1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
// Copyright 1996 Michael E. Stillman.
#include "det.hpp"
#include "text-io.hpp"
#include "interrupted.hpp"
#include "comb.hpp"
DetComputation::DetComputation(const Matrix *M0,
int p0,
bool do_exterior0,
int strategy0)
: R(M0->get_ring()),
M(M0),
done(false),
p(p0),
do_exterior(do_exterior0),
strategy(strategy0),
row_set(NULL),
col_set(NULL),
this_row(0),
this_col(0),
D(0),
dynamic_cache(0)
{
if (do_exterior)
{
F = M->rows()->exterior(p);
FreeModule *G = M->cols()->exterior(p);
int *deg = R->degree_monoid()->make_new(M->degree_shift());
R->degree_monoid()->power(deg, p, deg);
result = MatrixConstructor(F, G, deg);
R->degree_monoid()->remove(deg);
}
else
{
F = R->make_FreeModule(1);
result = MatrixConstructor(F, 0);
}
// Handle trivial cases
if (p < 0)
{
// In either case, want a zero matrix
done = true;
return;
}
if (p == 0)
{
// We want a single element which is '1'
if (do_exterior)
result.set_entry(0, 0, R->one());
else
result.append(R->make_vec(0, R->one()));
done = true;
return;
}
if (p > M->n_rows() || p > M->n_cols())
{
// Zero matrix in either case
done = true;
return;
}
done = false;
row_set = newarray_atomic(size_t, p);
col_set = newarray_atomic(size_t, p);
for (size_t i = 0; i < p; i++)
{
row_set[i] = i;
col_set[i] = i;
}
D = newarray(ring_elem *, p);
for (size_t i = 0; i < p; i++)
{
D[i] = newarray(ring_elem, p);
for (size_t j = 0; j < p; j++) D[i][j] = ZERO_RINGELEM;
}
}
DetComputation::~DetComputation()
{
freemem(row_set);
freemem(col_set);
if (D)
{
for (size_t i = 0; i < p; i++) freemem(D[i]);
freemem(D);
}
}
int DetComputation::make_dynamic_cache()
{
// Traverse through matrix entries, find nonzero entries
int nonzero = -1;
for (int i = 0; i < M->n_rows(); ++i)
{
bool flag = false;
for (int j = 0; j < M->n_cols(); ++j)
{
if (!R->is_zero(M->elem(i, j)))
{
if (!flag)
{
flag = true;
dynamic_cache[0][++nonzero] = {};
row_lookup[i] = nonzero;
}
dynamic_cache[0][nonzero][{{i}, {j}}] = M->elem(i, j);
}
}
}
int n_nonzero_rows = dynamic_cache[0].size();
for (int minor_size = 1; minor_size < p; ++minor_size)
{
for (int top_row = p - (minor_size + 1);
top_row <= n_nonzero_rows - minor_size;
++top_row)
{
dynamic_cache[minor_size].insert({top_row, {}});
for (const auto &[pp, map] : dynamic_cache[minor_size - 1])
{
if (system_interrupted())
return COMP_INTERRUPTED; // Allow interruption
if (pp <= top_row)
{
continue;
} // top_row wouldn't be the top row, so skip
for (auto x : dynamic_cache[0][top_row])
{
for (const auto &[Didx, Dval] : map)
{
// Check if x and D live on distinct columns
const std::vector<int> &Dcols = Didx.second;
int xcol = x.first.second[0];
auto col_find =
std::find(Dcols.begin(), Dcols.end(), xcol);
if (col_find != Dcols.end())
{
continue;
} // xcol found in Dcols, so skip
// if no skip, compute a term in the cofactor
ColRowIndices newKey = Didx;
newKey.first.insert(newKey.first.begin(),
x.first.first[0]);
// Get iterator to future location of xcol
auto xcol_position = std::upper_bound(
newKey.second.begin(), newKey.second.end(), xcol);
newKey.second.insert(xcol_position, xcol);
bool negate =
((xcol_position - newKey.second.begin()) % 2 != 0);
// Insert, add or negate cofactor term
auto search =
dynamic_cache[minor_size][top_row].find(newKey);
if (search == dynamic_cache[minor_size][top_row].end())
{ // not found
dynamic_cache[minor_size][top_row].insert(
{newKey, R->mult(x.second, Dval)});
if (negate)
{
R->negate_to(
dynamic_cache[minor_size][top_row][newKey]);
}
}
else
{ // found
if (!negate)
{
R->add_to(
dynamic_cache[minor_size][top_row][newKey],
R->mult(x.second, Dval));
}
else
{
R->subtract_to(
dynamic_cache[minor_size][top_row][newKey],
R->mult(x.second, Dval));
}
}
}
}
}
}
}
return COMP_DONE;
}
int DetComputation::step()
// Compute one more determinant of size p.
// increments I and/or J and updates 'dets', 'table'.
{
if (done) return COMP_DONE;
ring_elem r;
if (strategy == DET_BAREISS)
{
get_minor(row_set, col_set, p, D);
r = bareiss_det();
}
else if (strategy == DET_DYNAMIC)
{
if (dynamic_cache.empty())
{ // Cache minors if needed
dynamic_cache.resize(p);
if (make_dynamic_cache() == COMP_INTERRUPTED) return COMP_INTERRUPTED;
}
std::vector<int> row_vec(p), col_vec(p);
for (int i = 0; i < p; ++i)
{
row_vec[i] = static_cast<int>(row_set[i]);
col_vec[i] = static_cast<int>(col_set[i]);
}
// Find row number
const Subdeterminant &map = dynamic_cache[p - 1][row_lookup[row_vec[0]]];
auto it = map.find({row_vec, col_vec});
if (it != map.end()) { r = it->second; }
else { r = ZERO_RINGELEM; }
}
else
r = calc_det(row_set, col_set, p);
if (!R->is_zero(r))
{
if (do_exterior)
result.set_entry(this_row, this_col, r);
else
result.append(R->make_vec(0, r));
}
else
R->remove(r);
this_row++;
if (!Subsets::increment(M->n_rows(), p, row_set))
{
// Now we increment column
if (!Subsets::increment(M->n_cols(), p, col_set))
{
done = true;
return COMP_DONE;
}
// Now set the row set back to initial value
this_col++;
this_row = 0;
for (size_t i = 0; i < p; i++) row_set[i] = i;
}
return COMP_COMPUTING;
}
void DetComputation::clear()
{
if (do_exterior) return;
result = MatrixConstructor(F, 0);
}
void DetComputation::set_next_minor(const int *rows, const int *cols)
{
if (do_exterior) return;
if (rows != NULL && Subsets::isValid(M->n_rows(), p, rows))
for (size_t i = 0; i < p; i++) row_set[i] = rows[i];
else
for (size_t i = 0; i < p; i++) row_set[i] = i;
if (cols != NULL && Subsets::isValid(M->n_cols(), p, cols))
for (size_t i = 0; i < p; i++) col_set[i] = cols[i];
else
for (size_t i = 0; i < p; i++) col_set[i] = i;
}
int DetComputation::calc(int nsteps)
{
for (;;)
{
int r = step();
if (M2_gbTrace >= 3) emit_wrapped(".");
if (r == COMP_DONE) return COMP_DONE;
if (--nsteps == 0) return COMP_DONE_STEPS;
if (system_interrupted()) return COMP_INTERRUPTED;
}
}
void DetComputation::get_minor(size_t *r, size_t *c, int p0, ring_elem **D0)
{
for (size_t i = 0; i < p0; i++)
for (size_t j = 0; j < p0; j++)
D0[i][j] = M->elem(static_cast<int>(r[i]), static_cast<int>(c[j]));
}
bool DetComputation::get_pivot(ring_elem **D0,
size_t r,
ring_elem &pivot,
size_t &pivot_col)
// Get a non-zero column 0..r in the r th row.
{
// MES: it would be worthwhile to find a good pivot.
for (size_t c = 0; c <= r; c++)
if (!R->is_zero(D0[r][c]))
{
pivot_col = c;
pivot = D0[r][c];
return true;
}
return false;
}
ring_elem DetComputation::detmult(ring_elem f1,
ring_elem g1,
ring_elem f2,
ring_elem g2,
ring_elem d)
{
ring_elem a = R->mult(f1, g1);
ring_elem b = R->mult(f2, g2);
R->subtract_to(a, b);
if (!R->is_zero(d))
{
ring_elem tmp = R->divide(a, d); // exact division
R->remove(a);
a = tmp;
}
R->remove(g1);
return a;
}
void DetComputation::gauss(ring_elem **D0,
size_t i,
size_t r,
size_t pivot_col,
ring_elem lastpivot)
{
ring_elem f = D0[i][pivot_col];
ring_elem pivot = D0[r][pivot_col];
for (size_t c = 0; c < pivot_col; c++)
D0[i][c] = detmult(pivot, D0[i][c], f, D0[r][c], lastpivot);
for (size_t c = pivot_col + 1; c <= r; c++)
D0[i][c - 1] = detmult(pivot, D0[i][c], f, D0[r][c], lastpivot);
R->remove(f);
}
ring_elem DetComputation::bareiss_det()
{
// Computes the determinant of the p by p matrix D. (dense form).
int sign = 1;
size_t pivot_col;
ring_elem pivot = R->from_long(0);
ring_elem lastpivot = R->from_long(0);
for (size_t r = p - 1; r >= 1; --r)
{
R->remove(lastpivot);
lastpivot = pivot;
if (!get_pivot(D, r, pivot, pivot_col)) // sets pivot_col and pivot
{
// Remove the rest of D.
for (size_t i = 0; i <= r; i++)
for (size_t j = 0; j <= r; j++) R->remove(D[i][j]);
R->remove(lastpivot);
return R->from_long(0);
}
for (size_t i = 0; i < r; i++) gauss(D, i, r, pivot_col, lastpivot);
if (((r + pivot_col) % 2) == 1)
sign = -sign; // MES: do I need to rethink this logic?
for (size_t c = 0; c <= r; c++)
if (c != pivot_col)
R->remove(D[r][c]);
else
D[r][c] = ZERO_RINGELEM;
}
R->remove(pivot);
R->remove(lastpivot);
ring_elem r = D[0][0];
D[0][0] = ZERO_RINGELEM;
if (sign < 0) R->negate_to(r);
return r;
}
ring_elem DetComputation::calc_det(size_t *r, size_t *c, int p0)
// Compute the determinant of the minor with rows r[0]..r[p0-1]
// and columns c[0]..c[p0-1].
{
if (p0 == 1) return M->elem(static_cast<int>(r[0]), static_cast<int>(c[0]));
ring_elem answer = R->from_long(0);
int negate = 1;
for (int i = p0 - 1; i >= 0; i--)
{
std::swap(c[i], c[p0 - 1]);
negate = !negate;
ring_elem g =
M->elem(static_cast<int>(r[p0 - 1]), static_cast<int>(c[p0 - 1]));
if (R->is_zero(g))
{
R->remove(g);
continue;
}
ring_elem h = calc_det(r, c, p0 - 1);
ring_elem gh = R->mult(g, h);
R->remove(g);
R->remove(h);
if (negate)
R->subtract_to(answer, gh);
else
R->add_to(answer, gh);
}
// pulling out the columns has disordered c. Fix it.
size_t temp = c[p0 - 1];
for (size_t i = p0 - 1; i > 0; i--) c[i] = c[i - 1];
c[0] = temp;
return answer;
}
Matrix /* or null */ *Matrix::exterior(int p, int strategy) const
{
if (strategy == DET_BAREISS && get_ring()->get_precision() > 0)
{
ERROR(
"determinant computations over RR or CC requires Strategy=>Cofactor");
return 0;
}
DetComputation *d = new DetComputation(this, p, 1, strategy);
d->calc(-1);
Matrix *result = d->determinants();
freemem(d);
return result;
}
Matrix /* or null */ *Matrix::minors(int p, int strategy) const
{
if (strategy == DET_BAREISS && get_ring()->get_precision() > 0)
{
ERROR(
"determinant computations over RR or CC requires Strategy=>Cofactor");
return 0;
}
DetComputation *d = new DetComputation(this, p, 0, strategy);
d->calc(-1);
Matrix *result = d->determinants();
freemem(d);
return result;
}
Matrix /* or null */ *Matrix::minors(
int p,
int strategy,
int n_to_compute, // -1 means all
M2_arrayintOrNull first_row, // possibly NULL
M2_arrayintOrNull first_col // possibly NULL
) const
{
if (strategy == DET_BAREISS && get_ring()->get_precision() > 0)
{
ERROR(
"determinant computations over RR or CC requires Strategy=>Cofactor");
return 0;
}
if (first_row != 0 || first_col != 0)
{
// Make sure these are the correct size, and both are given
if (first_row == 0 || first_row->len != p)
{
ERROR("row index set inappropriate");
return 0;
}
if (first_col == 0 || first_col->len != p)
{
ERROR("column index set inappropriate");
return 0;
}
}
DetComputation *d = new DetComputation(this, p, 0, strategy);
if (first_row != 0 && first_col != 0)
d->set_next_minor(first_row->array, first_col->array);
d->calc(n_to_compute);
Matrix *result = d->determinants();
freemem(d);
return result;
}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|