1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
#include "comp-gb-declared.hpp"
#include "reducedgb-marked.hpp"
#include "matrix.hpp"
#include "reducedgb.hpp"
#include "polyring.hpp"
GBDeclared::GBDeclared(const Matrix *m0,
const Matrix *gb,
const Matrix *change,
const Matrix *syz0)
: trimmed_gens(m0), syz(syz0)
{
set_status(COMP_DONE);
const Ring *R = gb->get_ring();
const PolynomialRing *P = R->cast_to_PolynomialRing();
GBRing *GR = P->get_gb_ring();
const Ring *K = GR->get_flattened_coefficients();
const FreeModule *F = m0->rows();
const FreeModule *Fsyz = change->rows();
G = ReducedGB::create(P, F, Fsyz);
// Now add in the elements
VECTOR(POLY) elems;
for (int i = 0; i < gb->n_cols(); i++)
{
POLY g;
ring_elem denom1, denom2, u, v;
if (gb->elem(i) == 0)
continue; // Do not even consider including 0 elements.
g.f = P->translate_gbvector_from_vec(F, gb->elem(i), denom1);
g.fsyz = P->translate_gbvector_from_vec(Fsyz, change->elem(i), denom2);
K->syzygy(denom1, denom2, u, v);
GR->gbvector_mult_by_coeff_to(g.f, u);
K->negate_to(v);
GR->gbvector_mult_by_coeff_to(g.fsyz, v);
elems.push_back(g);
}
G->minimalize(elems);
}
GBDeclared::GBDeclared(const Matrix *leadterms,
const Matrix *m0,
const Matrix *gb,
const Matrix *change,
const Matrix *syz0)
: trimmed_gens(m0), syz(syz0)
{
set_status(COMP_DONE);
const Ring *R = gb->get_ring();
const PolynomialRing *P = R->cast_to_PolynomialRing();
GBRing *GR = P->get_gb_ring();
const Ring *K = GR->get_flattened_coefficients();
const FreeModule *F = m0->rows();
const FreeModule *Fsyz = change->rows();
MarkedGB *G0 = MarkedGB::create(P, F, Fsyz);
G = G0;
// Now add in the elements
VECTOR(POLY) elems;
VECTOR(gbvector *) leads;
for (int i = 0; i < gb->n_cols(); i++)
{
POLY g;
gbvector *lead;
ring_elem denom1, denom2, denom3, u, v;
if (gb->elem(i) == 0)
continue; // Do not even consider including 0 elements.
g.f = P->translate_gbvector_from_vec(F, gb->elem(i), denom1);
g.fsyz = P->translate_gbvector_from_vec(Fsyz, change->elem(i), denom2);
lead = P->translate_gbvector_from_vec(F, leadterms->elem(i), denom3);
K->syzygy(denom1, denom2, u, v);
GR->gbvector_mult_by_coeff_to(g.f, u);
K->negate_to(v);
GR->gbvector_mult_by_coeff_to(g.fsyz, v);
elems.push_back(g);
leads.push_back(lead);
}
G0->add_marked_elems(leads, elems, true);
}
GBComputation *GBDeclared::create(const Matrix *m,
const Matrix *gb,
const Matrix *change,
const Matrix *syz)
{
// Check:
// the rings are all the same, and all are not NULL.
// m->rows(), gb->rows() are the same
// change->rows(), syz->rows() are the same.
assert(m != 0 && gb != 0 && change != 0 && syz != 0);
const Ring *R = gb->get_ring();
if (R != m->get_ring() || R != change->get_ring() || R != syz->get_ring())
{
ERROR("expected the same ring");
return 0;
}
const PolynomialRing *P = R->cast_to_PolynomialRing();
if (P == 0)
{
ERROR("declaring a GB requires a polynomial ring");
return 0;
}
// Then: create and return the object
return new GBDeclared(m, gb, change, syz);
}
GBComputation *GBDeclared::create(const Matrix *leadterms,
const Matrix *m,
const Matrix *gb,
const Matrix *change,
const Matrix *syz)
{
// Check:
// the rings are all the same, and all are not NULL.
// m->rows(), gb->rows() are the same
// change->rows(), syz->rows() are the same.
assert(leadterms != 0 && m != 0 && gb != 0 && change != 0 && syz != 0);
const Ring *R = gb->get_ring();
if (R != m->get_ring() || R != leadterms->get_ring() ||
R != change->get_ring() || R != syz->get_ring())
{
ERROR("expected the same ring");
return 0;
}
const PolynomialRing *P = R->cast_to_PolynomialRing();
if (P == 0)
{
ERROR("declaring a GB requires a polynomial ring");
return 0;
}
if (leadterms->n_rows() != gb->n_rows() ||
leadterms->n_cols() != gb->n_cols())
{
ERROR(
"expected same number of lead terms as marked Groebner basis "
"elements");
return 0;
}
// Then: create and return the object
return new GBDeclared(leadterms, m, gb, change, syz);
}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|