1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
// Copyright 2004 Michael E. Stillman.
#include "text-io.hpp"
#include "comp-res.hpp"
#include "res-a1.hpp"
#include "res-a0.hpp"
#include "res-a2.hpp"
#include "finalize.hpp"
#include "schreyer-resolution/res-f4-computation.hpp"
#include "NCResolutions/nc-res-computation.hpp"
#include <iostream>
ResolutionComputation::ResolutionComputation() {}
ResolutionComputation::~ResolutionComputation() {}
ResolutionComputation *ResolutionComputation::choose_res(
const Matrix *m,
M2_bool resolve_cokernel,
int max_level,
M2_bool use_max_slanted_degree,
int max_slanted_degree,
int algorithm,
int strategy)
{
// The following modification is because some algorithms do not work if
// max_level is 0.
// github issue (crash, #368).
if (max_level <= 0) max_level = 1;
const Ring *R = m->get_ring();
ResolutionComputation *C = nullptr;
int origsyz;
// First, we need to check that m is homogeneous, and that
// the heft values of the variables are all positive.
// All of these algorithms also assume that R is a polynomial ring.
const M2FreeAlgebraOrQuotient *NCP = R->cast_to_M2FreeAlgebraOrQuotient();
if (NCP != nullptr)
{
if (M2_gbTrace > 0) emit_line("NC resolution");
C = createNCRes(m, max_level, strategy);
return C;
}
const PolynomialRing *P = R->cast_to_PolynomialRing();
if (P == nullptr)
{
ERROR("engine resolution strategies all require a polynomial base ring");
return nullptr;
}
const Ring* K = P->getCoefficientRing();
if (K->get_precision() != 0)
{
ERROR("free resolutions over polynomial rings with RR or CC coefficients not yet implemented");
return nullptr;
}
if (!P->getMonoid()->primary_degrees_of_vars_positive())
{
ERROR(
"engine resolution strategies all require a Heft vector which is "
"positive for all variables");
return nullptr;
}
if (algorithm < 4 and !m->is_homogeneous())
{
ERROR("engine resolution strategies require a homogeneous module");
return nullptr;
}
switch (algorithm)
{
case 1:
if (!resolve_cokernel)
{
ERROR(
"resolution Strategy=>1 cannot resolve a cokernel with a given "
"presentation: use Strategy=>2 or Strategy=>3 instead");
return nullptr;
}
if (!R->is_commutative_ring())
{
ERROR(
"use resolution Strategy=>2 or Strategy=>3 for non commutative "
"polynomial rings");
return nullptr;
}
if (M2_gbTrace > 0) emit_line("resolution Strategy=>1");
C = new res_comp(m, max_level, strategy);
break;
case 0:
if (!resolve_cokernel)
{
ERROR(
"resolution Strategy=>0 cannot resolve a cokernel with a given "
"presentation: use Strategy=>2 or Strategy=>3 instead");
return nullptr;
}
if (!R->is_commutative_ring())
{
ERROR(
"use resolution Strategy=>2 or Strategy=>3 for non commutative "
"polynomial rings");
return nullptr;
}
if (M2_gbTrace > 0) emit_line("resolution Strategy=>0");
C = new res2_comp(
m, max_level, use_max_slanted_degree, max_slanted_degree, strategy);
break;
case 2:
origsyz = m->n_cols();
if (M2_gbTrace > 0) emit_line("resolution Strategy=>2");
C = new gbres_comp(m, max_level + 1, origsyz, strategy);
break;
case 3:
origsyz = m->n_cols();
if (M2_gbTrace > 0) emit_line("resolution Strategy=>3");
C = new gbres_comp(
m, max_level + 1, origsyz, strategy | STRATEGY_USE_HILB);
break;
case 4:
case 5:
if (!resolve_cokernel)
{
ERROR(
"resolution Strategy=>4 cannot resolve a cokernel with a given "
"presentation: use Strategy=>2 or Strategy=>3 instead");
return nullptr;
}
if (!P->is_skew_commutative() and !R->is_commutative_ring())
{
ERROR(
"use resolution Strategy=>2 or Strategy=>3 for non commutative "
"polynomial rings");
return nullptr;
}
if (M2_gbTrace > 0) emit_line("resolution Strategy=>4 (res-f4)");
C = createF4Res(m, max_level, strategy);
if (C == nullptr) return nullptr;
break;
}
if (C == nullptr)
{
ERROR("unknown resolution algorithm");
return nullptr;
}
intern_res(C);
return C;
}
void ResolutionComputation::betti_init(int lo, int hi, int len, int *&bettis)
{
int z = (hi - lo + 1) * (len + 1);
bettis = newarray_atomic_clear(int, z);
}
M2_arrayint ResolutionComputation::betti_make(int lo,
int hi,
int len,
int *bettis)
{
int d, lev;
int hi1 = hi + 1;
int len1 = len + 1;
// Reset 'hi1' to reflect the top degree that occurs
for (d = hi; d >= lo; d--)
{
for (lev = 0; lev <= len; lev++)
if (bettis[lev + (len + 1) * (d - lo)] > 0)
{
hi1 = d;
break;
}
if (hi1 <= hi) break;
}
if (hi1 > hi) hi1 = hi;
// Reset 'len1' to reflect the top level that occurs
for (lev = len; lev >= 0; lev--)
{
for (d = lo; d <= hi1; d++)
if (bettis[lev + (len + 1) * (d - lo)] > 0)
{
len1 = lev;
break;
}
if (len1 <= len) break;
}
if (len1 > len) len1 = len;
int totallen = (hi1 - lo + 1) * (len1 + 1);
M2_arrayint result = M2_makearrayint(3 + totallen);
result->array[0] = lo;
result->array[1] = hi1;
result->array[2] = len1;
int next = 3;
for (d = lo; d <= hi1; d++)
for (lev = 0; lev <= len1; lev++)
result->array[next++] = bettis[lev + (len + 1) * (d - lo)];
return result;
}
void ResolutionComputation::betti_display(buffer &o, M2_arrayint ar)
{
int *a = ar->array;
int total_sum = 0;
int lo = a[0];
int hi = a[1];
int len = a[2] + 1;
o << "total ";
for (int lev = 0; lev < len; lev++)
{
int sum = 0;
for (int d = lo; d <= hi; d++) sum += a[len * (d - lo) + lev + 3];
total_sum += sum;
o.put(sum, 6);
o << ' ';
}
o << " [" << total_sum << "]" << newline;
for (int d = lo; d <= hi; d++)
{
o.put(d, 5);
o << ": ";
for (int lev = 0; lev < len; lev++)
{
int c = a[len * (d - lo) + lev + 3];
if (c != 0)
o.put(c, 6);
else
o << " -";
o << " ";
}
o << newline;
}
}
MutableMatrix /* or null */ *ResolutionComputation::get_matrix(int level,
int degree)
{
// the default version gives an error that it isn't defined
ERROR("this function not defined for this resolution type");
return 0;
}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|