1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
|
// Bcj2Coder.cpp
#include "StdAfx.h"
// #include <stdio.h>
#include "../../../C/Alloc.h"
#include "../Common/StreamUtils.h"
#include "Bcj2Coder.h"
namespace NCompress {
namespace NBcj2 {
CBaseCoder::CBaseCoder()
{
for (unsigned i = 0; i < BCJ2_NUM_STREAMS + 1; i++)
{
_bufs[i] = NULL;
_bufsSizes[i] = 0;
_bufsSizes_New[i] = (1 << 18);
}
}
CBaseCoder::~CBaseCoder()
{
for (unsigned i = 0; i < BCJ2_NUM_STREAMS + 1; i++)
::MidFree(_bufs[i]);
}
HRESULT CBaseCoder::Alloc(bool allocForOrig)
{
const unsigned num = allocForOrig ? BCJ2_NUM_STREAMS + 1 : BCJ2_NUM_STREAMS;
for (unsigned i = 0; i < num; i++)
{
UInt32 size = _bufsSizes_New[i];
/* buffer sizes for BCJ2_STREAM_CALL and BCJ2_STREAM_JUMP streams
must be aligned for 4 */
size &= ~(UInt32)3;
const UInt32 kMinBufSize = 4;
if (size < kMinBufSize)
size = kMinBufSize;
// size = 4 * 100; // for debug
// if (BCJ2_IS_32BIT_STREAM(i) == 1) size = 4 * 1; // for debug
if (!_bufs[i] || size != _bufsSizes[i])
{
if (_bufs[i])
{
::MidFree(_bufs[i]);
_bufs[i] = NULL;
}
_bufsSizes[i] = 0;
Byte *buf = (Byte *)::MidAlloc(size);
if (!buf)
return E_OUTOFMEMORY;
_bufs[i] = buf;
_bufsSizes[i] = size;
}
}
return S_OK;
}
#ifndef Z7_EXTRACT_ONLY
CEncoder::CEncoder():
_relatLim(BCJ2_ENC_RELAT_LIMIT_DEFAULT)
// , _excludeRangeBits(BCJ2_RELAT_EXCLUDE_NUM_BITS)
{}
CEncoder::~CEncoder() {}
Z7_COM7F_IMF(CEncoder::SetInBufSize(UInt32, UInt32 size))
{ _bufsSizes_New[BCJ2_NUM_STREAMS] = size; return S_OK; }
Z7_COM7F_IMF(CEncoder::SetOutBufSize(UInt32 streamIndex, UInt32 size))
{ _bufsSizes_New[streamIndex] = size; return S_OK; }
Z7_COM7F_IMF(CEncoder::SetCoderProperties(const PROPID *propIDs, const PROPVARIANT *props, UInt32 numProps))
{
UInt32 relatLim = BCJ2_ENC_RELAT_LIMIT_DEFAULT;
// UInt32 excludeRangeBits = BCJ2_RELAT_EXCLUDE_NUM_BITS;
for (UInt32 i = 0; i < numProps; i++)
{
const PROPVARIANT &prop = props[i];
const PROPID propID = propIDs[i];
if (propID >= NCoderPropID::kReduceSize
// && propID != NCoderPropID::kHashBits
)
continue;
switch (propID)
{
/*
case NCoderPropID::kDefaultProp:
{
if (prop.vt != VT_UI4)
return E_INVALIDARG;
UInt32 v = prop.ulVal;
if (v > 31)
return E_INVALIDARG;
relatLim = (UInt32)1 << v;
break;
}
case NCoderPropID::kHashBits:
{
if (prop.vt != VT_UI4)
return E_INVALIDARG;
UInt32 v = prop.ulVal;
if (v > 31)
return E_INVALIDARG;
excludeRangeBits = v;
break;
}
*/
case NCoderPropID::kDictionarySize:
{
if (prop.vt != VT_UI4)
return E_INVALIDARG;
relatLim = prop.ulVal;
if (relatLim > BCJ2_ENC_RELAT_LIMIT_MAX)
return E_INVALIDARG;
break;
}
case NCoderPropID::kNumThreads:
case NCoderPropID::kLevel:
continue;
default: return E_INVALIDARG;
}
}
_relatLim = relatLim;
// _excludeRangeBits = excludeRangeBits;
return S_OK;
}
HRESULT CEncoder::CodeReal(
ISequentialInStream * const *inStreams, const UInt64 * const *inSizes, UInt32 numInStreams,
ISequentialOutStream * const *outStreams, const UInt64 * const * /* outSizes */, UInt32 numOutStreams,
ICompressProgressInfo *progress)
{
if (numInStreams != 1 || numOutStreams != BCJ2_NUM_STREAMS)
return E_INVALIDARG;
RINOK(Alloc())
CBcj2Enc_ip_unsigned fileSize_minus1 = BCJ2_ENC_FileSizeField_UNLIMITED;
if (inSizes && inSizes[0])
{
const UInt64 inSize = *inSizes[0];
#ifdef BCJ2_ENC_FileSize_MAX
if (inSize <= BCJ2_ENC_FileSize_MAX)
#endif
fileSize_minus1 = BCJ2_ENC_GET_FileSizeField_VAL_FROM_FileSize(inSize);
}
Z7_DECL_CMyComPtr_QI_FROM(ICompressGetSubStreamSize, getSubStreamSize, inStreams[0])
CBcj2Enc enc;
enc.src = _bufs[BCJ2_NUM_STREAMS];
enc.srcLim = enc.src;
{
for (unsigned i = 0; i < BCJ2_NUM_STREAMS; i++)
{
enc.bufs[i] = _bufs[i];
enc.lims[i] = _bufs[i] + _bufsSizes[i];
}
}
Bcj2Enc_Init(&enc);
enc.fileIp64 = 0;
enc.fileSize64_minus1 = fileSize_minus1;
enc.relatLimit = _relatLim;
// enc.relatExcludeBits = _excludeRangeBits;
enc.finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
// Varibales that correspond processed data in input stream:
UInt64 inPos_without_Temp = 0; // it doesn't include data in enc.temp[]
UInt64 inPos_with_Temp = 0; // it includes data in enc.temp[]
UInt64 prevProgress = 0;
UInt64 totalRead = 0; // size read from input stream
UInt64 outSizeRc = 0;
UInt64 subStream_Index = 0;
UInt64 subStream_StartPos = 0; // global start offset of subStreams[subStream_Index]
UInt64 subStream_Size = 0;
const Byte *srcLim_Read = _bufs[BCJ2_NUM_STREAMS];
bool readWasFinished = false;
bool isAccurate = false;
bool wasUnknownSize = false;
for (;;)
{
if (readWasFinished && enc.srcLim == srcLim_Read)
enc.finishMode = BCJ2_ENC_FINISH_MODE_END_STREAM;
// for debug:
// for (int y=0;y<100;y++) { CBcj2Enc enc2 = enc; Bcj2Enc_Encode(&enc2); }
Bcj2Enc_Encode(&enc);
inPos_with_Temp = totalRead - (size_t)(srcLim_Read - enc.src);
inPos_without_Temp = inPos_with_Temp - Bcj2Enc_Get_AvailInputSize_in_Temp(&enc);
// if (inPos_without_Temp != enc.ip64) return E_FAIL;
if (Bcj2Enc_IsFinished(&enc))
break;
if (enc.state < BCJ2_NUM_STREAMS)
{
if (enc.bufs[enc.state] != enc.lims[enc.state])
return E_FAIL;
const size_t curSize = (size_t)(enc.bufs[enc.state] - _bufs[enc.state]);
// printf("Write stream = %2d %6d\n", enc.state, curSize);
RINOK(WriteStream(outStreams[enc.state], _bufs[enc.state], curSize))
if (enc.state == BCJ2_STREAM_RC)
outSizeRc += curSize;
enc.bufs[enc.state] = _bufs[enc.state];
enc.lims[enc.state] = _bufs[enc.state] + _bufsSizes[enc.state];
}
else
{
if (enc.state != BCJ2_ENC_STATE_ORIG)
return E_FAIL;
// (enc.state == BCJ2_ENC_STATE_ORIG)
if (enc.src != enc.srcLim)
return E_FAIL;
if (enc.finishMode != BCJ2_ENC_FINISH_MODE_CONTINUE
&& Bcj2Enc_Get_AvailInputSize_in_Temp(&enc) != 0)
return E_FAIL;
if (enc.src == srcLim_Read)
{
if (readWasFinished)
return E_FAIL;
UInt32 curSize = _bufsSizes[BCJ2_NUM_STREAMS];
RINOK(inStreams[0]->Read(_bufs[BCJ2_NUM_STREAMS], curSize, &curSize))
// printf("Read %6u bytes\n", curSize);
if (curSize == 0)
readWasFinished = true;
totalRead += curSize;
enc.src = _bufs[BCJ2_NUM_STREAMS];
srcLim_Read = _bufs[BCJ2_NUM_STREAMS] + curSize;
}
enc.srcLim = srcLim_Read;
if (getSubStreamSize)
{
/* we set base default conversions options that will be used,
if subStream related options will be not OK */
enc.fileIp64 = 0;
enc.fileSize64_minus1 = fileSize_minus1;
for (;;)
{
UInt64 nextPos;
if (isAccurate)
nextPos = subStream_StartPos + subStream_Size;
else
{
const HRESULT hres = getSubStreamSize->GetSubStreamSize(subStream_Index, &subStream_Size);
if (hres != S_OK)
{
enc.finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
/* if sub-stream size is unknown, we use default settings.
We still can recover to normal mode for next sub-stream,
if GetSubStreamSize() will return S_OK, when current
sub-stream will be finished.
*/
if (hres == S_FALSE)
{
wasUnknownSize = true;
break;
}
if (hres == E_NOTIMPL)
{
getSubStreamSize.Release();
break;
}
return hres;
}
// printf("GetSubStreamSize %6u : %6u \n", (unsigned)subStream_Index, (unsigned)subStream_Size);
nextPos = subStream_StartPos + subStream_Size;
if ((Int64)subStream_Size == -1)
{
/* it's not expected, but (-1) can mean unknown size. */
enc.finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
wasUnknownSize = true;
break;
}
if (nextPos < subStream_StartPos)
return E_FAIL;
isAccurate =
(nextPos < totalRead
|| (nextPos <= totalRead && readWasFinished));
}
/* (nextPos) is estimated end position of current sub_stream.
But only (totalRead) and (readWasFinished) values
can confirm that this estimated end position is accurate.
That end position is accurate, if it can't be changed in
further calls of GetSubStreamSize() */
/* (nextPos < inPos_with_Temp) is unexpected case here, that we
can get if from some incorrect ICompressGetSubStreamSize object,
where new GetSubStreamSize() call returns smaller size than
confirmed by Read() size from previous GetSubStreamSize() call.
*/
if (nextPos < inPos_with_Temp)
{
if (wasUnknownSize)
{
/* that case can be complicated for recovering.
so we disable sub-streams requesting. */
enc.finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
getSubStreamSize.Release();
break;
}
return E_FAIL; // to stop after failure
}
if (nextPos <= inPos_with_Temp)
{
// (nextPos == inPos_with_Temp)
/* CBcj2Enc encoder requires to finish each [non-empty] block (sub-stream)
with BCJ2_ENC_FINISH_MODE_END_BLOCK
or with BCJ2_ENC_FINISH_MODE_END_STREAM for last block:
And we send data of new block to CBcj2Enc, only if previous block was finished.
So we switch to next sub-stream if after Bcj2Enc_Encode() call we have
&& (enc.finishMode != BCJ2_ENC_FINISH_MODE_CONTINUE)
&& (nextPos == inPos_with_Temp)
&& (enc.state == BCJ2_ENC_STATE_ORIG)
*/
if (enc.finishMode != BCJ2_ENC_FINISH_MODE_CONTINUE)
{
/* subStream_StartPos is increased only here.
(subStream_StartPos == inPos_with_Temp) : at start
(subStream_StartPos <= inPos_with_Temp) : will be later
*/
subStream_StartPos = nextPos;
subStream_Size = 0;
wasUnknownSize = false;
subStream_Index++;
isAccurate = false;
// we don't change finishMode here
continue;
}
}
enc.finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
/* for (!isAccurate) case:
(totalRead <= real_end_of_subStream)
so we can use BCJ2_ENC_FINISH_MODE_CONTINUE up to (totalRead)
// we don't change settings at the end of substream, if settings were unknown,
*/
/* if (wasUnknownSize) then we can't trust size of that sub-stream.
so we use default settings instead */
if (!wasUnknownSize)
#ifdef BCJ2_ENC_FileSize_MAX
if (subStream_Size <= BCJ2_ENC_FileSize_MAX)
#endif
{
enc.fileIp64 =
(CBcj2Enc_ip_unsigned)(
(CBcj2Enc_ip_signed)enc.ip64 +
(CBcj2Enc_ip_signed)(subStream_StartPos - inPos_without_Temp));
Bcj2Enc_SET_FileSize(&enc, subStream_Size)
}
if (isAccurate)
{
/* (real_end_of_subStream == nextPos <= totalRead)
So we can use BCJ2_ENC_FINISH_MODE_END_BLOCK up to (nextPos). */
const size_t rem = (size_t)(totalRead - nextPos);
if ((size_t)(enc.srcLim - enc.src) < rem)
return E_FAIL;
enc.srcLim -= rem;
enc.finishMode = BCJ2_ENC_FINISH_MODE_END_BLOCK;
}
break;
} // for() loop
} // getSubStreamSize
}
if (progress && inPos_without_Temp - prevProgress >= (1 << 22))
{
prevProgress = inPos_without_Temp;
const UInt64 outSize2 = inPos_without_Temp + outSizeRc +
(size_t)(enc.bufs[BCJ2_STREAM_RC] - _bufs[BCJ2_STREAM_RC]);
// printf("progress %8u, %8u\n", (unsigned)inSize2, (unsigned)outSize2);
RINOK(progress->SetRatioInfo(&inPos_without_Temp, &outSize2))
}
}
for (unsigned i = 0; i < BCJ2_NUM_STREAMS; i++)
{
RINOK(WriteStream(outStreams[i], _bufs[i], (size_t)(enc.bufs[i] - _bufs[i])))
}
// if (inPos_without_Temp != subStream_StartPos + subStream_Size) return E_FAIL;
return S_OK;
}
Z7_COM7F_IMF(CEncoder::Code(
ISequentialInStream * const *inStreams, const UInt64 * const *inSizes, UInt32 numInStreams,
ISequentialOutStream * const *outStreams, const UInt64 * const *outSizes, UInt32 numOutStreams,
ICompressProgressInfo *progress))
{
try
{
return CodeReal(inStreams, inSizes, numInStreams, outStreams, outSizes,numOutStreams, progress);
}
catch(...) { return E_FAIL; }
}
#endif
CDecoder::CDecoder():
_finishMode(false)
#ifndef Z7_NO_READ_FROM_CODER
, _outSizeDefined(false)
, _outSize(0)
, _outSize_Processed(0)
#endif
{}
Z7_COM7F_IMF(CDecoder::SetInBufSize(UInt32 streamIndex, UInt32 size))
{ _bufsSizes_New[streamIndex] = size; return S_OK; }
Z7_COM7F_IMF(CDecoder::SetOutBufSize(UInt32, UInt32 size))
{ _bufsSizes_New[BCJ2_NUM_STREAMS] = size; return S_OK; }
Z7_COM7F_IMF(CDecoder::SetFinishMode(UInt32 finishMode))
{
_finishMode = (finishMode != 0);
return S_OK;
}
void CBaseDecoder::InitCommon()
{
for (unsigned i = 0; i < BCJ2_NUM_STREAMS; i++)
{
dec.lims[i] = dec.bufs[i] = _bufs[i];
_readRes[i] = S_OK;
_extraSizes[i] = 0;
_readSizes[i] = 0;
}
Bcj2Dec_Init(&dec);
}
/* call ReadInStream() only after Bcj2Dec_Decode().
input requirement:
(dec.state < BCJ2_NUM_STREAMS)
*/
void CBaseDecoder::ReadInStream(ISequentialInStream *inStream)
{
const unsigned state = dec.state;
UInt32 total;
{
Byte *buf = _bufs[state];
const Byte *cur = dec.bufs[state];
// if (cur != dec.lims[state]) throw 1; // unexpected case
dec.lims[state] =
dec.bufs[state] = buf;
total = (UInt32)_extraSizes[state];
for (UInt32 i = 0; i < total; i++)
buf[i] = cur[i];
}
if (_readRes[state] != S_OK)
return;
do
{
UInt32 curSize = _bufsSizes[state] - total;
// if (state == 0) curSize = 0; // for debug
// curSize = 7; // for debug
/* even if we have reached provided inSizes[state] limit,
we call Read() with (curSize != 0), because
we want the called handler of stream->Read() could
execute required Init/Flushing code even for empty stream.
In another way we could call Read() with (curSize == 0) for
finished streams, but some Read() handlers can ignore Read(size=0) calls.
*/
const HRESULT hres = inStream->Read(_bufs[state] + total, curSize, &curSize);
_readRes[state] = hres;
if (curSize == 0)
break;
_readSizes[state] += curSize;
total += curSize;
if (hres != S_OK)
break;
}
while (total < 4 && BCJ2_IS_32BIT_STREAM(state));
/* we exit from decoding loop here, if we can't
provide new data for input stream.
Usually it's normal exit after full stream decoding. */
if (total == 0)
return;
if (BCJ2_IS_32BIT_STREAM(state))
{
const unsigned extra = (unsigned)total & 3;
_extraSizes[state] = extra;
if (total < 4)
{
if (_readRes[state] == S_OK)
_readRes[state] = S_FALSE; // actually it's stream error. So maybe we need another error code.
return;
}
total -= (UInt32)extra;
}
dec.lims[state] += total; // = _bufs[state] + total;
}
Z7_COM7F_IMF(CDecoder::Code(
ISequentialInStream * const *inStreams, const UInt64 * const *inSizes, UInt32 numInStreams,
ISequentialOutStream * const *outStreams, const UInt64 * const *outSizes, UInt32 numOutStreams,
ICompressProgressInfo *progress))
{
if (numInStreams != BCJ2_NUM_STREAMS || numOutStreams != 1)
return E_INVALIDARG;
RINOK(Alloc())
InitCommon();
dec.destLim = dec.dest = _bufs[BCJ2_NUM_STREAMS];
UInt64 outSizeWritten = 0;
UInt64 prevProgress = 0;
HRESULT hres_Crit = S_OK; // critical hres status (mostly from input stream reading)
HRESULT hres_Weak = S_OK; // first non-critical error code from input stream reading
for (;;)
{
if (Bcj2Dec_Decode(&dec) != SZ_OK)
{
/* it's possible only at start (first 5 bytes in RC stream) */
hres_Crit = S_FALSE;
break;
}
if (dec.state < BCJ2_NUM_STREAMS)
{
ReadInStream(inStreams[dec.state]);
const unsigned state = dec.state;
const HRESULT hres = _readRes[state];
if (dec.lims[state] == _bufs[state])
{
// we break decoding, if there are no new data in input stream
hres_Crit = hres;
break;
}
if (hres != S_OK && hres_Weak == S_OK)
hres_Weak = hres;
}
else // (BCJ2_DEC_STATE_ORIG_0 <= state <= BCJ2_STATE_ORIG)
{
{
const size_t curSize = (size_t)(dec.dest - _bufs[BCJ2_NUM_STREAMS]);
if (curSize != 0)
{
outSizeWritten += curSize;
RINOK(WriteStream(outStreams[0], _bufs[BCJ2_NUM_STREAMS], curSize))
}
}
{
UInt32 rem = _bufsSizes[BCJ2_NUM_STREAMS];
if (outSizes && outSizes[0])
{
const UInt64 outSize = *outSizes[0] - outSizeWritten;
if (rem > outSize)
rem = (UInt32)outSize;
}
dec.dest = _bufs[BCJ2_NUM_STREAMS];
dec.destLim = dec.dest + rem;
/* we exit from decoding loop here,
if (outSizes[0]) limit for output stream was reached */
if (rem == 0)
break;
}
}
if (progress)
{
// here we don't count additional data in dec.temp (up to 4 bytes for output stream)
const UInt64 processed = outSizeWritten + (size_t)(dec.dest - _bufs[BCJ2_NUM_STREAMS]);
if (processed - prevProgress >= (1 << 24))
{
prevProgress = processed;
const UInt64 inSize = processed +
_readSizes[BCJ2_STREAM_RC] - (size_t)(
dec.lims[BCJ2_STREAM_RC] -
dec.bufs[BCJ2_STREAM_RC]);
RINOK(progress->SetRatioInfo(&inSize, &prevProgress))
}
}
}
{
const size_t curSize = (size_t)(dec.dest - _bufs[BCJ2_NUM_STREAMS]);
if (curSize != 0)
{
outSizeWritten += curSize;
RINOK(WriteStream(outStreams[0], _bufs[BCJ2_NUM_STREAMS], curSize))
}
}
if (hres_Crit == S_OK) hres_Crit = hres_Weak;
if (hres_Crit != S_OK) return hres_Crit;
if (_finishMode)
{
if (!Bcj2Dec_IsMaybeFinished_code(&dec))
return S_FALSE;
/* here we support two correct ways to finish full stream decoding
with one of the following conditions:
- the end of input stream MAIN was reached
- the end of output stream ORIG was reached
Currently 7-Zip/7z code ends with (state == BCJ2_STREAM_MAIN),
because the sizes of MAIN and ORIG streams are known and these
sizes are stored in 7z archive headers.
And Bcj2Dec_Decode() exits with (state == BCJ2_STREAM_MAIN),
if both MAIN and ORIG streams have reached buffers limits.
But if the size of MAIN stream is not known or if the
size of MAIN stream includes some padding after payload data,
then we still can correctly finish decoding with
(state == BCJ2_DEC_STATE_ORIG), if we know the exact size
of output ORIG stream.
*/
if (dec.state != BCJ2_STREAM_MAIN)
if (dec.state != BCJ2_DEC_STATE_ORIG)
return S_FALSE;
/* the caller also will know written size.
So the following check is optional: */
if (outSizes && outSizes[0] && *outSizes[0] != outSizeWritten)
return S_FALSE;
if (inSizes)
{
for (unsigned i = 0; i < BCJ2_NUM_STREAMS; i++)
{
/* if (inSizes[i]) is defined, we do full check for processed stream size. */
if (inSizes[i] && *inSizes[i] != GetProcessedSize_ForInStream(i))
return S_FALSE;
}
}
/* v23.02: we call Read(0) for BCJ2_STREAM_CALL and BCJ2_STREAM_JUMP streams,
if there were no Read() calls for such stream.
So the handlers of these input streams objects can do
Init/Flushing even for case when stream is empty:
*/
for (unsigned i = BCJ2_STREAM_CALL; i < BCJ2_STREAM_CALL + 2; i++)
{
if (_readSizes[i])
continue;
Byte b;
UInt32 processed;
RINOK(inStreams[i]->Read(&b, 0, &processed))
}
}
return S_OK;
}
Z7_COM7F_IMF(CDecoder::GetInStreamProcessedSize2(UInt32 streamIndex, UInt64 *value))
{
*value = GetProcessedSize_ForInStream(streamIndex);
return S_OK;
}
#ifndef Z7_NO_READ_FROM_CODER
Z7_COM7F_IMF(CDecoder::SetInStream2(UInt32 streamIndex, ISequentialInStream *inStream))
{
_inStreams[streamIndex] = inStream;
return S_OK;
}
Z7_COM7F_IMF(CDecoder::ReleaseInStream2(UInt32 streamIndex))
{
_inStreams[streamIndex].Release();
return S_OK;
}
Z7_COM7F_IMF(CDecoder::SetOutStreamSize(const UInt64 *outSize))
{
_outSizeDefined = (outSize != NULL);
_outSize = 0;
if (_outSizeDefined)
_outSize = *outSize;
_outSize_Processed = 0;
const HRESULT res = Alloc(false); // allocForOrig
InitCommon();
dec.destLim = dec.dest = NULL;
return res;
}
Z7_COM7F_IMF(CDecoder::Read(void *data, UInt32 size, UInt32 *processedSize))
{
if (processedSize)
*processedSize = 0;
/* Note the case:
The output (ORIG) stream can be empty.
But BCJ2_STREAM_RC stream always is not empty.
And we want to support full data processing for all streams.
We disable check (size == 0) here.
So if the caller calls this CDecoder::Read() with (size == 0),
we execute required Init/Flushing code in this CDecoder object.
Also this CDecoder::Read() function will call Read() for input streams.
So the handlers of input streams objects also can do Init/Flushing.
*/
// if (size == 0) return S_OK; // disabled to allow (size == 0) processing
UInt32 totalProcessed = 0;
if (_outSizeDefined)
{
const UInt64 rem = _outSize - _outSize_Processed;
if (size > rem)
size = (UInt32)rem;
}
dec.dest = (Byte *)data;
dec.destLim = (const Byte *)data + size;
HRESULT res = S_OK;
for (;;)
{
if (Bcj2Dec_Decode(&dec) != SZ_OK)
return S_FALSE; // this error can be only at start of stream
{
const UInt32 curSize = (UInt32)(size_t)(dec.dest - (Byte *)data);
if (curSize != 0)
{
data = (void *)((Byte *)data + curSize);
size -= curSize;
_outSize_Processed += curSize;
totalProcessed += curSize;
if (processedSize)
*processedSize = totalProcessed;
}
}
if (dec.state >= BCJ2_NUM_STREAMS)
break;
ReadInStream(_inStreams[dec.state]);
if (dec.lims[dec.state] == _bufs[dec.state])
{
/* we break decoding, if there are no new data in input stream.
and we ignore error code, if some data were written to output buffer. */
if (totalProcessed == 0)
res = _readRes[dec.state];
break;
}
}
if (res == S_OK)
if (_finishMode && _outSizeDefined && _outSize == _outSize_Processed)
{
if (!Bcj2Dec_IsMaybeFinished_code(&dec))
return S_FALSE;
if (dec.state != BCJ2_STREAM_MAIN)
if (dec.state != BCJ2_DEC_STATE_ORIG)
return S_FALSE;
}
return res;
}
#endif
}}
/*
extern "C"
{
extern UInt32 bcj2_stats[256 + 2][2];
}
static class CBcj2Stat
{
public:
~CBcj2Stat()
{
printf("\nBCJ2 stat:");
unsigned sums[2] = { 0, 0 };
int i;
for (i = 2; i < 256 + 2; i++)
{
sums[0] += bcj2_stats[i][0];
sums[1] += bcj2_stats[i][1];
}
const unsigned sums2 = sums[0] + sums[1];
for (int vi = 0; vi < 256 + 3; vi++)
{
printf("\n");
UInt32 n0, n1;
if (vi < 4)
printf("\n");
if (vi < 2)
i = vi;
else if (vi == 2)
i = -1;
else
i = vi - 1;
if (i < 0)
{
n0 = sums[0];
n1 = sums[1];
printf("calls :");
}
else
{
if (i == 0)
printf("jcc :");
else if (i == 1)
printf("jump :");
else
printf("call %02x :", i - 2);
n0 = bcj2_stats[i][0];
n1 = bcj2_stats[i][1];
}
const UInt32 sum = n0 + n1;
printf(" %10u", sum);
#define PRINT_PERC(val, sum) \
{ UInt32 _sum = sum; if (_sum == 0) _sum = 1; \
printf(" %7.3f %%", (double)((double)val * (double)100 / (double)_sum )); }
if (i >= 2 || i < 0)
{
PRINT_PERC(sum, sums2);
}
else
printf("%10s", "");
printf(" :%10u", n0);
PRINT_PERC(n0, sum);
printf(" :%10u", n1);
PRINT_PERC(n1, sum);
}
printf("\n\n");
fflush(stdout);
}
} g_CBcjStat;
*/
|