK(Init_and_Alloc())
/*
It's expected that BCJ/ARMT filter can process up to 4 bytes less
than sent data size. For such BCJ/ARMT cases with non-filtered data we:
- write some filtered data to output stream
- move non-written data (filtered and non-filtered data) to start of buffer
- read more new data from input stream to position after end of non-filtered data
- call Filter() for concatenated data in buffer.
For all cases, even for cases with partial filtering (BCJ/ARMT),
we try to keep real/virtual alignment for all operations
(memmove, Read(), Filter(), Write()).
We use (kAlignSize=64) alignmnent that is larger than (16-bytes)
required for AES filter alignment.
AES-CBC uses 16-bytes blocks, that is simple case for processing here,
if we call Filter() for aligned size for all calls except of last call (last block).
And now there are no filters that use blocks with non-power2 size,
but we try to support such non-power2 filters too here at Code().
*/
UInt64 prev = 0;
UInt64 nowPos64 = 0;
bool inputFinished = false;
UInt32 readPos = 0;
UInt32 filterPos = 0;
while (!outSize || nowPos64 < *outSize)
{
HRESULT hres = S_OK;
if (!inputFinished)
{
size_t processedSize = _bufSize - readPos;
/* for AES filters we need at least max(16, kAlignSize) bytes in buffer.
But we try to read full buffer to reduce the number of Filter() and Write() calls.
*/
hres = ReadStream(inStream, _buf + readPos, &processedSize);
readPos += (UInt32)processedSize;
inputFinished = (readPos != _bufSize);
if (hres != S_OK)
{
// do we need to stop encoding after reading error?
// if (_encodeMode) return hres;
inputFinished = true;
}
}
if (readPos == 0)
return hres;
/* we set (needMoreInput = true), if it's block-filter (like AES-CBC)
that needs more data for current block filtering:
We read full input buffer with Read(), and _bufSize is aligned,
So the possible cases when we set (needMoreInput = true) are:
1) decode : filter needs more data after the end of input stream.
another cases are possible for non-power2-block-filter,
because buffer size is not aligned for filter_non_power2_block_size:
2) decode/encode : filter needs more data from non-finished input stream
3) encode : filter needs more space for zeros after the end of input stream
*/
bool needMoreInput = false;
while (readPos != filterPos)
{
/* Filter() is allowed to process part of data.
Here we use the loop to filter as max as possible.
when we call Filter(data, size):
if (size < 16), AES-CTR filter uses internal 16-byte buffer.
new (since v23.00) AES-CTR filter allows (size < 16) for non-last block,
but it will work less efficiently than calls with aligned (size).
We still support old (before v23.00) AES-CTR filters here.
We have aligned (size) for AES-CTR, if it's not last block.
We have aligned (readPos) for any filter, if (!inputFinished).
We also meet the requirements for (data) pointer in Filter() call:
{
(virtual_stream_offset % aligment_size) == (data_ptr % aligment_size)
(aligment_size == 2^N)
(aligment_size >= 16)
}
*/
const UInt32 cur = Filter->Filter(_buf + filterPos, readPos - filterPos);
if (cur == 0)
break;
const UInt32 f = filterPos + cur;
if (cur > readPos - filterPos)
{
// AES-CBC
if (hres != S_OK)
break;
if (!_encodeMode
|| cur > _bufSize - filterPos
|| !inputFinished)
{
/* (cur > _bufSize - filterPos) is unexpected for AES filter, if _bufSize is multiply of 16.
But we support this case, if some future filter will use block with non-power2-size.
*/
needMoreInput = true;
break;
}
/* (_encodeMode && inputFinished).
We add zero bytes as pad in current block after the end of read data. */
Byte *buf = _buf;
do
buf[readPos] = 0;
while (++readPos != f);
// (readPos) now is (size_of_real_input_data + size_of_zero_pad)
if (cur != Filter->Filter(buf + filterPos, cur))
return E_FAIL;
}
filterPos = f;
}
UInt32 size = filterPos;
if (hres == S_OK)
{
/* If we need more Read() or Filter() calls, then we need to Write()
some data and move unwritten data to get additional space in buffer.
We try to keep alignment for data moves, Read(), Filter() and Write() calls.
*/
const UInt32 kAlignSize = 1 << 6;
const UInt32 alignedFiltered = filterPos & ~(kAlignSize - 1);
if (inputFinished)
{
if (!needMoreInput)
size = readPos; // for risc/bcj filters in last block we write data after filterPos.
else if (_encodeMode)
size = alignedFiltered; // for non-power2-block-encode-filter
}
else
size = alignedFiltered;
}
{
UInt32 writeSize = size;
if (outSize)
{
const UInt64 rem = *outSize - nowPos64;
if (writeSize > rem)
writeSize = (UInt32)rem;
}
RINOK(WriteStream(outStream, _buf, writeSize))
nowPos64 += writeSize;
}
if (hres != S_OK)
return hres;
if (inputFinished)
{
if (readPos == size)
return hres;
if (!_encodeMode)
{
// block-decode-filter (AES-CBS) has non-full last block
// we don't want unaligned data move for more iterations with this error case.
return S_FALSE;
}
}
if (size == 0)
{
// it's unexpected that we have no any move in this iteration.
return E_FAIL;
}
// if (size != 0)
{
if (filterPos < size)
return E_FAIL; // filterPos = 0; else
filterPos -= size;
readPos -= size;
if (readPos != 0)
memmove(_buf, _buf + size, readPos);
}
// printf("\nnowPos64=%x, readPos=%x, filterPos=%x\n", (unsigned)nowPos64, (unsigned)readPos, (unsigned)filterPos);
if (progress && (nowPos64 - prev) >= (1 << 22))
{
prev = nowPos64;
RINOK(progress->SetRatioInfo(&nowPos64, &nowPos64))
}
}
return S_OK;
}
// ---------- Write to Filter ----------
Z7_COM7F_IMF(CFilterCoder::SetOutStream(ISequentialOutStream *outStream))
{
_outStream = outStream;
return S_OK;
}
Z7_COM7F_IMF(CFilterCoder::ReleaseOutStream())
{
_outStream.Release();
return S_OK;
}
HRESULT CFilterCoder::Flush2()
{
while (_convSize != 0)
{
UInt32 num = _convSize;
if (_outSize_Defined)
{
const UInt64 rem = _outSize - _nowPos64;
if (num > rem)
num = (UInt32)rem;
if (num == 0)
return k_My_HRESULT_WritingWasCut;
}
UInt32 processed = 0;
const HRESULT res = _outStream->Write(_buf + _convPos, num, &processed);
if (processed == 0)
return res != S_OK ? res : E_FAIL;
_convPos += processed;
_convSize -= processed;
_nowPos64 += processed;
RINOK(res)
}
const UInt32 convPos = _convPos;
if (convPos != 0)
{
const UInt32 num = _bufPos - convPos;
Byte *buf = _buf;
for (UInt32 i = 0; i < num; i++)
buf[i] = buf[convPos + i];
_bufPos = num;
_convPos = 0;
}
return S_OK;
}
Z7_COM7F_IMF(CFilterCoder::Write(const void *data, UInt32 size, UInt32 *processedSize))
{
if (processedSize)
*processedSize = 0;
while (size != 0)
{
RINOK(Flush2())
// _convSize is 0
// _convPos is 0
// _bufPos is small
if (_bufPos != _bufSize)
{
UInt32 num = MyMin(size, _bufSize - _bufPos);
memcpy(_buf + _bufPos, data, num);
size -= num;
data = (const Byte *)data + num;
if (processedSize)
*processedSize += num;
_bufPos += num;
if (_bufPos != _bufSize)
continue;
}
// _bufPos == _bufSize
_convSize = Filter->Filter(_buf, _bufPos);
if (_convSize == 0)
break;
if (_convSize > _bufPos)
{
// that case is not possible.
_convSize = 0;
return E_FAIL;
}
}
return S_OK;
}
Z7_COM7F_IMF(CFilterCoder::OutStreamFinish())
{
for (;;)
{
RINOK(Flush2())
if (_bufPos == 0)
break;
const UInt32 convSize = Filter->Filter(_buf, _bufPos);
_convSize = convSize;
UInt32 bufPos = _bufPos;
if (convSize == 0)
_convSize = bufPos;
else if (convSize > bufPos)
{
// AES
if (convSize > _bufSize)
{
_convSize = 0;
return E_FAIL;
}
if (!_encodeMode)
{
_convSize = 0;
return S_FALSE;
}
Byte *buf = _buf;
for (; bufPos < convSize; bufPos++)
buf[bufPos] = 0;
_bufPos = bufPos;
_convSize = Filter->Filter(_buf, bufPos);
if (_convSize != _bufPos)
return E_FAIL;
}
}
CMyComPtr<IOutStreamFinish> finish;
_outStream.QueryInterface(IID_IOutStreamFinish, &finish);
if (finish)
return finish->OutStreamFinish();
return S_OK;
}
// ---------- Init functions ----------
Z7_COM7F_IMF(CFilterCoder::InitEncoder())
{
InitSpecVars();
return Init_and_Alloc();
}
HRESULT CFilterCoder::Init_NoSubFilterInit()
{
InitSpecVars();
return Alloc();
}
Z7_COM7F_IMF(CFilterCoder::SetOutStreamSize(const UInt64 *outSize))
{
InitSpecVars();
if (outSize)
{
_outSize = *outSize;
_outSize_Defined = true;
}
return Init_and_Alloc();
}
// ---------- Read from Filter ----------
Z7_COM7F_IMF(CFilterCoder::SetInStream(ISequentialInStream *inStream))
{
_inStream = inStream;
return S_OK;
}
Z7_COM7F_IMF(CFilterCoder::ReleaseInStream())
{
_inStream.Release();
return S_OK;
}
Z7_COM7F_IMF(CFilterCoder::Read(void *data, UInt32 size, UInt32 *processedSize))
{
if (processedSize)
*processedSize = 0;
while (size != 0)
{
if (_convSize != 0)
{
if (size > _convSize)
size = _convSize;
if (_outSize_Defined)
{
const UInt64 rem = _outSize - _nowPos64;
if (size > rem)
size = (UInt32)rem;
}
memcpy(data, _buf + _convPos, size);
_convPos += size;
_convSize -= size;
_nowPos64 += size;
if (processedSize)
*processedSize = size;
break;
}
const UInt32 convPos = _convPos;
if (convPos != 0)
{
const UInt32 num = _bufPos - convPos;
Byte *buf = _buf;
for (UInt32 i = 0; i < num; i++)
buf[i] = buf[convPos + i];
_bufPos = num;
_convPos = 0;
}
{
size_t readSize = _bufSize - _bufPos;
const HRESULT res = ReadStream(_inStream, _buf + _bufPos, &readSize);
_bufPos += (UInt32)readSize;
RINOK(res)
}
const UInt32 convSize = Filter->Filter(_buf, _bufPos);
_convSize = convSize;
UInt32 bufPos = _bufPos;
if (convSize == 0)
{
if (bufPos == 0)
break;
// BCJ
_convSize = bufPos;
continue;
}
if (convSize > bufPos)
{
// AES
if (convSize > _bufSize)
return E_FAIL;
if (!_encodeMode)
return S_FALSE;
Byte *buf = _buf;
do
buf[bufPos] = 0;
while (++bufPos != convSize);
_bufPos = bufPos;
_convSize = Filter->Filter(_buf, convSize);
if (_convSize != _bufPos)
return E_FAIL;
}
}
return S_OK;
}
#ifndef Z7_NO_CRYPTO
Z7_COM7F_IMF(CFilterCoder::CryptoSetPassword(const Byte *data, UInt32 size))
{ return _setPassword->CryptoSetPassword(data, size); }
Z7_COM7F_IMF(CFilterCoder::SetKey(const Byte *data, UInt32 size))
{ return _cryptoProperties->SetKey(data, size); }
Z7_COM7F_IMF(CFilterCoder::SetInitVector(const Byte *data, UInt32 size))
{ return _cryptoProperties->SetInitVector(data, size); }
#endif
#ifndef Z7_EXTRACT_ONLY
Z7_COM7F_IMF(CFilterCoder::SetCoderProperties(const PROPID *propIDs,
const PROPVARIANT *properties, UInt32 numProperties))
{ return _setCoderProperties->SetCoderProperties(propIDs, properties, numProperties); }
Z7_COM7F_IMF(CFilterCoder::WriteCoderProperties(ISequentialOutStream *outStream))
{ return _writeCoderProperties->WriteCoderProperties(outStream); }
Z7_COM7F_IMF(CFilterCoder::SetCoderPropertiesOpt(const PROPID *propIDs,
const PROPVARIANT *properties, UInt32 numProperties))
{ return _setCoderPropertiesOpt->SetCoderPropertiesOpt(propIDs, properties, numProperties); }
/*
Z7_COM7F_IMF(CFilterCoder::ResetSalt()
{ return _cryptoResetSalt->ResetSalt(); }
*/
Z7_COM7F_IMF(CFilterCoder::ResetInitVector())
{ return _cryptoResetInitVector->ResetInitVector(); }
#endif
Z7_COM7F_IMF(CFilterCoder::SetDecoderProperties2(const Byte *data, UInt32 size))
{ return _setDecoderProperties2->SetDecoderProperties2(data, size); }
|