File: M2FreeAlgebraQuotient.cpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (377 lines) | stat: -rw-r--r-- 11,488 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#include "M2FreeAlgebraQuotient.hpp"

#include <iostream>
#include <memory>
#include <utility>
#include <vector>

#include "NCAlgebras/FreeAlgebra.hpp"
#include "matrix.hpp"
#include "ring.hpp"

ConstPolyList copyMatrixToVector(const M2FreeAlgebra& F,
                             const Matrix* input)
{
  ConstPolyList result;
  result.reserve(input->n_cols());
  for (int i=0; i<input->n_cols(); i++)
    {
      ring_elem a = input->elem(0,i);
      auto f = reinterpret_cast<const Poly*>(a.get_Poly());
      auto g = new Poly;
      F.freeAlgebra().copy(*g, *f);
      result.push_back(g);
    }
  return result;
}

M2FreeAlgebraQuotient* M2FreeAlgebraQuotient::create(
                                                     const M2FreeAlgebra& F,
                                                     const Matrix* GB,
                                                     int maxdeg // TODO: need to handle use of 'maxdeg' in the class
                                                     )
{
  auto gbElements = copyMatrixToVector(F, GB);
  auto A = std::unique_ptr<FreeAlgebraQuotient> (new FreeAlgebraQuotient(F.freeAlgebra(), gbElements, maxdeg));
  M2FreeAlgebraQuotient* result = new M2FreeAlgebraQuotient(F, std::move(A));
  result->initialize_ring(F.coefficientRing()->characteristic(), F.degreeRing(), nullptr);
  result->zeroV = result->from_long(0);
  result->oneV = result->from_long(1);
  result->minus_oneV = result->from_long(-1);

  return result;
}

M2FreeAlgebraQuotient::M2FreeAlgebraQuotient(const M2FreeAlgebra& F,
                                             std::unique_ptr<FreeAlgebraQuotient> A)
  : mM2FreeAlgebra(F),
    mFreeAlgebraQuotient(std::move(A))
{
}

void M2FreeAlgebraQuotient::text_out(buffer &o) const
{
  o << "Quotient of ";
  m2FreeAlgebra().text_out(o);
}

unsigned int M2FreeAlgebraQuotient::computeHashValue(const ring_elem a) const
{
  return 0; // TODO: change this to a more reasonable hash code.
}

int M2FreeAlgebraQuotient::index_of_var(const ring_elem a) const
{
  return m2FreeAlgebra().index_of_var(a);
}

ring_elem M2FreeAlgebraQuotient::from_coefficient(const ring_elem a) const
{
  auto result = new Poly;
  freeAlgebraQuotient().from_coefficient(*result, a);
  return ring_elem(reinterpret_cast<void *>(result));
}

ring_elem M2FreeAlgebraQuotient::from_long(long n) const
{
  return from_coefficient(coefficientRing()->from_long(n));
}

ring_elem M2FreeAlgebraQuotient::from_int(mpz_srcptr n) const
{
  return from_coefficient(coefficientRing()->from_int(n));
}

bool M2FreeAlgebraQuotient::from_rational(const mpq_srcptr q, ring_elem& result1) const
{
  ring_elem cq; // in coeff ring.
  bool worked = coefficientRing()->from_rational(q, cq);
  if (!worked) return false;
  result1 = from_coefficient(cq);
  return true;
}

ring_elem M2FreeAlgebraQuotient::var(int v) const
{
  auto result = new Poly;
  freeAlgebraQuotient().var(*result,v);
  return ring_elem(reinterpret_cast<void *>(result));
}

bool M2FreeAlgebraQuotient::promote(const Ring *R, const ring_elem f1, ring_elem &result) const
{
  // std::cout << "called promote NC case" << std::endl;  
  // Currently the only case to handle is R = A --> this, and A is the coefficient ring of this.
  if (R == coefficientRing())
    {
      result = from_coefficient(f1);
      return true;
    }
  if (R == &m2FreeAlgebra())
    {
      auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
      auto resultf = new Poly;
      freeAlgebraQuotient().copy(*resultf, *f);
      freeAlgebraQuotient().normalizeInPlace(*resultf);
      result = ring_elem(reinterpret_cast<void *>(resultf));
      return true;
    }
  return false;
}

bool M2FreeAlgebraQuotient::lift(const Ring *R, const ring_elem f1, ring_elem &result) const
{
  // R is the target ring
  // f1 is an element of 'this'.
  // set result to be the "lift" of f in the ring R, return true if this is possible.
  // otherwise return false.

  // case: R is the coefficient ring of 'this'.
  if (R == coefficientRing())
    {
      auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
      if (f->numTerms() != 1) return false;
      auto i = f->cbegin();
      if (monoid().is_one(i.monom()))
        {
          result = coefficientRing()->copy(i.coeff());
          return true;
        }
      return false;
    }
  if (R == &m2FreeAlgebra())
    {
      // just copy the element into result, considered in the free algebra.
      auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
      auto resultf = new Poly;
      freeAlgebra().copy(*resultf, *f);
      result = ring_elem(reinterpret_cast<void *>(resultf));
      return true;
    }
  
  // at this point, we can't lift it.
  return false;
}

bool M2FreeAlgebraQuotient::is_unit(const ring_elem f1) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  return freeAlgebraQuotient().is_unit(*f);
}

long M2FreeAlgebraQuotient::n_terms(const ring_elem f1) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  return freeAlgebraQuotient().n_terms(*f);
}

bool M2FreeAlgebraQuotient::is_zero(const ring_elem f1) const
{
  return n_terms(f1) == 0;
}

bool M2FreeAlgebraQuotient::is_equal(const ring_elem f1, const ring_elem g1) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  auto g = reinterpret_cast<const Poly*>(g1.get_Poly());
  return freeAlgebraQuotient().is_equal(*f,*g);
}

int M2FreeAlgebraQuotient::compare_elems(const ring_elem f1, const ring_elem g1) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  auto g = reinterpret_cast<const Poly*>(g1.get_Poly());
  return freeAlgebraQuotient().compare_elems(*f,*g);
}

ring_elem M2FreeAlgebraQuotient::copy(const ring_elem f) const
{
  // FRANK: is this what we want to do?
  return f;
}

void M2FreeAlgebraQuotient::remove(ring_elem &f) const
{
  // do nothing
}

ring_elem M2FreeAlgebraQuotient::negate(const ring_elem f1) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  Poly* result = new Poly;
  freeAlgebraQuotient().negate(*result, *f);
  return ring_elem(reinterpret_cast<void *>(result));
}

ring_elem M2FreeAlgebraQuotient::add(const ring_elem f1, const ring_elem g1) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  auto g = reinterpret_cast<const Poly*>(g1.get_Poly());
  auto result = new Poly;
  freeAlgebraQuotient().add(*result,*f,*g);
  return ring_elem(reinterpret_cast<void *>(result));
}

ring_elem M2FreeAlgebraQuotient::subtract(const ring_elem f1, const ring_elem g1) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  auto g = reinterpret_cast<const Poly*>(g1.get_Poly());
  auto result = new Poly;
  freeAlgebraQuotient().subtract(*result,*f,*g);
  return ring_elem(reinterpret_cast<void *>(result));
}

ring_elem M2FreeAlgebraQuotient::mult(const ring_elem f1, const ring_elem g1) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  auto g = reinterpret_cast<const Poly*>(g1.get_Poly());
  auto result = new Poly;
  freeAlgebraQuotient().mult(*result,*f,*g);
  return ring_elem(reinterpret_cast<void *>(result));  
}

ring_elem M2FreeAlgebraQuotient::power(const ring_elem f1, mpz_srcptr n) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  auto result = new Poly;
  freeAlgebraQuotient().power(*result,*f,n);
  return ring_elem(reinterpret_cast<void *>(result));
}

ring_elem M2FreeAlgebraQuotient::power(const ring_elem f1, int n) const
{
  auto f = reinterpret_cast<const Poly*>(f1.get_Poly());
  auto result = new Poly;
  freeAlgebraQuotient().power(*result,*f,n);
  return ring_elem(reinterpret_cast<void *>(result));
}

ring_elem M2FreeAlgebraQuotient::invert(const ring_elem f) const
{
  return m2FreeAlgebra().invert(f);
}

ring_elem M2FreeAlgebraQuotient::divide(const ring_elem f, const ring_elem g) const
{
  return m2FreeAlgebra().divide(f, g);
}

void M2FreeAlgebraQuotient::syzygy(const ring_elem a, const ring_elem b,
                      ring_elem &x, ring_elem &y) const
{
  // TODO: In the commutative case, this function is to find x and y (as simple as possible)
  //       such that ax + by = 0.  No such x and y may exist in the noncommutative case, however.
  //       In this case, the function should return x = y = 0.
}

void M2FreeAlgebraQuotient::debug_display(const Poly* f) const
{
  std::cout << "coeffs: ";
  for (auto i=f->cbeginCoeff(); i != f->cendCoeff(); ++i)
    {
      buffer o;
      coefficientRing()->elem_text_out(o, *i);
      std::cout << o.str() << " ";
    }
  std::cout << std::endl  << "  monoms: ";
  for (auto i=f->cbeginMonom(); i != f->cendMonom(); ++i)
    {
      std::cout << (*i) << " ";
    }
  std::cout << std::endl;
}

void M2FreeAlgebraQuotient::debug_display(const ring_elem ff) const

{
  auto f = reinterpret_cast<const Poly*>(ff.get_Poly());
  debug_display(f);
}

void M2FreeAlgebraQuotient::makeTerm(Poly& result, const ring_elem a, const int* monom) const
{
  m2FreeAlgebra().makeTerm(result, a, monom);
  freeAlgebraQuotient().normalizeInPlace(result);
}

ring_elem M2FreeAlgebraQuotient::makeTerm(const ring_elem a, const int* monom) const
  // 'monom' is in 'varpower' format
  // [2n+1 v1 e1 v2 e2 ... vn en], where each ei > 0, (in 'varpower' format)
{
  Poly* f = new Poly;
  makeTerm(*f, a, monom);
  return ring_elem(reinterpret_cast<void*>(f));
}

void M2FreeAlgebraQuotient::elem_text_out(buffer &o,
                             const ring_elem ff,
                             bool p_one,
                             bool p_plus,
                             bool p_parens) const
{
  auto f = reinterpret_cast<const Poly*>(ff.get_Poly());
  freeAlgebraQuotient().elem_text_out(o,*f,p_one,p_plus,p_parens);
}

ring_elem M2FreeAlgebraQuotient::eval(const RingMap *map, const ring_elem ff, int first_var) const
{
  // map: R --> S, this = R.
  // f is an ele ment in R
  // return an element of S.

  auto f = reinterpret_cast<const Poly*>(ff.get_Poly());
  auto g = freeAlgebraQuotient().eval(map, *f, first_var);
  return g;
}

engine_RawArrayPairOrNull M2FreeAlgebraQuotient::list_form(const Ring *coeffR, const ring_elem ff) const
{
  // Either coeffR should be the actual coefficient ring (possible a "toField"ed ring)
  // or a polynomial ring.  If not, NULL is returned and an error given
  // In the latter case, the last set of variables are part of
  // the coefficients.
  return m2FreeAlgebra().list_form(coeffR, ff);
}

ring_elem M2FreeAlgebraQuotient::lead_coefficient(const Ring* coeffRing, const Poly* f) const
{
  return m2FreeAlgebra().lead_coefficient(coeffRing, f);
}

bool M2FreeAlgebraQuotient::is_homogeneous(const ring_elem f1) const
{
  const Poly* f = reinterpret_cast<const Poly*>(f1.get_Poly());
  return is_homogeneous(f);
}

bool M2FreeAlgebraQuotient::is_homogeneous(const Poly* f) const
{
  if (f == nullptr) return true;
  return freeAlgebraQuotient().is_homogeneous(*f);
}

void M2FreeAlgebraQuotient::degree(const ring_elem f, int *d) const
{
  multi_degree(f, d);
}

bool M2FreeAlgebraQuotient::multi_degree(const ring_elem g, int *d) const
{
  const Poly* f = reinterpret_cast<const Poly*>(g.get_Poly());
  return multi_degree(f, d);
}

bool M2FreeAlgebraQuotient::multi_degree(const Poly* f, int *result) const
{
  return freeAlgebraQuotient().multi_degree(*f,result);
}

SumCollector* M2FreeAlgebraQuotient::make_SumCollector() const
{
  return freeAlgebraQuotient().make_SumCollector();
}

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: