File: aring-m2-gf.hpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (363 lines) | stat: -rw-r--r-- 9,528 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
// Copyright 2012 Michael E. Stillman

#ifndef _aring_gf_m2_hpp_
#define _aring_gf_m2_hpp_

#include "interface/random.h"
#include "aring.hpp"
#include "buffer.hpp"
#include "ringelem.hpp"
#include "exceptions.hpp" // for exc::division_by_zero_error, exc::internal_error
#include <iostream>

class GF;
class PolynomialRing;
class RingElement;

namespace M2 {

typedef int GFElement;
/// ingroup rings
///
/// @brief
///
class GaloisFieldTable
{
  friend class GF;
  friend class ARingGFM2;

 public:
  /// R should be the ring of the element prim.
  /// preferably, prim is the generator of R,
  /// but it is allowed to be something else as well.
  GaloisFieldTable(const PolynomialRing &R, const ring_elem prim);

  // debug display of the tables
  void display(std::ostream &o) const;

  GFElement characteristic() const { return mCharac; }
  GFElement dimension() const { return mDimension; }
  GFElement order() const { return mOrder; }
  GFElement one() const { return mOne; }
  GFElement minusOne() const { return mMinusOne; }
  GFElement orderMinusOne() const { return mOrderMinusOne; }
  GFElement oneTable(GFElement a) const { return mOneTable[a]; }
  GFElement fromZZTable(GFElement a) const { return mFromIntTable[a]; }
  const PolynomialRing &ring() const { return mOriginalRing; }
  const ring_elem primitiveElement() const { return mPrimitiveElement; }
  const RingElement *getGenerator() const { return mGenerator; }
  GFElement generatorExponent() const { return mGeneratorExponent; }
 private:
  // CONSTANT usable fields.
  GFElement mCharac;
  GFElement mDimension;
  GFElement mOrder;
  GFElement mOne;
  GFElement mMinusOne;
  GFElement mOrderMinusOne;

  GFElement *mOneTable;
  GFElement *mFromIntTable;

  const PolynomialRing &mOriginalRing;
  const RingElement *mGenerator;
  const ring_elem mPrimitiveElement;  // is an element of mOriginalRing
  GFElement mGeneratorExponent;
  // the given generator of mOriginalRing is
  // mPrimitiveElement^mGeneratorExponent (in this ring).
};

/**
\ingroup rings
*/

class ARingGFM2 : public RingInterface
{
 public:
  static const RingID ringID = ring_GFM2;
  typedef int ElementType;
  typedef int elem;
  typedef std::vector<elem> ElementContainerType;

  /// a is a polynomial in a ring R = ZZ/p[x]/(f(x))
  /// where
  ///  (a) f(x) is irreducible of degree n
  ///  (b) a is a primitive element of mOriginalRing, i.e.
  ///     a non-zero element such that
  ///     a^(p^n-1) == 1, and no smaller power has this property.
  ///
  /// We also assume that these elements are chosen (for different GF rings)
  /// such that if (GF(p^m) sits inside GF(p^n) (i.e. m|n), then the inclusion
  /// is given by 0 --> 0, and a --> a^N, where N = (p^n-1)/(p^m-1).
  ARingGFM2(const PolynomialRing &R, const ring_elem a);

  GFElement characteristic() const { return mGF.characteristic(); }
  void text_out(buffer &o) const;

  const PolynomialRing &originalRing() const { return mGF.ring(); }
 private:
  GaloisFieldTable mGF;

  ////////////////////////////////
  /// Arithmetic functions ///////
  ////////////////////////////////

  static inline int modulus_add(int a, int b, int p)
  {
    int t = a + b;
    return (t <= p ? t : t - p);
  }

  static inline int modulus_sub(int a, int b, int p)
  {
    int t = a - b;
    return (t <= 0 ? t + p : t);
  }

 public:
  unsigned int computeHashValue(const elem &a) const { return a; }
  void getGenerator(elem &result_gen) const { result_gen = 1; }
  int get_repr(elem f) const
  { /*TODO: WRITE WRITE ;*/
    throw exc::internal_error("get_repr not written");
  }

  void to_ring_elem(ring_elem &result, const ElementType &a) const
  {
    result = ring_elem(a);
  }

  void from_ring_elem(ElementType &result, const ring_elem &a) const
  {
    result = a.get_int();
  }

  bool is_unit(ElementType f) const { return f != 0; }
  bool is_zero(ElementType f) const { return f == 0; }
  bool is_equal(ElementType f, ElementType g) const { return f == g; }
  int compare_elems(ElementType f, ElementType g) const
  {
    if (f < g) return -1;
    if (f > g) return 1;
    return 0;
  }

  void copy(elem &result, elem a) const { result = a; }
  void init(elem &result) const { result = 0; }
  void init_set(elem &result, elem a) const { result = a; }
  void set(elem &result, elem a) const { result = a; }
  void set_zero(elem &result) const { result = 0; }
  void clear(elem &result) const { /* nothing */}

  void set_from_long(elem &result, long a) const
  {
    int a1 = static_cast<int>(a % characteristic());
    if (a1 < 0) a1 += characteristic();
    result = mGF.fromZZTable(a1);
  }

  void set_var(elem &result, int v) const { result = 1; }
  void set_from_mpz(elem &result, mpz_srcptr a) const
  {
    int b = static_cast<int>(mpz_fdiv_ui(a, characteristic()));
    result = mGF.fromZZTable(b);
  }

  bool set_from_mpq(elem &result, mpq_srcptr a) const
  {
    elem n, d;
    set_from_mpz(n, mpq_numref(a));
    set_from_mpz(d, mpq_denref(a));
    if (is_zero(d)) return false;
    divide(result, n, d);
    return true;
  }

  bool set_from_BigReal(elem &result, gmp_RR a) const { return false; }
  void negate(elem &result, elem a) const
  {
    if (a != 0)
      result = modulus_add(a, mGF.minusOne(), mGF.orderMinusOne());
    else
      result = 0;
  }

  void invert(elem &result, elem a) const
  {
    if (a == 0)
      throw exc::division_by_zero_error();
    result = (a == mGF.one() ? mGF.one() : mGF.orderMinusOne() - a);
  }

  void add(elem &result, elem a, elem b) const
  {
    if (a == 0)
      result = b;
    else if (b == 0)
      result = a;
    else
      {
        int n = a - b;
        if (n > 0)
          {
            if (n == mGF.minusOne())
              result = 0;
            else
              result = modulus_add(b, mGF.oneTable(n), mGF.orderMinusOne());
          }
        else if (n < 0)
          {
            if (-n == mGF.minusOne())
              result = 0;
            else
              result = modulus_add(a, mGF.oneTable(-n), mGF.orderMinusOne());
          }
        else
          {
            if (mGF.characteristic() == 2)
              result = 0;
            else
              result =
                  modulus_add(a, mGF.oneTable(mGF.one()), mGF.orderMinusOne());
          }
      }
  }

  void subtract(elem &result, elem a, elem b) const
  {
    result = a;
    if (b == 0) return;
    elem c = modulus_add(b, mGF.minusOne(), mGF.orderMinusOne());  // c = -b
    add(result, a, c);
  }

  void subtract_multiple(elem &result, elem a, elem b) const
  {
    elem ab;
    mult(ab, a, b);
    subtract(result, result, ab);
  }

  void mult(elem &result, elem a, elem b) const
  {
    if (a != 0 && b != 0)
      {
        int c = a + b;
        if (c > mGF.orderMinusOne()) c -= mGF.orderMinusOne();
        result = c;
      }
    else
      result = 0;
  }

  void divide(elem &result, elem a, elem b) const
  {
    if (b == 0)
      throw exc::division_by_zero_error();
    if (a != 0)
      {
        int c = a - b;
        if (c <= 0) c += mGF.orderMinusOne();
        result = c;
      }
    else
      result = 0;
  }

  void power(elem &result, elem a, long n) const
  {
    if (a != 0)
      {
        long order1 = static_cast<long>(mGF.orderMinusOne());
        result = static_cast<elem>((a * n) % order1);
        if (result <= 0) result += mGF.orderMinusOne();
      }
    else
      {
        // a is the zero element
        if (n > 0)
          result = 0;
        else if (n == 0)
          result = mGF.one();
        else
          throw exc::division_by_zero_error();
      }
  }

  void power_mpz(elem &result, elem a, mpz_srcptr n) const
  {
    if (a != 0)
      {
        long n1 = mpz_fdiv_ui(n, mGF.orderMinusOne());
        power(result, a, n1);
      }
    else
      {
        // a is the zero element
        if (mpz_sgn(n) > 0)
          result = 0;
        else if (mpz_sgn(n) == 0)
          result = mGF.one();
        else
          throw exc::division_by_zero_error();
      }
  }

  void swap(ElementType &a, ElementType &b) const
  {
    ElementType tmp = a;
    a = b;
    b = tmp;
  }

  void elem_text_out(buffer &o,
                     ElementType a,
                     bool p_one = true,
                     bool p_plus = false,
                     bool p_parens = false) const;

  void syzygy(ElementType a,
              ElementType b,
              ElementType &x,
              ElementType &y) const
  // returns x,y s.y. x*a + y*b == 0.
  // if possible, x is set to 1.
  // no need to consider the case a==0 or b==0.
  {
    assert(a != 0);
    assert(b != 0);
    x = mGF.one();
    divide(y, a, b);
    negate(y, y);
  }

  void random(ElementType &result) const
  {
    result = rawRandomInt(static_cast<int32_t>(characteristic()));
  }

  void fromSmallIntegerCoefficients(ElementType &result,
                                    const std::vector<long> &poly) const;

  bool promote(const Ring *Rf, const ring_elem f, elem &result) const;

  void lift_to_original_ring(ring_elem &result, const ElementType &f) const;
  // GF specific routine, used in getRepresentation

  bool lift(const Ring *Rg, const elem f, ring_elem &result) const;

  // map : this --> target(map)
  //       primelem --> map->elem(first_var)
  // evaluate map(f)
  void eval(const RingMap *map,
            const elem f,
            int first_var,
            ring_elem &result) const;
};
};

#endif
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: