File: VectorArithmetic.hpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (613 lines) | stat: -rw-r--r-- 20,679 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#ifndef __vector_arithmetic_hpp__
#define __vector_arithmetic_hpp__

#include "m2tbb.hpp"
#include "NCAlgebras/Range.hpp"  // for Range
#include "newdelete.hpp"         // for VECTOR
#include "MemoryBlock.hpp"       // for MemoryBlock
#include "ringelem.hpp"
#include "aring-glue.hpp"
#include <variant>
#include <type_traits>
#include "f4/f4-mem.hpp"         // for F4Mem
#include "ARingElem.hpp"

class Ring;
union ring_elem;
using ComponentIndex = int;

// this is still deriving from our_new_delete, since this
// class doesn't know whether mValue points to a std::vector or a VECTOR.
// this issue persists in the Row struct in NCF4 as well.
class ElementArray
{
  template<typename RingType, typename ElementArrayType> friend class ConcreteVectorArithmetic;

public:
  ElementArray() : mValue(nullptr) {}
  bool  isNull() const { return mValue == nullptr; }
  void  swap(ElementArray& b) { std::swap(mValue, b.mValue); }

private:
  // disallow copy...
  ElementArray(void *p) : mValue(p) {} // transfers ownership of this pointer to this object

  //ElementArray(ElementArray &b) { mValue = nullptr; std::swap(mValue,b.mValue); }
  //ElementArray(const ElementArray && b) : mValue(b.mValue) { b.mValue = nullptr; } 
  //ElementArray(ElementArray &b) = delete;
  void* getValue() const { return mValue; }
  void  setValue(void* newValue) { mValue = newValue; }

  void* mValue;
};

template<typename RingType,
         typename ElementArrayType = ElementArray>
class ConcreteVectorArithmetic
{
public:
  using FieldElement = typename RingType::ElementType;

  using ElementArrayContainer = typename RingType::ElementContainerType;
  // we may want to change the container type of dense vectors in the future.

  friend class VectorArithmetic;

  ConcreteVectorArithmetic() : mOriginalRing(nullptr), mRing(nullptr) {}

 private:
  const Ring* mOriginalRing;
  const RingType* mRing;

  ElementArrayContainer* elementArray(const ElementArrayType& f) const
  {
    return reinterpret_cast<ElementArrayContainer*>(f.getValue());
  }

public:
  ConcreteVectorArithmetic(const Ring* origR, const RingType* R) : mOriginalRing(origR), mRing(R) {}

  const Ring* ring() const { return mOriginalRing; }
  
  /////////////////////////////
  // Allocation/Deallocation //
  /////////////////////////////
  ElementArrayType copyElementArray(const ElementArray& sparse) const
  {
    auto& v = * elementArray(sparse);
    auto tempPtr = new ElementArrayContainer(v.size());

    int n = 0;
    for (auto& d : *tempPtr)
      {
	mRing->init_set(d, v[n]);
        ++n;
      }
    return ElementArrayType {tempPtr};    
  }

  ElementArrayType allocateElementArray(ComponentIndex nelems) const
  {
    auto tempPtr = new ElementArrayContainer(nelems);
    for (auto& d : *tempPtr)
      {
	mRing->init(d);
	mRing->set_zero(d);
      }
    return ElementArrayType {tempPtr};    
  }

  void deallocateElementArray(ElementArrayType& coeffs) const
  {
    auto& svec = * elementArray(coeffs);
    for (auto& e : svec) {
      mRing->clear(e);
    }
    delete &svec;
    coeffs.setValue(nullptr);
  }

  ////////////////////////
  /// Linear Algebra /////
  ////////////////////////

  size_t size(const ElementArrayType& coeffs) const
  {
    return elementArray(coeffs)->size();
  }

  void fillDenseArray(ElementArrayType& dense,
                      const ElementArrayType& sparse,
                      const Range<int>& comps) const
  {
    // Note: this function simply fills in the values coming from '(sparse, comps)'.
    //   Other values are not touched.
    // In our intended uses, the input `dense` is the vector consisting of all zeros.
    
    auto& dvec = * elementArray(dense);
    auto& svec = * elementArray(sparse);
    
    assert(comps.size() == svec.size());
    assert(comps[comps.size()-1] < dvec.size());
    
    auto len = comps.size();
    for (ComponentIndex i = 0; i < len; i++) mRing->set(dvec[comps[i]],svec[i]);
  }

  void denseCancelFromSparse(ElementArrayType& dense,
                             const ElementArrayType& sparse,
                             const Range<int>& comps) const
  {
    // ASSUMPTION: svec[0] == 1.
    auto& dvec = * elementArray(dense);
    auto& svec = * elementArray(sparse);

    ARingElem a(mRing,dvec[comps[0]]);
    for (int i=0; i < comps.size(); ++i)
      mRing->subtract_multiple(dvec[comps[i]], *a, svec[i]);
  }

  int denseNextNonzero(ElementArrayType& dense,
                       int first,
                       int last) const
  {
    auto& dvec = * elementArray(dense);
    for (int i = first; i <= last; i++)
      {
	if (mRing->is_zero(dvec[i])) continue;
	// these lines give the gist of how to handle delayed modulus
	//if (dvec[i] > mCharacteristic) dvec[i] %= mCharacteristic;
	//else if (dvec[i] < 0) dvec[i] %= mCharacteristic;
	//if (dvec[i] == 0) continue;
	return i;
      }
    return last + 1;
  }

  void denseToSparse(ElementArrayType& dense,
                     ElementArrayType& sparse, // output value: sets this value
                     Range<int>& comps, // output value: sets comps
                     int first,
                     int last,
                     MemoryBlock& monomialSpace) const
  { 
    mtbb::null_mutex noLock;
    safeDenseToSparse<mtbb::null_mutex>(dense,
					     sparse,
					     comps,
					     first,
					     last,
					     monomialSpace,
					     noLock);
  }

  template<typename LockType>
  void safeDenseToSparse(ElementArrayType& dense,
                               ElementArrayType& sparse, // output value: sets this value
                               Range<int>& comps, // output value: sets comps
                               int first,
                               int last,
                               MemoryBlock& monomialSpace,
                               LockType& lock) const
  {
    auto& dvec = * elementArray(dense);
    
    int len = 0;
    
    // first can be -1 if the row is zero.  in this case, we should
    // not be accessing dense[i] for i negative.
    for (int i = first; i >= 0 and i <= last; i++)
	if (not mRing->is_zero(dvec[i])) len++;

    comps = monomialSpace.safeAllocateArray<int,LockType>(len,lock);
    deallocateElementArray(sparse);
    sparse = allocateElementArray(len);
    auto& svec = * elementArray(sparse);

    int next = 0;
    for (int i = first; i >= 0 and i <= last; i++)
      if (not mRing->is_zero(dvec[i]))
	{
	  mRing->set(svec[next],dvec[i]);
	  comps[next] = i;
	  ++next;
	  mRing->set_zero(dvec[i]);
	}
  }

  void denseToSparse(ElementArrayType& dense,
                           ElementArrayType& sparse, // output value: sets this value
                           int*& comps,
                           int first,
                           int last,
                           F4Vec& f4Vec) const
  {
    auto& dvec = * elementArray(dense);
    
    int len = 0;
    
    // first can be -1 if the row is zero.  in this case, we should
    // not be accessing dense[i] for i negative.
    for (int i = first; i >= 0 and i <= last; i++)
	if (not mRing->is_zero(dvec[i])) len++;

    comps = f4Vec.allocate(len);

    sparse = allocateElementArray(len);
    auto& svec = * elementArray(sparse);

    int next = 0;
    for (int i = first; i >= 0 and i <= last; i++)
      if (not mRing->is_zero(dvec[i]))
	{
	  mRing->set(svec[next],dvec[i]);
	  comps[next] = i;
	  ++next;
	  mRing->set_zero(dvec[i]);
	}
  }

  void setZeroInRange(ElementArrayType& dense,
                      int first,
                      int last) const
  {
    auto& dvec = * elementArray(dense);
    
    // first can be -1 if the row is zero.  in this case, we should
    // not be accessing dvec[i] for i negative.
    for (int i = first; i >= 0 and i <= last; i++)
      mRing->set_zero(dvec[i]);
  }
  
  void makeMonic(ElementArrayType& sparse) const
  {
    auto& svec = * elementArray(sparse);

    ARingElem leadCoeffInv(mRing);

    mRing->invert(*leadCoeffInv,svec[0]);

    for (auto& c : svec) { mRing->mult(c, c, *leadCoeffInv); }
  }

  template<typename Container>
  void appendToContainer(const ElementArrayType& sparse,
                         Container& c) const
  {
    auto& svec = * elementArray(sparse);
    for (const auto& a : svec)
      {
	ring_elem tmp;
	mRing->to_ring_elem(tmp,a);
	c.push_back(tmp);
      }
  }

  template<typename Container>
  ElementArrayType elementArrayFromContainer(const Container& c) const
  {
    ElementArrayType sparse = allocateElementArray(c.size());
    auto& svec = * elementArray(sparse);
    for (auto i = 0; i < c.size(); ++i)
    {
      mRing->init(svec[i]);
      mRing->from_ring_elem(svec[i], c[i]);
    }
    return sparse;
  }

  ring_elem ringElemFromElementArray(const ElementArrayType& sparse,
                                     int index) const
  {
    auto& svec = * elementArray(sparse);
    ring_elem tmp;
    mRing->to_ring_elem(tmp,svec[index]);
    return tmp;
  }

  std::ostream& displayElementArray(std::ostream& o, const ElementArrayType& v) const
  {
    auto& svec = * elementArray(v);

    bool first = true;
    o << "[(" << svec.size() << ")";
    for (const auto& a : svec)
      {
        buffer b;
        mRing->elem_text_out(b, a, true, true, true);
        if (first)
          first = false;
        else
          o << ",";
        o << b.str();
      }
    o << "]" << std::endl;
    return o;
  }
  
  ////////////////////////
  /// Append support /////
  ////////////////////////
  
  void pushBackOne(ElementArrayType& coeffs) const
  {
    auto& svec = * elementArray(coeffs);
    FieldElement one;
    mRing->init(one);
    mRing->set_from_long(one, 1);
    svec.emplace_back(one); // This grabs 'one' in cases where it is allocated...  I think...!
  }

  void pushBackMinusOne(ElementArrayType& coeffs) const
  {
    auto& svec = * elementArray(coeffs);
    FieldElement minus_one;
    mRing->init(minus_one);
    mRing->set_from_long(minus_one,-1);
    svec.emplace_back(minus_one);
  }

  void pushBackElement(ElementArrayType& coeffs,
                       const ElementArrayType& take_from_here,
                       size_t loc) const
  {
    auto& svec = * elementArray(coeffs);
    auto& svec2 = * elementArray(take_from_here);
    assert(loc < svec2.size());
    FieldElement a;
    mRing->init_set(a, svec2[loc]);
    svec.emplace_back(a);
  }
  
  void pushBackNegatedElement(ElementArrayType& coeffs,
                              const ElementArrayType& take_from_here,
                              size_t loc) const
  {
    auto& svec = * elementArray(coeffs);
    auto& svec2 = * elementArray(take_from_here);
    assert(loc < svec2.size());
    FieldElement a;
    mRing->init_set(a, svec2[loc]);
    mRing->negate(a, a);
    svec.emplace_back(a);
  }
};

// `overloaded` construct (not standard until C++20)
template<class... Ts> 
struct overloaded : Ts... { using Ts::operator()...; };

template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>;

// this is the dispatching class using std::variant
class VectorArithmetic
{
  using ElementArrayType = ElementArray;

  // does the order of the variant types matter?
  using CVA_Type = std::variant<ConcreteVectorArithmetic<M2::ARingZZpFlint>*,
                                ConcreteVectorArithmetic<M2::ARingGFFlintBig>*,
                                ConcreteVectorArithmetic<M2::ARingGFFlint>*,
                                ConcreteVectorArithmetic<M2::ARingQQGMP>*,
                                ConcreteVectorArithmetic<M2::ARingZZpFFPACK>*,
                                ConcreteVectorArithmetic<M2::ARingZZp>*,
                                ConcreteVectorArithmetic<M2::ARingGFM2>*,
                                ConcreteVectorArithmetic<M2::ARingGFGivaro>*,
                                ConcreteVectorArithmetic<CoefficientRingR>*,
                                ConcreteVectorArithmetic<CoefficientRingZZp>*,
                                ConcreteVectorArithmetic<M2::DummyRing>*>;

private:
  CVA_Type mConcreteVector;

public:
  VectorArithmetic(const Ring* R)
  {
    // if the rings coming in are defined in a similar way, we could avoid the switch
    // statement here as well and make it compile time.  It would make the class templated
    // on the variant class describing all the rings.
    switch (R->ringID())
      {
      case M2::ring_ZZpFlint:
        mConcreteVector = new ConcreteVectorArithmetic
          {R, &dynamic_cast< const M2::ConcreteRing<M2::ARingZZpFlint>* >(R)->ring()};
        break;
      case M2::ring_GFFlintBig:
        mConcreteVector = new ConcreteVectorArithmetic
          {R, &dynamic_cast< const M2::ConcreteRing<M2::ARingGFFlintBig>* >(R)->ring()};
        break;
      case M2::ring_GFFlintZech:
        mConcreteVector = new ConcreteVectorArithmetic
          {R, &dynamic_cast< const M2::ConcreteRing<M2::ARingGFFlint>* >(R)->ring()};
        break;
      case M2::ring_QQ:
        mConcreteVector = new ConcreteVectorArithmetic
          {R, &dynamic_cast< const M2::ConcreteRing<M2::ARingQQGMP>* >(R)->ring()};
	break;
      case M2::ring_ZZpFfpack:
        mConcreteVector = new ConcreteVectorArithmetic
          {R, &dynamic_cast< const M2::ConcreteRing<M2::ARingZZpFFPACK>* >(R)->ring()};
	break;
      case M2::ring_ZZp:
        mConcreteVector = new ConcreteVectorArithmetic
          {R, &dynamic_cast< const M2::ConcreteRing<M2::ARingZZp>* >(R)->ring()};
        break;
      case M2::ring_GFM2:
        mConcreteVector = new ConcreteVectorArithmetic
          {R, &dynamic_cast< const M2::ConcreteRing<M2::ARingGFM2>* >(R)->ring()};
        break;
      case M2::ring_GFGivaro:
        mConcreteVector = new ConcreteVectorArithmetic
          {R, &dynamic_cast< const M2::ConcreteRing<M2::ARingGFGivaro>* >(R)->ring()};
        break;
      case M2::ring_old:
        if (R->cast_to_Z_mod() != nullptr)
          mConcreteVector = new ConcreteVectorArithmetic{R, R->cast_to_Z_mod()->get_CoeffRing()};
        else
          {
            std::cout << "Using GC ring in VectorArithmetic." << std::endl;
            mConcreteVector = new ConcreteVectorArithmetic{R, R->getCoefficientRingR()};
          }
        break;
      default:
        // dummy ring type for default
	// throw an error here...
        std::cerr << "*** error! *** ring ID not found....!" << std::endl;
        mConcreteVector = new ConcreteVectorArithmetic<M2::DummyRing>();
      }
  }

  ~VectorArithmetic() { 
    std::visit([&](auto& arg) -> void { delete arg; }, mConcreteVector);
  }

  const Ring* ring() const {
    return std::visit([&](auto& arg) -> const Ring* { return arg->ring(); }, mConcreteVector);
  }

  // provide simple visitor interface to underlying std::variant types
  size_t size(const ElementArrayType& coeffs) const {
    return std::visit([&](auto& arg) -> size_t { return arg->size(coeffs); }, mConcreteVector);
  }
  
  /////////////////////////////
  // Allocation/Deallocation //
  /////////////////////////////
  /// Create a coefficient vector with room for `nelems` coefficients
  ElementArrayType allocateElementArray(ComponentIndex nelems) const {
    return std::visit([&](auto& arg) -> ElementArrayType { return arg->allocateElementArray(nelems);}, mConcreteVector);
  }

  ElementArrayType copyElementArray(const ElementArray& sparse) const {
    return std::visit([&](auto& arg) -> ElementArrayType { return arg->copyElementArray(sparse);}, mConcreteVector);
  }

  /// Create a coefficient vector with 0 elements.  Can be increased in size.
  // ElementArrayType allocateElementArray() const = 0;

  /// Deallocate all the coefficients, and the array itself.
  void deallocateElementArray(ElementArrayType& coeffs) const {
    std::visit([&](auto& arg) { arg->deallocateElementArray(coeffs); }, mConcreteVector);
  }
  
  ////////////////////////
  /// Linear Algebra /////
  ////////////////////////
  void fillDenseArray(ElementArrayType& dense,
			   const ElementArrayType& coeffs,
			   const Range<int>& comps) const {
    std::visit([&](auto& arg) { arg->fillDenseArray(dense,coeffs,comps); }, mConcreteVector);
  }

  void denseCancelFromSparse(ElementArrayType& dense,
                                const ElementArrayType& coeffs,
                                const Range<int>& comps) const {
    std::visit([&](auto& arg) { arg->denseCancelFromSparse(dense,coeffs,comps); }, mConcreteVector);
  }

  int denseNextNonzero(ElementArrayType& dense,
                          int first,
                          int last) const {
    return std::visit([&](auto& arg) -> int { return arg->denseNextNonzero(dense,first,last); }, mConcreteVector);
  }

  void denseToSparse(ElementArrayType& dense,
                           ElementArrayType& coeffs, // sets coeffs
                           Range<int>& comps, // sets comps
                           int first,
                           int last,
                           MemoryBlock& monomialSpace) const {
    std::visit([&](auto& arg) { arg->denseToSparse(dense,coeffs,comps,first,last,monomialSpace); }, mConcreteVector);  
  }

  void denseToSparse(ElementArrayType& dense,
                           ElementArrayType& coeffs, // sets coeffs
                           int*& comps, // sets comps
                           int first,
                           int last,
                           F4Vec& f4Vec) const {
    std::visit([&](auto& arg) { arg->denseToSparse(dense,coeffs,comps,first,last,f4Vec); }, mConcreteVector);  
  }

  template<typename LockType>
  void safeDenseToSparse(ElementArrayType& dense,
                               ElementArrayType& coeffs, // sets coeffs
                               Range<int>& comps, // sets comps
                               int first,
                               int last,
                               MemoryBlock& monomialSpace,
                               LockType& lock) const {
    // the existence of 'template' here is a bit jarring to me, but it tells the compiler
    // that safeDenseToSparse is a template function
    std::visit([&](auto& arg) { arg->template safeDenseToSparse<LockType>(dense,coeffs,comps,first,last,monomialSpace,lock); }, mConcreteVector);      
  }

  void setZeroInRange(ElementArrayType& dense, int first, int last) const {
    std::visit([&](auto& arg) { arg->setZeroInRange(dense, first, last); }, mConcreteVector);      
  }
  
  void makeMonic(ElementArrayType& coeffs) const {
    std::visit([&](auto& arg) { arg->makeMonic(coeffs); }, mConcreteVector);      
  }

  /////////////////////////////
  /// Translation    //////////
  /////////////////////////////

  template<class Container>
  void appendToContainer(const ElementArrayType& coeffs,
                                     Container& c) const {
    std::visit([&](auto& arg) { arg->template appendToContainer<Container>(coeffs, c); }, mConcreteVector);      
  }

  template<class Container>
  ElementArrayType elementArrayFromContainer(const Container& c) const {
    return std::visit([&](auto& arg) -> ElementArrayType { return arg->template elementArrayFromContainer<Container>(c); }, mConcreteVector);
  }

  ring_elem ringElemFromElementArray(const ElementArrayType& coeffs,
                                     int index) const {
    return std::visit([&](auto& arg) -> ring_elem { return arg->ringElemFromElementArray(coeffs,index); }, mConcreteVector);
  }

  std::ostream& displayElementArray(std::ostream& o, const ElementArrayType& v) const
  {
    return std::visit([&](auto& arg) -> std::ostream& { return arg->displayElementArray(o, v); }, mConcreteVector);
  }

  //////////////////////////
  /// Append support   /////
  //////////////////////////
  
  void pushBackOne(ElementArrayType& coeffs) const
  {
    return std::visit([&](auto& arg) { arg->pushBackOne(coeffs); }, mConcreteVector);
  }

  void pushBackMinusOne(ElementArrayType& coeffs) const
  {
    return std::visit([&](auto& arg) { arg->pushBackMinusOne(coeffs); }, mConcreteVector);
  }

  void pushBackElement(ElementArrayType& coeffs,
                       const ElementArrayType& take_from_here,
                       size_t loc) const
  {
    return std::visit([&](auto& arg) { arg->pushBackElement(coeffs,take_from_here,loc); }, mConcreteVector);
  }
  
  void pushBackNegatedElement(ElementArrayType& coeffs,
                              const ElementArrayType& take_from_here,
                              size_t loc) const
  {
    return std::visit([&](auto& arg) { arg->pushBackNegatedElement(coeffs,take_from_here,loc); }, mConcreteVector);
  }

};

#endif

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e  "
// indent-tabs-mode: nil
// End: