1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
#ifndef _polynomial_hpp_
#define _polynomial_hpp_
#include "newdelete.hpp" // for VECTOR, our_new_delete
#include "ringelem.hpp" // for ring_elem
#include "style.hpp" // for GT, LT, EQ
#include <cassert> // for assert
#include <algorithm> // for copy
#include <iostream> // for ostream
#include <iterator> // for forward_iterator_tag
#include <utility> // for pair, make_pair
using IntVector = VECTOR(int);
// using IntVector = std::vector<int>;
struct Monom
// Format for monomials:
// A monomial is an array of ints, the first of which is the length of that array (including length field).
// e.g. [2 0] (is currently the empty monomial, but this class knows nothing about specific monomials.
// each monomial is of the form:
// <length: n+2> <degree: (currently) n> <var1> <var2> ... <varn>
// e.g. xyxy: 6 4 0 1 0 1
// xy23x: 27 25 0 1 1 ... 1 0
// 2 monomials: xzx, xy (dot is only there for readability)
// 5 3 0 2 0 . 4 2 0 1
// TODO: There are now weights in the monomial (which only the monoid knows about),
// so this needs to be updated.
{
Monom() : mValue(nullptr) {}
Monom(const int* value) : mValue(value) {}
// const int* operator*() const { return mValue; }
const int* operator+(int i) const { return mValue+i; }
int operator[](int i) const { return mValue[i]; }
int size() const { return *mValue; }
const int* begin() const { return mValue; }
const int* end() const { return mValue + *mValue; }
private:
const int* mValue; // We are visiting this monomial, we do not own it!
};
std::ostream& operator<<(std::ostream& o, const Monom& m);
class ModuleMonom
// Format for such a monomial:
// [len value hashval comp deg v1 v2 ... vr]
// where [len-3 deg v1 v2 ... vr] is a Monom.
{
public:
ModuleMonom(int* begin) : mValue(begin) {}
// const int* operator*() const { return mValue; }
const int* operator+(int i) const { return mValue+i; }
int operator[](int i) const { return mValue[i]; }
int* operator+(int i) { return mValue+i; }
int& operator[](int i) { return mValue[i]; }
int size() const { return *mValue; }
const int* begin() const { return mValue; }
const int* end() const { return mValue + *mValue; }
int* begin() { return mValue; }
int* end() { return mValue + *mValue; }
int component() const { return mValue[3]; }
static int sizeOfCorrespondingModuleMonom(const Monom& m)
{
return m.size() + 3;
}
void setIndex(int idx)
{
mValue[1] = idx;
}
int index() const { return mValue[1]; }
std::size_t hash() const
{
if (mValue[2] == 0) setHashValue();
return mValue[2];
}
static int compare(const ModuleMonom& m1, const ModuleMonom& m2)
{
if (m1[2] > m2[2]) return GT;
if (m1[2] < m2[2]) return LT;
if (m1[3] > m2[3]) return GT;
if (m1[3] < m2[3]) return LT;
// at this stage, they have the same degree, so use lex order
for (int j = 4; j < m1[0]; j++)
{
if (m1[j] > m2[j]) return LT;
if (m1[j] < m2[j]) return GT;
}
// if we are here, the monomials are the same.
return EQ;
}
bool operator==(const ModuleMonom &rhs) const
{
if (mValue[0] != rhs[0]) return false;
for (int i=2; i < mValue[0]; ++i)
if (mValue[i] != rhs[i]) return false;
return true;
}
private:
void setHashValue() const
{
int result = 0;
int* end = mValue + *mValue;
for (auto i = mValue+3; i < end; ++i)
result = 17*result + *i;
const_cast<int*>(mValue)[2] = result;
}
private:
int* mValue; // We are visiting this monomial, we do not own it!
};
std::ostream& operator<<(std::ostream& o, const ModuleMonom& m);
inline ModuleMonom monomToModuleMonom(const Monom& a, int comp, std::pair<int*, int*> allocated_result)
{
assert(allocated_result.second-allocated_result.first >= ModuleMonom::sizeOfCorrespondingModuleMonom(a));
auto begin = allocated_result.first;
begin[0] = ModuleMonom::sizeOfCorrespondingModuleMonom(a);
begin[1] = 0; // index
begin[2] = 0; // hashval
begin[3] = comp;
std::copy(a.begin()+1, a.end(), begin+4);
return ModuleMonom(begin);
}
template<typename T>
void appendModuleMonomToMonom(const ModuleMonom& a, int& comp, T& inserter)
{
inserter.push_back(a.size()-3);
for (int i=4; i<a.size(); ++i)
inserter.push_back(a[i]);
}
/**
* \ingroup polynomialrings
*/
template<typename CoefficientRingType>
class Polynomial : public our_new_delete
{
friend class M2FreeAlgebra;
friend class M2FreeAlgebraOrQuotient;
friend class FreeAlgebra;
friend class NCF4;
typedef typename CoefficientRingType::ElementType ElementType;
public:
typedef typename VECTOR(ElementType) coeffVector;
using monomVector = IntVector; // TODO: remove monomVector?
typedef typename coeffVector::iterator coeffIterator;
typedef monomVector::iterator monomIterator;
typedef typename coeffVector::const_iterator coeffConstIterator;
typedef monomVector::const_iterator monomConstIterator;
// this class is an non-const_iterator for traversing the terms in a polynomial.
class const_iterator
{
public:
// useful typedefs
typedef const_iterator self_type;
typedef std::forward_iterator_tag iterator_category;
// constructor
const_iterator(coeffConstIterator coeffIt, monomConstIterator monIt) : mCoeffIt(coeffIt), mMonomIt(monIt) { }
// iteration functions
self_type & operator++()
{
// prefix ++ operator
stepIterators();
return *this;
}
self_type operator++(int junk)
{
// postfix ++ operator
self_type i = *this;
stepIterators();
return i;
}
// accessor functions -- (unfortunately) replace the more convenient -> notation since
// we have two vector iterators.
const ring_elem coeff() const { return *(this->mCoeffIt); }
// for the record, we are using &*it here to get the pointer that records where an iterator currently is
// this seems like a bit of a hack, but it seems to be the way things are done.
// FRANK: Same as above, do we want to make a copy here?
Monom monom() const { return Monom((&*(this->mMonomIt))); }
std::pair<ring_elem, Monom> operator*() const { return std::make_pair(coeff(), monom()); }
// (in)equality checks
bool operator==(const self_type& rhs) const { return (this->mCoeffIt == rhs.mCoeffIt); }
bool operator!=(const self_type& rhs) const { return (this->mCoeffIt != rhs.mCoeffIt); }
coeffConstIterator cCoeffIterator() const { return mCoeffIt; }
monomConstIterator cMonomIterator() const { return mMonomIt; }
private:
coeffConstIterator mCoeffIt;
monomConstIterator mMonomIt;
void stepIterators ()
{
// this is the function that actually increments the various iterators
// increment the ring element first
mCoeffIt++;
// increment to the end of the monomial
mMonomIt += *mMonomIt; // move to next monomial
}
};
const_iterator cbegin() const
{
return const_iterator(mCoefficients.cbegin(), mMonomials.cbegin());
}
const_iterator cend() const
{
return const_iterator(mCoefficients.cend(), mMonomials.cend());
}
coeffIterator beginCoeff() { return mCoefficients.begin(); }
coeffIterator endCoeff() { return mCoefficients.end(); }
coeffConstIterator cbeginCoeff() const { return mCoefficients.cbegin(); }
monomConstIterator cbeginMonom() const { return mMonomials.cbegin(); }
coeffConstIterator cendCoeff() const { return mCoefficients.cend(); }
monomConstIterator cendMonom() const { return mMonomials.cend(); }
const coeffVector & getElementArray() const { return mCoefficients; }
const monomVector & getMonomVector() const { return mMonomials; }
monomVector & getMonomInserter() { return mMonomials; }
size_t numTerms() const { return mCoefficients.size(); }
private:
coeffVector & getCoeffInserter() { return mCoefficients; }
private:
coeffVector mCoefficients;
monomVector mMonomials;
};
struct CoefficientRingType
{
typedef ring_elem ElementType;
};
using Poly = Polynomial<CoefficientRingType>;
using PolyList = VECTOR(Poly*);
using ConstPolyList = VECTOR(const Poly*);
#endif
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|