File: comp-gb-declared.cpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (157 lines) | stat: -rw-r--r-- 4,815 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include "comp-gb-declared.hpp"
#include "reducedgb-marked.hpp"
#include "matrix.hpp"
#include "reducedgb.hpp"
#include "polyring.hpp"

GBDeclared::GBDeclared(const Matrix *m0,
                       const Matrix *gb,
                       const Matrix *change,
                       const Matrix *syz0)
    : trimmed_gens(m0), syz(syz0)
{
  set_status(COMP_DONE);
  const Ring *R = gb->get_ring();
  const PolynomialRing *P = R->cast_to_PolynomialRing();
  GBRing *GR = P->get_gb_ring();
  const Ring *K = GR->get_flattened_coefficients();

  const FreeModule *F = m0->rows();
  const FreeModule *Fsyz = change->rows();

  G = ReducedGB::create(P, F, Fsyz);

  // Now add in the elements
  VECTOR(POLY) elems;
  for (int i = 0; i < gb->n_cols(); i++)
    {
      POLY g;
      ring_elem denom1, denom2, u, v;

      if (gb->elem(i) == 0)
        continue;  // Do not even consider including 0 elements.
      g.f = P->translate_gbvector_from_vec(F, gb->elem(i), denom1);
      g.fsyz = P->translate_gbvector_from_vec(Fsyz, change->elem(i), denom2);

      K->syzygy(denom1, denom2, u, v);
      GR->gbvector_mult_by_coeff_to(g.f, u);
      K->negate_to(v);
      GR->gbvector_mult_by_coeff_to(g.fsyz, v);

      elems.push_back(g);
    }
  G->minimalize(elems);
}

GBDeclared::GBDeclared(const Matrix *leadterms,
                       const Matrix *m0,
                       const Matrix *gb,
                       const Matrix *change,
                       const Matrix *syz0)
    : trimmed_gens(m0), syz(syz0)
{
  set_status(COMP_DONE);
  const Ring *R = gb->get_ring();
  const PolynomialRing *P = R->cast_to_PolynomialRing();
  GBRing *GR = P->get_gb_ring();
  const Ring *K = GR->get_flattened_coefficients();

  const FreeModule *F = m0->rows();
  const FreeModule *Fsyz = change->rows();

  MarkedGB *G0 = MarkedGB::create(P, F, Fsyz);
  G = G0;

  // Now add in the elements
  VECTOR(POLY) elems;
  VECTOR(gbvector *) leads;
  for (int i = 0; i < gb->n_cols(); i++)
    {
      POLY g;
      gbvector *lead;
      ring_elem denom1, denom2, denom3, u, v;

      if (gb->elem(i) == 0)
        continue;  // Do not even consider including 0 elements.
      g.f = P->translate_gbvector_from_vec(F, gb->elem(i), denom1);
      g.fsyz = P->translate_gbvector_from_vec(Fsyz, change->elem(i), denom2);
      lead = P->translate_gbvector_from_vec(F, leadterms->elem(i), denom3);
      K->syzygy(denom1, denom2, u, v);
      GR->gbvector_mult_by_coeff_to(g.f, u);
      K->negate_to(v);
      GR->gbvector_mult_by_coeff_to(g.fsyz, v);

      elems.push_back(g);
      leads.push_back(lead);
    }
  G0->add_marked_elems(leads, elems, true);
}

GBComputation *GBDeclared::create(const Matrix *m,
                                  const Matrix *gb,
                                  const Matrix *change,
                                  const Matrix *syz)
{
  // Check:
  //   the rings are all the same, and all are not NULL.
  //   m->rows(), gb->rows() are the same
  //   change->rows(), syz->rows() are the same.
  assert(m != 0 && gb != 0 && change != 0 && syz != 0);
  const Ring *R = gb->get_ring();
  if (R != m->get_ring() || R != change->get_ring() || R != syz->get_ring())
    {
      ERROR("expected the same ring");
      return 0;
    }

  const PolynomialRing *P = R->cast_to_PolynomialRing();
  if (P == 0)
    {
      ERROR("declaring a GB requires a polynomial ring");
      return 0;
    }
  // Then: create and return the object
  return new GBDeclared(m, gb, change, syz);
}

GBComputation *GBDeclared::create(const Matrix *leadterms,
                                  const Matrix *m,
                                  const Matrix *gb,
                                  const Matrix *change,
                                  const Matrix *syz)
{
  // Check:
  //   the rings are all the same, and all are not NULL.
  //   m->rows(), gb->rows() are the same
  //   change->rows(), syz->rows() are the same.
  assert(leadterms != 0 && m != 0 && gb != 0 && change != 0 && syz != 0);
  const Ring *R = gb->get_ring();
  if (R != m->get_ring() || R != leadterms->get_ring() ||
      R != change->get_ring() || R != syz->get_ring())
    {
      ERROR("expected the same ring");
      return 0;
    }

  const PolynomialRing *P = R->cast_to_PolynomialRing();
  if (P == 0)
    {
      ERROR("declaring a GB requires a polynomial ring");
      return 0;
    }
  if (leadterms->n_rows() != gb->n_rows() ||
      leadterms->n_cols() != gb->n_cols())
    {
      ERROR(
          "expected same number of lead terms as marked Groebner basis "
          "elements");
      return 0;
    }
  // Then: create and return the object
  return new GBDeclared(leadterms, m, gb, change, syz);
}

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: