File: dmat-ffpack.cpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (458 lines) | stat: -rw-r--r-- 18,099 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// Copyright 2005-2012  Michael E. Stillman

#if 0
// This file is not in use.  These functions are now in dmat.cpp.
#if 0
    template<typename  CoeffRing >
    template<class RingType>
    size_t DMat < CoeffRing >::rank(typename enable_if<is_givaro_or_ffpack<RingType>::value >::type* dummy ) const
    {
        // assert not necessary because the test is already done by  "enable_if<is_givaro_or_ffpack<RingType>::value >"
        // assert( typeid(CoeffRing) == typeid(M2::ARingZZpFFPACK) || typeid(CoeffRing) == typeid(M2::ARingGFGivaro ));
        std::cout << "Calling rankGF_or_FFPACK" << std::endl;
        ElementType *N = newarray(ElementType, n_rows() * n_cols() );
        /// @jakob replace with memcopy or something fast.
        /// @jakob potention problem: (  n_rows()*n_cols() ) - overflow for big matrices 
        /// @jakob write a logger ur ose a logger for warnings/messages. Ideal case: if disabled, logger messaging is optimized out by compiler.
        copy_elems( n_rows()*n_cols(), N, 1, get_array(), 1); 
        /// @note 1. matrix data (N) is modified by FFPACK
        /// @note 2. FFPACK expects row-wise stored matrices while dmat stores them column-wise => switch n_rows and n_cols -parameters!
    
        /* //debug
        typename MatrixType::ElementType *Npos=N;
        for ( int currRow=0; currRow < n_rows(); currRow++ )
        for ( int currCol =0; currCol < n_cols(); currCol++ )
        {
            typename MatrixType::ElementType entry;
                get_entry(currRow, currCol,entry)  ;
                ring().field().init(Npos, entry );
            //  mat.setEntry( currRow, currCol ,( (int)rand() ) % characteristic );
        }*/
    
        size_t result = FFPACK::Rank(ring().field(), n_cols(), n_rows(),  N,  n_rows() );
        freemem(N);
        return result;
    }
#endif

    template<typename CoeffRing>
    size_t FFpackRank(const DMat<CoeffRing>& mat)
    {
        typedef typename CoeffRing::ElementType ElementType;
        std::cout << "Calling FFpackRank" << std::endl;
        assert( typeid(CoeffRing) == typeid(M2::ARingZZpFFPACK) || typeid(CoeffRing) == typeid(M2::ARingGFGivaro ));
        ElementType* N = newarray( ElementType, mat.n_rows() * mat.n_cols());    
        mat.copy_elems(mat.n_rows()*mat.n_cols(), N, 1, mat.get_array(), 1); 
        /// @note 1. matrix data (N) is modified by FFPACK
        /// @note 2. FFPACK expects row-wise stored matrices while dmat stores them column-wise => switch n_rows and n_cols -parameters!
        size_t result = FFPACK::Rank(mat.ring().field(), mat.n_cols(), mat.n_rows(),  N,  mat.n_rows());
        freemem(N);
        return result;
    }

    template<typename CoeffRing>
    void FFpackDeterminant(const DMat<CoeffRing>& mat, 
                                 typename CoeffRing::ElementType& result )
    {
        typedef typename CoeffRing::ElementType ElementType;
        std::cout << "Calling FFpackDeterminant" << std::endl;
        assert( typeid(CoeffRing) == typeid(M2::ARingZZpFFPACK) || typeid(CoeffRing) == typeid(M2::ARingGFGivaro ));
        ElementType* N = newarray( ElementType, mat.n_rows() * mat.n_cols());    
        mat.copy_elems(mat.n_rows()*mat.n_cols(), N, 1, mat.get_array(), 1); 
        /// @note 1. matrix data (N) is modified by FFPACK
        /// @note 2. FFPACK expects row-wise stored matrices while dmat stores them column-wise => switch n_rows and n_cols -parameters!
        result = FFPACK::Det(mat.ring().field(), mat.n_cols(), mat.n_rows(),  N,  mat.n_rows());
        freemem(N);
    }

    template<typename CoeffRing>
    bool FFpackInvert(const DMat<CoeffRing> &mat, DMat<CoeffRing> &inverse)
    {
        typedef typename CoeffRing::ElementType ElementType;
        assert(mat.n_rows() == mat.n_cols());
        ElementType* N = newarray( ElementType, mat.n_rows() * mat.n_cols());    
        mat.copy_elems(mat.n_rows()*mat.n_cols(), N, 1, mat.get_array(), 1); 
    
        size_t n = mat.n_rows(); // same as n_cols()
        int nullspacedim;
        FFPACK::Invert2(mat.ring().field(), n, N, n, inverse.get_array(), n, nullspacedim);
    
        freemem(N);
        return true;
    }

    template<typename CoeffRing>
    void FFpackNullSpace(const DMat<CoeffRing> &mat, 
                         DMat<CoeffRing> &nullspace, 
                         bool right_side)
    {
        right_side = !right_side; // because FFPACK stores by rows, not by columns.

        typedef typename CoeffRing::ElementType ElementType;
        ElementType* N = newarray( ElementType, mat.n_rows() * mat.n_cols());    
        mat.copy_elems(mat.n_rows()*mat.n_cols(), N, 1, mat.get_array(), 1); 
    
        size_t nr = mat.n_rows();
        size_t nc = mat.n_cols();
    
        ElementType *nullspaceFFPACK = 0;
    
        size_t nullspace_dim;
        size_t nullspace_leading_dim;
    
        FFPACK::NullSpaceBasis(mat.ring().field(),
                               (right_side ? FFLAS::FflasRight : FFLAS::FflasLeft),
                               nc, nr, N, nr, nullspaceFFPACK, nullspace_leading_dim, nullspace_dim);
    
        std::cerr << "leading dim = " << nullspace_leading_dim << " and dim = " << nullspace_dim << std::endl;
        //NOTUSED? size_t nullspace_nrows = (right_side ? nc : nullspace_dim);
        if (right_side && nullspace_dim != nullspace_leading_dim)
          {
            std::cerr << "error: this should not happen!" << std::endl;
          }
        else if (!right_side && nullspace_leading_dim != nc)
          {
            std::cerr << "error: this should not happen either!" << std::endl;
          }
    
        if (right_side)
          nullspace.resize(nullspace_dim,nr);
        else
          nullspace.resize(nc,nullspace_dim);
    
        mat.copy_elems(nullspace.n_rows() * nullspace.n_cols(), nullspace.get_array(), 1, nullspaceFFPACK, 1); 
    
        delete [] nullspaceFFPACK;
    }

    template<typename CoeffRing>
    M2_arrayintOrNull FFpackRankProfile(const DMat<CoeffRing> &mat,
                                        bool row_profile)
    {
        // Note that FFPack stores matrices by row, not column, the opposite of what we do.
        // So row_profile true means use ffpack column rank profile!

        typedef typename CoeffRing::ElementType ElementType;
        ElementType* N = newarray( ElementType, mat.n_rows() * mat.n_cols());    
        mat.copy_elems(mat.n_rows()*mat.n_cols(), N, 1, mat.get_array(), 1); 
    
        size_t * prof; // this is where the result will be placed
    
        size_t rk;
        if (!row_profile)
          rk = FFPACK::RowRankProfile(mat.ring().field(),
                                      mat.n_cols(),mat.n_rows(),
                                      N,mat.n_rows(),
                                      prof);
        else
          rk = FFPACK::ColumnRankProfile(mat.ring().field(),
                                         mat.n_cols(),mat.n_rows(),
                                         N,mat.n_rows(),
                                         prof);
        
        M2_arrayint profile = M2_makearrayint(static_cast<int>(rk));
        for (size_t i=0; i<rk; i++)
          profile->array[i] = static_cast<int>(prof[i]);
    
        delete [] prof;
        freemem(N);

        return profile;
    }

    template<typename CoeffRing>
    bool FFpackSolveLinear(const DMat<CoeffRing> &mat, 
                           DMat<CoeffRing> &X, 
                           const DMat<CoeffRing> &B, 
                           bool right_side)
    {
        std::cerr << "inside FFpackSolveLinear" << std::endl;

        typedef typename CoeffRing::ElementType ElementType;
        size_t a_rows = mat.n_rows();
        size_t a_cols = mat.n_cols();
    
        size_t b_rows = B.n_rows();
        size_t b_cols = B.n_cols();
    
        ElementType* ffpackA = newarray(ElementType, mat.n_rows() * mat.n_cols());
        mat.copy_elems(mat.n_rows()*mat.n_cols(), ffpackA, 1, mat.get_array(), 1); 
    
        ElementType* ffpackB = newarray(ElementType, b_rows * b_cols);
        B.copy_elems(b_rows * b_cols, ffpackB, 1, B.get_array(), 1); 
    
        // preallocate the space for the solutions:
        size_t x_rows = (right_side ? a_cols : b_rows);
        size_t x_cols = (right_side ? b_cols : a_rows);
        //NOTUSED? size_t n_eqns = (right_side ? b_cols : b_rows);
    
        ElementType *ffpackX = newarray_clear(ElementType, x_rows * x_cols);
    
        int info; // >0 if the system is inconsistent, ==0 means success
    
        FFPACK::fgesv(mat.ring().field(),
                      (!right_side ? FFLAS::FflasLeft : FFLAS::FflasRight),
                      a_cols, a_rows, 
                      (!right_side ? b_cols : b_rows),
                      ffpackA,
                      a_rows, // leading dim of A
                      ffpackX, x_rows,
                      ffpackB, b_rows,
                      &info);
    
        if (info > 0)
          {
            // the system is inconsistent
            ERROR("the system is inconsistent");
            return false;
          }
    
        X.resize(x_rows, x_cols);
        X.copy_elems(x_rows * x_cols, X.get_array(), 1, ffpackX, 1); 
    
        delete [] ffpackX;
    
        return true;
    } 

 

   
    template<typename CoeffRing>
    void FFpackScalarMultiplyInPlace(DMat<CoeffRing>& A, 
                                            
                             const typename CoeffRing::ElementType& scalar)
    {
        size_t incx = 1;
         FFLAS::fgemm( A.ring().field(), A.n_rows()*A.n_cols(), scalar, A.get_array(), incx);
    }
    

 template<typename CoeffRing>
    void FFpackMatrixAdd(DMat<CoeffRing>& C, 
                             const DMat<CoeffRing>& A,
                             const DMat<CoeffRing>& B)
    {

        FFLAS::fadd ( C.ring().field(),  
                C.n_cols(),  C.n_rows(),
                A.get_array(), A.n_rows(),
                B.get_array(), B.n_rows(),
                C.get_array(), C.n_rows() );
    }

 template<typename CoeffRing>
    void FFpackMatrixAddInPlace(DMat<CoeffRing>& C, 
                                const DMat<CoeffRing>& A)
    {

        FFLAS::faddin ( C.ring().field(),  
                C.n_cols(),  C.n_rows(),
                A.get_array(), A.n_rows(),
                C.get_array(), C.n_rows() );
    }

 template<typename CoeffRing>
    void FFpackMatrixSub(DMat<CoeffRing>& C, 
                             const DMat<CoeffRing>& A,
                             const DMat<CoeffRing>& B)
    {

        FFLAS::fsub ( C.ring().field(),  
                C.n_cols(),  C.n_rows(),
                A.get_array(), A.n_rows(),
                B.get_array(), B.n_rows(),
                C.get_array(), C.n_rows() );
    }

    // there is no BLAS or even FFPACK routine for transposing a matrix.
    
    template<typename CoeffRing>
    void FFpackAddMultipleTo(DMat<CoeffRing>& C, 
                             const DMat<CoeffRing>& A,
                             const DMat<CoeffRing>& B,
                             bool transposeA,
                             bool transposeB,
                             const typename CoeffRing::ElementType& a,
                             const typename CoeffRing::ElementType& b)
    /* A,B,C should be mutable matrices over a finite prime field, and a,b
       elements of this field.
       C = b*C + a * op(A)*op(B),
       where op(A) = A or transpose(A), depending on transposeA
       where op(B) = B or transpose(B), depending on transposeB
    */
    { 

        FFLAS::FFLAS_TRANSPOSE tA = (transposeA ? FFLAS::FflasTrans : FFLAS::FflasNoTrans);
        FFLAS::FFLAS_TRANSPOSE tB = (transposeB ? FFLAS::FflasTrans : FFLAS::FflasNoTrans);

        size_t m = (transposeB ? B.n_rows() : B.n_cols());
        size_t n = (transposeA ? A.n_cols() : A.n_rows());
        
        size_t k = (transposeA ? A.n_rows() : A.n_cols());
        size_t k2 = (transposeB ? B.n_cols() : B.n_rows());

        assert(k == k2); // The user of this function must insure that sizes are correct.
        if (k!=k2)
        {
            ERROR("matrices are not composable. this error is handled in Macaulay2 code and this message should never appear! ");
            return;
        }
            

        FFLAS::fgemm( C.ring().field(),
                     tB, tA,
                     m,n,k,
                     a,
                     B.get_array(),
                     B.n_rows(),
                     A.get_array(),
                     A.n_rows(),
                     b,
                     C.get_array(),
                     C.n_rows()
                     );
    }

    //////////////////////////////////////////////////////
    // ARingZZpFFPACK specific linear algebra functions //
    //////////////////////////////////////////////////////
    template<>
    void DMat<M2::ARingZZpFFPACK>::addInPlace(const DMat& B)
    {
        std::cout << "DMat<M2::ARingZZpFFPACK>::addInPlace()" << std::endl;
        FFpackMatrixAddInPlace<M2::ARingZZpFFPACK>(*this,B);
    }


    template<>
    size_t DMat<M2::ARingZZpFFPACK>::rank() const
    {
        std::cout << "DMat<M2::ARingZZpFFPACK>::rank()" << std::endl;
        return FFpackRank<M2::ARingZZpFFPACK>(*this);
    }

    template<>
    void DMat<M2::ARingZZpFFPACK>::determinant(elem &result) const
    {
        std::cout << "Calling  DMat<M2::ARingZZpFFPACK>::determinant" << std::endl;
        FFpackDeterminant<M2::ARingZZpFFPACK>(*this, result);
    }

    template<>
    bool DMat<M2::ARingZZpFFPACK>::invert(DMat<M2::ARingZZpFFPACK> &inverse) const
    {
        std::cout << "Calling  DMat<M2::ARingZZpFFPACK>::inverse" << std::endl;
        return FFpackInvert<M2::ARingZZpFFPACK>(*this, inverse);
    }

    template<>
    void DMat<M2::ARingZZpFFPACK>::nullSpace(DMat<M2::ARingZZpFFPACK> &nullspace, bool right_side) const
    {
        std::cout << "Calling  DMat<M2::ARingZZpFFPACK>::nullspace" << std::endl;
        FFpackNullSpace<M2::ARingZZpFFPACK>(*this, nullspace, right_side);
    }

    template<>
    M2_arrayintOrNull DMat<M2::ARingZZpFFPACK>::rankProfile(bool row_profile) const
    {
        std::cout << "Calling  DMat<M2::ARingZZpFFPACK>::rankProfile" << std::endl;
        return FFpackRankProfile(*this, row_profile);
    }

    template<>
    bool DMat<M2::ARingZZpFFPACK>::solveLinear(DMat<M2::ARingZZpFFPACK> &X, 
                                               const DMat<M2::ARingZZpFFPACK> &B, 
                                               bool right_side) const
    {
        std::cout << "Calling  DMat<M2::ARingZZpFFPACK>::solveLinear" << std::endl;
        return FFpackSolveLinear(*this, X, B, right_side);
    }

    template<>
    void DMat<M2::ARingZZpFFPACK>::addMultipleTo(const DMat<M2::ARingZZpFFPACK> &A,
                                                 const DMat<M2::ARingZZpFFPACK> &B,
                                                 bool transposeA,
                                                 bool transposeB,
                                                 const ElementType& a,
                                                 const ElementType& b)
    {
        std::cout << "Calling  DMat<M2::ARingZZpFFPACK>::addMultipleTo *" << std::endl;
        FFpackAddMultipleTo(*this, A, B, transposeA, transposeB, a, b);
    }

#if 1

    //////////////////////////////////////////////////////
    // ARingGFGivaro specific linear algebra functions /////////
    //////////////////////////////////////////////////////

    template<>
    void DMat<M2::ARingGFGivaro>::addInPlace(const DMat& B)
    {
      std::cout << "not implemented yet" << std::endl;
    }

    template<>
    size_t DMat<M2::ARingGFGivaro>::rank() const
    {
        std::cout << "Calling DMat<M2::ARingGFGivaro>::rank()" << std::endl;
        return FFpackRank<M2::ARingGFGivaro>(*this);
    }
    
    template<>
    void DMat<M2::ARingGFGivaro>::determinant(elem &result) const
    {
        std::cout << "Calling  DMat<M2::ARingGFGivaro>::determinant" << std::endl;
        FFpackDeterminant<M2::ARingGFGivaro>(*this, result );
    }
    
    template<>
    bool DMat<M2::ARingGFGivaro>::invert(DMat<M2::ARingGFGivaro> &inverse) const
    {
        std::cout << "Calling  DMat<M2::ARingGFGivaro>::inverse" << std::endl;
        return FFpackInvert<M2::ARingGFGivaro>(*this, inverse);
    }

    template<>
    void DMat<M2::ARingGFGivaro>::nullSpace(DMat<M2::ARingGFGivaro> &nullspace, bool right_side) const
    {
        std::cout << "Calling  DMat<M2::ARingGFGivaro>::nullspace" << std::endl;
        FFpackNullSpace<M2::ARingGFGivaro>(*this, nullspace, right_side);
    }

    template<>
    M2_arrayintOrNull DMat<M2::ARingGFGivaro>::rankProfile(bool row_profile) const
    {
        std::cout << "Calling  DMat<M2::ARingGFGivaro>::rankProfile" << std::endl;
        return FFpackRankProfile(*this, row_profile);
    }

    template<>
    bool DMat<M2::ARingGFGivaro>::solveLinear(DMat<M2::ARingGFGivaro> &X, 
                                               const DMat<M2::ARingGFGivaro> &B, 
                                               bool right_side) const
    {
        std::cout << "Calling  DMat<M2::ARingGFGivaro>::solveLinear" << std::endl;
        return FFpackSolveLinear(*this, X, B, right_side);
    }

    template<>
    void DMat<M2::ARingGFGivaro>::addMultipleTo(const DMat<M2::ARingGFGivaro> &A,
                                                 const DMat<M2::ARingGFGivaro> &B,
                                                 bool transposeA,
                                                 bool transposeB,
                                                 const ElementType& a,
                                                 const ElementType& b)
    {
        std::cout << "Calling  DMat<M2::ARingGFGivaro>::addMultipleTo" << std::endl;
        FFpackAddMultipleTo(*this, A, B, transposeA, transposeB, a, b);
    }

#endif
#endif

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: